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Abstract—Almost every clinical specialty will use artificial
intelligence in the future. The first area of practical impact is
expected to be the rapid and accurate interpretation of image
streams such as radiology scans, histo-pathology slides, oph-
thalmic imaging, and any other bioimaging diagnostic systems,
enriched by clinical phenotypes used as outcome labels or addi-
tional descriptors. In this study, we introduce a machine learning
framework for automatic image interpretation that combines the
current pattern recognition approach (“radiomics”) with Deep
Learning (DL). As a first application in cancer bioimaging, we
apply the framework for prognosis of locoregional recurrence in
head and neck squamous cell carcinoma (N=298) from Computed
Tomography (CT) and Positron Emission Tomography (PET)
imaging. The DL architecture is composed of two parallel
cascades of Convolutional Neural Network (CNN) layers merging
in a softmax classification layer. The network is first pretrained
on head and neck tumor stage diagnosis, then fine-tuned on
the prognostic task by internal transfer learning. In parallel,
radiomics features (e.g., shape of the tumor mass, texture and
pixels intensity statistics) are derived by pre-defined feature
extractors on the CT/PET pairs. We compare and mix deep
learning and radiomics features into a unifying classification
pipeline (RADLER), where model selection and evaluation are
based on a data analysis plan developed in the MAQC initiative
for reproducible biomarkers. On the multimodal CT/PET cancer
dataset, the mixed deep learning/radiomics approach is more
accurate than using only one feature type, or image mode.
Further, RADLER significantly improves over published results
on the same data.

Index Terms—Radiomics, Deep Learning, Integration

I. INTRODUCTION

Artificial Intelligence (AI) progress in medical image inter-
pretation is rapidly gaining speed, with a wide range of appli-
cations [1]–[3]. Its translation to clinical practice is expected
to accelerate due to faster regulatory approval procedures for
medical algorithms [4]. As deep learning models (DL) aim to
evolve status from exploratory to clinically effective solutions,
interpretability remains a major stepping hindrance [4], [5].
In general terms, DL provides a class of machine learning
methods that can model complex abstractions of patterns
through multiple non-linear transformations estimated by data-
driven training procedures. Convolutional Neural Networks
(CNNs) are DL models widely successful in image recog-
nition and classification. Their application in medical image

analysis dates back to 1996, to discriminate tumor mass and
normal tissue in mammography [6]. Since then, CNNs have
provided results comparable to experts in the diagnosis of skin
lesions [7], classification of colon polyps [8], [9], survival
analysis of glioma [10], ophthalmology [11], histology [12],
and other areas [1].

Medical imaging is indeed a key resource shaping the
clinical trajectory of a patient. Based on these initial success
stories, DL techniques are expected to represent a major
breakthrough in diagnosis, treatment decision, prognosis and
treatment evaluation. This breakthrough is expected to be per-
vasive and valid over the diverse medical imaging modalities,
i.e., anatomical (such as CT scan) or functional (e.g., PET).

In apparent competition with DL, radiology is already walk-
ing fast on a critical innovation path enlightened by radiomics,
the umbrella-term for pattern recognition methods composed
by quantitative image feature extraction paired with statis-
tical or standard machine learning classifiers. Radiomics is
grounded on the underlying biological assumption that imag-
ing features can capture distinct phenotype morphology [2],
thus achieving both classification and clinical understanding
in the machine learning process.

This emphasis on interpretability is a key factor in oncol-
ogy, where molecular expressions of cancer subtypes may
manifest as tissue architecture and nuclear morphological
alterations [13]; hence automatic evaluation of disease aggres-
siveness and patient subtyping can be derived to inform the
therapeutic decision. Radiomics features include descriptors
of intensity distribution, spatial relationships, texture hetero-
geneity patterns, descriptors of shape and morphology, and
volumetric quantification [14], [15]. Radiomics features can
be extracted by tools such as the cancer imaging phenomics
toolkit (CaPTk) for radiographic images [16], histomicsTK for
histological Whole Slide Images, or pyRadiomics [17].

The role of features in DL is remarkably different: by
construction, data are non-linearly mapped throughout the
transformation connecting the input and output spaces of a
neural network. At each layer, data are projected in a synthetic
feature space defined by the training process; such latent
features can be investigated in association to the outcome
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Fig. 1. Workflow of CT and PET volumes preprocessing pipeline. SUV: Standardized Uptake Values

labels. Although hard to define in biological or morphological
terms, these learned features can outperform the hand-crafted
ones [18]–[21].

However, DL models typically need a much larger amount
of data for training for optimal results than statistical machine
learning models; thus these models are often bootstrapped
With the transfer learning approach, i.e. borrowing weights of
models trained on different domains, and possibly retraining
only a sector of interest of the network with the data from the
novel task [22]. This trick is extensively used in non-medical
domains, based on the availability of large-scale data and
pre-trained architectures [23], [24]. Recently, these resources
are becoming available in cancer research. For example, the
DeepLesion dataset, containing over 32, 000 annotated lesions
in CT scans [25], and The Cancer Imaging Archive (TCIA),
which provides medical images of different modalities (MRI,
CT, etc.) [26].

The success of transfer learning schemas is clearly con-
tributing to approaching DL models as powerful extractors
of useful feature sets (i.e. deep features). However, linking
deep features to meaningful clinical properties interpretable
by physicians remains a key challenge [3]. Statistical ma-
chine learning approaches are also still widely used in ra-
diomics [27], [28]. This state of the art has naturally led to
the idea of a hybrid combination of hand-crafted radiomics
(HCR) and deep-learning radiomics (DLR) in an integrated
system system [4], [29], [30]. These systems can provide ob-
jective characterizations of tumor and a more effective decision
support environment, activating expertise in interpretation by
clinicians, biologists and bioinformaticians [31].

Notably, the fusion between the two radiomics feature types
operates either at decision level or at feature level. With the
first approach, models built on HCR and DLR features are de-
veloped separately and a final decision module combines their
outputs [19], [32]. With the second approach, the integration of
HCR and DLR features operates at early level in a multimodal
learning framework (e.g. by concatenation), usually with better
classification performance [23], [33]–[37].

In this work, we propose RADLER, an automatic pipeline

for the integration of DLR and HCR features for medical
images analysis, in a first application on multimodal PET/CT
scans. To support reproducibility, models are trained with
a Data Analysis Plan (DAP) that includes repeate cdross-
validation, model selection and feature ranking techniques. To
validate the framework, an application is shown on a dataset of
two-modality 3D CT/PET scans for prognosis of locoregional
recurrence (LR) in head and neck squamous cell carcinoma
(N=298), previously solved with a HCR approach and a
logistic regression model [38]. The multimodal network archi-
tecture is derived from a multi-stream multi-scale architecture
for lung cancer screening [39]. The network is first pretrained
on head and neck tumor stage (T-stage) diagnosis, then fine-
tuned on the prognostic task (internal transfer learning). The
RADLER model integrates in this case up to four feature types
(CT-HCR, CT-DLR, PET-HCR, PET-DLR) improving over the
published results on the same data [38]. Moreover the mixed
deep learning/radiomics approach is more accurate than using
only one feature type, or image mode.

II. MATERIALS AND METHODS

Head-Neck-PET-CT Dataset

The Head-Neck-PET-CT (HN) dataset 1 has been originally
introduced in [38], and further used in [40]. It includes medical
images and clinical data of 298 patients with head and neck
squamous cell carcinoma.

For each patient, the HN dataset provides CT and PET
scans and Gross Tumor Volume (GTV) mask, preprocessed
according to the pipeline in Fig. 1. Several clinical variables
are included, in particular the Locoregional Recurrence (LR)
within the follow-up period (median: 43 months; range: 6-112
months), and T-stage at diagnosis. Data are gathered from four
different hospitals, each one representing a single cohort. No-
tably, each hospital has its own image acquisition equipment
and acquisition settings, which is a cause of heterogeneity
in image characteristics, in particular resolution of the PET

1publicly available at https://wiki.cancerimagingarchive.net/display/Public/
Head-Neck-PET-CT
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no-LR LR total

Train 164 27 191
Test 88 15 103

TABLE I
HN DATA: CLASS DISTRIBUTION OF THE LR PROGNOSTIC TASK IN

TRAIN AND TEST SETS (N=294).

images. Moreover, The HN dataset is highly unbalanced for
the LR prognosis, with 15.8% of recurrence (Table I).

For the sake of comparison, we split the HN dataset into
training and test sets with the same partition as in the original
study [38]. In particular, two hospital cohorts are used to train
the model (training set, Ntr = 191), and two cohorts are
used for testing (test set, Nte = 103), with proportioned class
stratification (see Table I); the design is chosen to consider
possible batch effects in the subcohorts due to the hospital of
provenance.

The data set includes the secondary diagnostic label tumour
stage (T-stage: score in a 1-4 scale), which was considered for
the internal transfer learning strategy. Patients missing the T-
stage were not considered in training the diagnostic model,
thus developed on a subset of 269 patients, partitioned into
60/40% train/test sets (see Table II).

Image Processing Workflow

As summarized in the diagram in Fig. 1, CT and PET
images are first preprocessed to obtain a standardized in-
put information. In particular, PET images are converted to
Standardized Uptake Values (SUVs), applying the protocol
proposed by the Quantitative Imaging Biomarkers Alliance
(QIBA), which also considers vendor-dependent parameters. It
is worth mentioning that the conversion of PET images to SUV
format is still an open question [41], [42]. The GTV pattern is
imported by creating a binary mask with the same size of the
CT and PET images (“GTV mask”). For both CT and PET
modalities, the preprocessing pipeline includes: thresholding
on the pixel values; isotropic voxel resampling; and extraction
of the 3D volume containing the GTV.

The intensity in CT images is associated to tissue density
and it is measured with the Hounsfield scale (HS). Specific
HS value ranges are defined for each type of tissue, which
allows the direct comparison of images from different vendors.
However, artifacts or acquisition errors might affect the image
and give pixel values outside the physiological range. We
filter these artifacts by thresholding the pixel values of CT
images between HS=−1050 (air density score) and HS=3050
(bone density score). Similarly, the SUVs in PET images are

T1 T2 T3 T4 total

Train 29 64 36 34 163
Test 10 45 28 23 106

TABLE II
HN DATA: CLASS DISTRIBUTION OF THE DIAGNOSTIC T-STAGE TASK

IN TRAIN AND TEST SETS (N=269).

thresholded in the range between 0 and 50 to avoid artifacts
due to errors in sensors readings.

Further, isotropic voxel resampling was performed on CT
and PET images, as well as on the GTV mask, based on cubic
interpolation of each image on a 3D grid with 1 mm3 voxels,
in order to have an homogeneous standard spatial information.

The last module in the image preprocessing pipeline extracts
a subvolume of the image which contains the GTV. This
reduction enables to compute the radiomics features only
from the voxels, also reducing the size of the 3D image
portion to analyze with DL on the Graphical Processing Unit
(GPU) memory. The drawback of this operation is the loss of
contextual information near the GTW, thus the normalized size
of the subvolume was set to 128 mm3, a reasonable trade-off
between the size of the GTVs in the dataset and the amount of
context included. The volume of interest was centered in the
center of mass of the GTV, also used to center the subvolumes
of the CT, PET and GTV mask images.

In summary, the output of the image processing workflow
(see Fig. 1) is composed by three 128 mm3 images, one for
each modality and for the GTV mask.

III. THE RADLER INTEGRATIVE RADIOMICS DAP

We have developed the RADLER radiomics pipeline as a
general framework for predictive models that can integrate
Deep Learning and predefined features. The framework is also
designed to manage multimodal imaging datasets, as in the
case of study of LR prognosis on the HN cancer dataset. The
main steps in the RADLER pipeline after the preprocessing
phase are described below as exemplified on the LR HN task
(see Fig. 3.

Radiomics Feature Extraction and Integration

Three sets of radiomics features are considered:
i) HCR. A total of 3, 249 radiomics features are extracted

for each patient, replicating [38]. The feature extraction is
based on the pyradiomics framework [29]. The HCR
features are chosen to describe three main image proper-
ties: shape (13 features, based on the GTV contours),
intensity (18 features, based on the voxel intensities),
and texture (1, 600 features, based on four Gray-Level
Matrices). Following [38], 40 types of texture features
were considered, each one computed on 40 sets of
parameters that define pixel spacing, quantization method
and number of gray levels;

ii) DLR. A total number of 512 deep features are extracted
(256 from PET images and 256 from CT images) as a
byproduct of a multimodal neural network. The network
is trained on CT and PET simultaneously [39], with two
identical and parallel convolutional branches merged in a
fully connected layer (see Fig. III for the details on the
architecture). An internal transfer learning procedure is
applied by first training the whole network on the T-stage
dataset, then predicting LR by fine-tuning, i.e. retraining
only the linear blocks (final blue box in Fig. III). Fixed
hyper-parameters are used to regulate the training process
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Fig. 2. UMAP embedding of the radiomics deep features extracted from the PET images (PET-DLR). Each point represents a patient, colour coded for
T-stage. On the right panel, a qualitative trajectory of cancer severity is overlaid on patient clusters of increasing T-stage.

Fig. 3. The RADLER pipeline on CT/PET data: predictive models from the integration of radiomics and deep features.

with Adam [43] optimizer (batch size: 32, epochs: 500,
learning rate 10−3). Data augmentation procedures were
used to improve the performance and reduce overfitting:
i.e., minimal rotations, translations and Gaussian noise.
The transformed images were resized to cubes of 64 ×
64× 64 to better fit the GPU memory size.

iii) HCR + DLR. The two types of features are concatenated
into an integrative dataset. A more accurate model is
expected from two types that should capture different and
complementary information from the input images.

Feature selection and Ranking

The feature selection section in RADLER leverages a
combination of three methods from scikit-learn [44].
Features are standardized after imputation of missing values
(Nan and inf ) by mean feature values. The procedure is
composed of three main steps:

• Removal of correlated features (UNCORR). Since the
same types of radiomics features are extracted several
times with different sets of parameters (e.g. voxel size
for interpolation), the HCR feature set includes highly
correlated features. Thus, the Pearson’s correlation matrix
is computed, and high correlated features (ρ > 0.95) are
removed;

• Univariate analysis (UA). An association score (ANOVA
F-test) is computed between each feature and the target.
Features are ranked based on the association score, keep-
ing the top 1, 000 features;

• The remaining features are ranked based on their predic-
tive power within a Recursive Feature Elimination (RFE)
procedure and ordered by decreasing importance.

Feature selection and ranking are performed for each feature
set type. Notably, no feature from the deep feature sets is
removed by the UNCORR step; thus the features automatically
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Number of features
Feature Set # samples Initial After UNCORR After UA

HCR 295 3249 968 968
DLR 294 512 512 512
HCR + DLR 293 1480 1427 1000

TABLE III
SUMMARY OF THE THREE FEATURE SETS

created by the network are highly uncorrelated, i.e. the infor-
mation content is maximized. Table III summarizes the three
feature sets and the results of the feature selection section.

Fig. 4. Multimodal network architecture for CT/PET scans. The network
inputs are pairs of volumes of size 64 × 64 × 64, one for each channel
(CT and PET). The total number of output features from the convolutional
branches is 512. The final output of the network is the probability of LR
occurrence.
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Classification within a Data Analysis Protocol framework

A linear Support Vector Machine (LSVM) model is trained
on the three feature sets within a Data Analysis Protocol
(DAP) framework. The DAP was derived from a bioinformatic
machine learning procedure developed by the MAQC consor-
tium to grant reproducibility of predictive biomarkers from
microarrays and next-generation sequencing platforms, thus in
a massive data context [45]–[47]. The dataset is split before-
hand into training and test sets (two cohorts for each split, see
Table I): the training set is used to develop the model and the
test set is used only to asses the predictive performance. The
Matthews Correlation Coefficient (MCC) [48]–[50] is used as
the evaluation metric.

A grid of parameters is created from the values of the LSVM
regularization parameter C ∈ {10−3, 10−2, 10−1, 1, 10, 100}
and the increasing number of features nf ∈
{0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 10%, 20%, 50%, 100%}.
For each parameter point, the training set is randomly split
into 5 folds, which are cyclically used to train and validate the
model. The optimal parameters are selected by maximizing
the predictive results on the validation set. This procedure
is repeated 10 times, thus obtaining 50 predictive scores for
each parameter point, which are averaged and used to select
the best parameter set. Finally, the optimal predictive model
is trained on the whole training set using the best parameters
and evaluated on the test set.

IV. RESULTS

In order to obtain the Deep Learning network for the LR
task, the architecture was first trained to classify the T-stage,
with MCC = 0.863 on the training set (one-shot) and MCC =
0.279 on the test set. As this network is only used to initialize
the parameters to predict the LR, this result was not validated
within the DAP procedure. To qualitatively investigate the
embedding resulting in the T-stage network, we considered
the Uniform Manifold Approximation and Projection (UMAP)
dimensionality reduction method [51]. The UMAP projection
for the T-stage data of the Deep Features extracted from the
PET images is displayed in Fig. 2 (left); the deep learning
model transforms the input images into a representation of
the T-stage severity, which can be qualitatively represented as
a trajectory in the projection plan (see Fig. 2, right).

We transferred the weights of the convolutional branches
to a new network and trained the linear layers in the final
block to predict LR. These branches are used to generate the
deep features (DLR feature set). The trained network obtains
MCCtrain = 0.367 and MCCtest = 0.245, with a small
overfitting.

We compared the performance of the LSVM model trained
within the DAP on the different feature sets (see Table IV)
and against the reference study [38] (see Table V).

Notably, on the test dataset we improve the original results
for all feature sets and metrics, except for the sensitivity
achieved using the deep features (0.53 vs 0.56: Table V). In
particular, the best results on the test dataset are achieved with
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Sensitivity Specificity Accuracy MCC # HCR features # DLR features

HCR 0.553 0.932 0.878 0.498 48
(0.487 - 0.623) (0.916 - 0.946) (0.861 - 0.893) (0.435 - 0.558) CT:19, PET:28, GTV:1

DLR 0.387 0.866 0.799 0.244 51
(0.344 - 0.428) (0.850 - 0.882) (0.784 - 0.813) (0.202 - 0.288) CT:22, PET:29

HCR+DLR 0.805 0.991 0.965 0.848 261 239
(0.749 - 0.853) (0.988 - 0.995) (0.956 - 0.972) (0.806 - 0.884) CT:138, PET:118, GTV:5 CT:108, PET:131

TABLE IV
CROSS-VALIDATION PERFORMANCE FOR THE DIFFERENT FEATURE SETS ON THE TRAINING SET, USING THE DAP PROCEDURE. METRICS ARE

EXPRESSED AS MEDIAN VALUES WITH 95% BOOTSTRAPPED CONFIDENCE INTERVALS. THE LAST TWO COLUMNS REPORT THE NUMBER OF FEATURES
PER CLASS AND MODALITY.

Sensitivity Specificity Accuracy MCC

Vallières CT-PET 0.56 0.67 0.65 Not reported
HCR 0.94 0.95 0.95 0.832
DLR 0.53 0.97 0.9 0.57
HCR+DLR 0.67 0.91 0.94 0.748

TABLE V
PERFORMANCE FOR THE DIFFERENT FEATURE SETS ON THE TEST SET, COMPARED TO REFERENCE RESULTS (“VALLIÈRES CT-PET”).

the radiomics features (Sensitivity: 0.94; Specificity: 0.95;
Accuracy: 0.95).

However, an underfitting effect is observed for both the
HCR and DLR feature sets, with higher accuracy on the
test than on the training set. The overall best performance
is achieved with the HCR+DLR feature set, i.e. MCCDAP =
0.848.

Considering the DLR set, we note that both the linear layers
of the DL network and the LSVM model have the same sets of
features as input, and so their performance can be compared.
Notably, the performance of the linear layers (MCC = 0.245)
on the test set are within the confidence intervals of the LSVM
model (MCC = 0.244).

We also investigated whether considering both CT and PET
is effectively useful, i.e. if the two modalities contribute with
complementary information (see Table VI). Please note that
the single modality feature sets (CT and PET) are obtained
from the corresponding multimodality features sets after the
feature selection and ranking step, by selecting the features
computed from the respective images.

Results reported in Table VI show that the underfitting
issues, i.e. MCCtest � MCCtrain, mostly affect the PET-only
modality, thus confirming the intrinsic difficulties of quantita-
tive interpretation of PET images. This is also an open problem
also in the clinical practice, in particular for head and neck
pathologies [52], [53]. In fact, despite the applied conversion
to SUV, technical differences between PET scanners, and non-
linear effects associated to GTV segmentation as well as other
patient-dependent parameters are not taken into account [41],
[42], [54]. Further, we observe that the best MCC is achieved
by the HCR+DLR feature set, also resolving the mentioned
underfitting issues.

V. DISCUSSION

The RADLER framework introduced in this study aims at
the integration of deep and radiomics features for medical
image analysis and classification. Its first application in a
prognostic task of locoregional recurrence (LR task) of head

and neck cancer improves with respect to the state of art [38],
both in terms of sensitivity (0.94 vs 0.56) and specificity (0.95
vs 0.67). Moreover, the DAP included in the framework is
used to evaluate variability due to resampling and control for
selection bias in the model selection phase. As assessed by the
DAP, the feature set integrating radiomics and deep features is
more effective in predicting LR than only one of the feature
types.

The RADLER framework is demonstrated with a DL ar-
chitecture for CT/PET; in detail, a 3D multimodal CNN is
adapted from a 2D solution originally aimed at classifying
lung nodules from CT imaging [39]. Secondly, we adopted
an internal transfer learning approach, starting from the diag-
nostic classification of tumour stage. This domain adaptation
approach proved useful in dealing with class unbalance and
a relatively low number of samples, while achieving good
predictive performance, as shown on the HN dataset, with high
class unbalance and low number of samples.

This design makes the RADLER pipeline and its DL
network potentially effective to model other clinical tasks in
which different image modalities (e.g., MRI) and anatomical
regions (e.g., lung, brain) are considered. The pipeline still
requires the manual annotation of the GTV; however, this
task could be tackled by automatic segmentation models, thus
moving towards a fully automated pipeline. The development
of a multimodal network in the RADLER framework was
driven as a first step by the integration of PET and CT images
in a clinical context. Further work is needed to confirm the
robustness of the approach on different cohorts and hospitals.

This work aimed mainly at investigating a new framework
for the integration of radiomics and deep learning; limited
effort was focused on tuning the DL model, and we restricted
the types of radiomics features to those proposed in the
reference paper [38]. A similar combination approach of deep
and radiomic features has been applied on a subset of the
HN dataset to predict distant metastasis by applying CNNs
to CT scans only [40]. In particular, we expect that better

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2019. ; https://doi.org/10.1101/568170doi: bioRxiv preprint 

https://doi.org/10.1101/568170
http://creativecommons.org/licenses/by-nc-nd/4.0/


CT-only PET-only
Feature set MCC train MCC test MCC train MCC test

HRC 0.342 (0.284 - 0.401) 0.328 0.163 (0.106 - 0.222) 0.409
DLR 0.168 (0.113 - 0.223) 0.193 0.158 (0.105 - 0.213) 0.545
HCR+DLR 0.552 (0.5 - 0.602) 0.36 0.351 (0.289 - 0.406) 0.365

TABLE VI
PERFORMANCES ON SINGLE MODALITY FEATURE SETS.

accuracy can be achieved by adopting specific deep learning
architectures or considering more complex methods to extract
radiomics features, for instance applying Wavelet filters [17].
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