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Abstract

One of the key characteristics of the transmission dynamics of infectious diseases is the
generation time which refers to the time interval between the infection of a secondary
case and the infection of its infector. The generation time distribution together with the
reproduction number determines the rate at which an infection spreads in a population.
When defining the generation time distribution at a calendar time t two definitions are
plausible according whether we regard t as the infection time of the infector or the
infection time of the infectee. The resulting measurements are respectively called
forward generation time and backward generation time. It has been observed that the
mean forward generation time contracts around the peak of an epidemic. This
contraction effect has previously been attributed to either competition among potential
infectors or depletion of susceptibles in the population. The first explanation requires
many infectives for contraction to occur whereas the latter explanation suggests that
contraction occurs even when there are few infectives. With a simulation study we show
that both competition and depletion cause the mean forward generation time to
contract. Our results also reveal that the distribution of the infectious period and the
reproduction number have a strong effect on the size and timing of the contraction, as
well as on the mean value of the generation time in both forward and backward scheme.

Author summary

Infectious diseases remain one of the greatest threats to human health and commerce,
and the analysis of epidemic data is one of the most important applications of statistics
in public health. Thus, having reliable estimates of fundamental infectious diseases
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parameters is critical for public health decision-makers in order to take appropriate
actions for the global prevention and management of outbreaks and other health
emergencies. A key example is given by the prediction models of the reproduction
numbers: these rely on the generation time distribution that is usually estimated from
contact tracing data collected at a precise calendar time. The forward scheme is used in
such a prediction model and the knowledge of its evolution over time is crucial to
correctly estimate the parameters of interest. It is therefore important to characterize
the causes that lead to the contraction of the mean forward generation time during the
course of an outbreak.

In this paper, we firstly identify the impact of the epidemiological quantities as
reproduction number, infectious period and population size on the mean forward and
backward generation time. Moreover, we analyze the phenomena of competition among
infectives and depletion of susceptible individuals highlighting their effects on the
contraction of the mean forward generation time. The upshot of this investigation is
that the variance of the infectious period distribution and the reproduction number
have a strong impact on the generation times affecting both the mean value and the
evolution over time. Furthermore, competition and depletion can both cause contraction
even for small values of the reproduction number suggesting that, in epidemic models
where the generation time is considered time-inhomogeneous, estimators accounting for
both depletion and competing risks are to be preferred in the inference of the generation
interval distributions.

Introduction 1

In infectious disease epidemiology, mathematical models are increasingly being used to 2

study the transmission dynamics of infectious agents in a population and thereby 3

providing fundamental tools for developing control policies. An optimal control strategy 4

is based on an appropriate prediction model that in turn requires reliable estimates of 5

the key epidemic parameters. 6

Most research has focused on the ‘basic reproduction number’, R0, which is defined 7

as the expected number of secondary cases resulting from introducing a typical infected 8

person into an entirely susceptible population [2]. The inference of its value in the 9

ascending phase of an epidemic is based either explicitly or implicitly on assumptions 10

about the generation interval distribution [3]. 11

The generation interval, or generation time, is defined to be the time interval 12

between the infection time of an infectee and the infection time of its infector [4]. 13

Generation times are lengths of time intervals and thus there is not a unequivocal 14

procedure to define their dependence on a precise calendar time t. To account for the 15

evolution over time a choice has to be made weather considering generations from the 16

infectee or infector point of view. In the former case the time coordinate refers to the 17

time that has evolved since the infector of an infected person was infected. This is 18

called ‘backward’, or ‘period’, generation interval. In the latter case, known as ‘forward’, 19

or ‘cohort’, generation interval the average time required to infect another individual is 20

recorded [5, 6]. Considered in the forward scheme, the generation interval distributions 21

is commonly used to estimate infectious disease parameters such as the basic 22

reproduction number [6–9]. 23

More ambiguity arises in the estimation of the mean generation time because actual 24

data often concern the onset of clinical symptoms rather than the time of infection. 25

These observations relate to the ‘serial interval’, the time interval between symptom 26

onset of a secondary case and symptom onset of its infector [10]. Many authors have 27

used the serial interval as a synonym for the generation time. However, unlike the 28

generation time, the serial interval can have a negative duration when the clinical 29
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symptoms for an infectee appear prior to that of its infector [11]. Note that the serial 30

interval is only defined for symptomatic individuals; an issue that we will not discuss 31

here. 32

Statistical development led to approaches for the estimation of the generation time 33

distribution [7, 12,13] or jointly of the basic reproduction number and the generation 34

time distribution [14–16]. The usefulness of the aforementioned approaches has been 35

demonstrated in the analysis of epidemic data during e.g. SARS outbreaks and the 36

pandemic influenza A(H1N1)V2009 outbreak [17–19]. Most of these estimation methods 37

assume the generation or serial time distribution to remain constant during the 38

epidemic. However, several authors described a non-constant evolution over time for 39

both backward and forward generation interval [5, 6, 8, 20]. In the former case as the 40

epidemic evolves the generation time increases while in the latter case the generation 41

time contracts reaching a minimum approximately at the peak of the outbreak [6, 8]. 42

We will refer to this phenomenon in the forward scheme as ‘contraction’ to stress the 43

particular shape that the mean generation time assumes over time. The non-constant 44

evolution of the generation interval has stimulated a search for different approaches to 45

estimate the reproduction number that avoid assuming a constant generation intervals 46

distribution through time [8, 9, 13]. Kenah et al. (2008) proposed an hazard-based 47

estimator and the so-called contact interval, the time from onset of infectiousness to an 48

infectious contact, accounting not only for depletion but also for competing risks. 49

The contraction of the mean forward generation time seems counter-intuitive since 50

one would expect generations to happen faster in the initial phase of the epidemic, when 51

the population is mostly susceptible. The principal aim of this paper is to clarify the 52

epidemiological mechanisms that cause contraction. Researchers typically assign to the 53

phenomenon of contraction only one among two explanations: competition among 54

infectors [8] and depletion of susceptible individuals [5, 20]. Both explanations are 55

reasonable, but a study that clearly shows which of these hypotheses are responsible for 56

the contraction of the mean forward generation time is not present in literature. The 57

first explanation requires multiple infectors competing to infect the same susceptible 58

and affects the specific generation time while the latter accounts for the variation in the 59

probability of encountering a susceptible individual during the outbreak inducing 60

infectors to more likely infect other individuals in a short time frame since the 61

probability of contacting a susceptible later on is lower. More recently, Liu et al. (2018) 62

reported the evolution over time of the mean forward generation interval in a structured 63

population. More precisely, different infectious contact processes have been defined in 64

different locations showing that levels of contraction strongly depend on the underlying 65

contact process. Therefore, in addition to investigate the competition and depletion 66

hypotheses, we address the impact on the mean backward and forward generation 67

intervals over time of settings with different reproduction numbers, population sizes and 68

infectious period distributions. 69

The present investigation is a simulation study where the simulations are based on 70

two different algorithmic implementations of a stochastic SIR compartmental model as 71

introduced by Kenah et al. (2008) and Scalia Tomba et al. (2009) which will be referred 72

to as the stepwise and the parallel algorithm respectively. In what follows, we revisit the 73

taxonomy of various time intervals used in epidemic modeling, we simulate the impact 74

of the considered epidemic quantities on the mean generation times and we show the 75

impact of competition and depletion on the mean forward generation interval. In 76

addition to a baseline scenario we present three artificial scenarios accounting for 77

different levels of competition and depletion level since in the SIR model these 78

phenomena cannot be disentangle. Finally, we conclude by explaining under which 79

conditions the two hypotheses give rise to the generation interval contraction. 80
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Materials and methods 81

We follow the notation used by Kenah et al. (2008) to describe the dynamics of the 82

well-known ‘Susceptible-Infected-Removed’ (SIR) compartmental epidemic model in a 83

closed population of size N : 84

1. after an infectious contact, person i acquires infection at time ti. 85

2. during the infectious period of length ri, person i is capable of infecting other 86

individuals 87

3. at time ti + ri, person i is immune and cannot be longer infected by other person. 88

We distinguish between three time intervals that determine the between-host 89

transmission of infection. The first one is the contact interval τi,j , defined to be the 90

time interval between the onset of infectiousness in person i and the first infectious 91

contact from i to j, where we define an infectious contact as a contact sufficient to 92

transmit the disease. 93

After becoming infectious at time ti an infected person i makes contact with person 94

j at time ti,j = ti + τi,j . When the contact interval τi,j occurs within the infectious 95

period ri, i.e. τi,j < ri, the infection can be transmitted and the contact interval is 96

called infectious contact interval τ∗i,j . This contact will lead to an infection if j is 97

susceptible at time ti,j . In this framework the generation time ωi,j can be defined in the 98

following way: if an infectious contact from person i to person j leads to an infection 99

transmission, then ωi,j = τ∗i,j is called the generation time. In the present paper we 100

consider a Poisson contact process. 101

Simulation setup 102

Our simulation models are based on two algorithms previously introduced in literature. 103

The stepwise algorithm was proposed by Kenah et al. (2008); it is based on the notion 104

contact interval [22] and it was implemented to illustrate the competition among 105

potential infectors and its effect on the mean generation times. After the onset of 106

infectiousness in an indiviudal, infectious contact intervals are drawn for all the other 107

susceptible persons. The parallel algorithm was outlined by Scalia-Tomba et al. (2009); 108

it is based on the infectious contact process aiming to illustrates the effect of the 109

depletion of susceptible individuals. Based on a specific infectious contact process, a 110

single infectious contact interval is proposed by all the individuals that are infectious in 111

the current time step. A complete description of both algorithms is given in S1 112

Appendix. Since results are similar for both algorithms we report results based on the 113

parallel algorithm and defer results based on the stepwise algorithm to S1 Appendix (S1 114

Fig and S1 Table). 115

Baseline scenario 116

We start the investigation of the causes that affect the generation time setting a baseline 117

scenario that representing the dynamic of a stochastic SIR model. In the baseline 118

scenario, we look at the impact of the infectious period, the reproduction number and 119

the population size on the mean backward and forward generation interval using the 120

two aforementioned algorithms. In the forward scheme, the mean generation interval is 121

calculated within each infector’s set of generation times and then used as a single data 122

point per infector to avoid the size biased sampling effect [5] whereas in the backward 123

observation scheme, we attribute the unique generation time to each single infectee. 124

We simulate different epidemics by varying: 125
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• R0=1.5, 2, 3, 4, 5 126

• the infectious period distribution with mean 1: constant, Exp(1) = Γ(1, 1), 127

Γ(0.5, 2) and Γ(2, 0.5), resulting in variances equal to 1, 2 and 0.5, respectively. 128

• the population size: N=100, 500 and 1000 129

We work with a completely susceptible and closed population and report, based on 130

1000 simulations, the mean duration of an epidemic (Tmax), the mean final size (Fs), 131

and the averages of mean forward (ω̄f ) and mean backward generation times (ω̄b). We 132

study non-extinct outbreaks or outbreaks that persist, i.e. outbreaks in which a 133

substantial proportion of the population is infected, i.e. with final size larger than 10% 134

of the total population. 135

The evolution over time of the generation intervals is reported performing a loess 136

regression on the first n = 35 non-extinct simulations. We used this approach to 137

account for the stochasticity of the epidemic process and because we want to attach a 138

confidence interval that quantifies the variability over simulations. The number of 139

simulations is set to n = 35 because of computational limitations: the prediction of the 140

loess regression requires a lot of computational memory, especially for high reproduction 141

numbers and high population sizes where a considerable number of generations are 142

registered. Rerunning results on random sets of simulations of size n yielded similar 143

results and therefore the choice of n = 35 is not considered a limitation. The loess 144

function requires specifying a smoothness parameter called span. Different span values 145

did impact the plot in the final part of the epidemic but did not qualitatively affect the 146

results (S3 and S4 Figs). The same approach will be used also for the other scenarios. 147

Contraction of the mean forward generation time 148

We introduce three summary measures to account for competition and depletion. In
case the interest is in competition, we compute the relative number of generations
affected by competition pc, i.e. the number of generations for which more than an
individual propose an infectious contact to a specific susceptible over the total number
of generations; we report also the mean number of competitors when there is
competition, µc. In case interest is in depletion, we compute the maximum depletion ϕ
that is defined to be:

ϕ =

∣∣∣∣min
t≥0

(
S(t)′

N

)∣∣∣∣
We refer to S1 Appendix for the procedure to calculate the maximum depletion. 149

We first show that competition and depletion are present in the baseline scenario 150

and we compare these summaries for populations of size N = 4, 10, 20, 50, 100, 200 and 151

for R0 = 1.5, 3, 5. 152

After that, to investigate the phenomenon of contraction, next to the baseline 153

scenario, we study two scenarios that increase the effect of, respectively, depletion and 154

competition on the generation time distribution. In the former scenario susceptible 155

persons are vaccinated at a specific moment in time during the epidemic, referred to as 156

the vaccination scenario, and in the latter scenario infectious individuals are forced to 157

compete for the same susceptible, referred to as the competition scenario. We also study 158

a scenario in which the competition among infectors is not present: individual are 159

forced to proposed a contact only to susceptible persons who no one already proposed 160

an infectious contact to. We refer to this scenario as the pure depletion scenario. In all 161

of these scenarios the infectious period is set here to be constant to avoid that the 162

stochasticity of the infectious period distribution affects the results. 163
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Vaccination of susceptible persons 164

We study simulations in which 30%, 60% and 90% of the susceptible population is 165

vaccinated during the epidemic. In a population of size N = 1000 and R0 = 1.5 we do 166

so by vaccinating the remaining susceptible persons at a specific time called vaccination 167

time and indicated with tv. In this way we change the depletion effect: both augmenting 168

the intensity and changing the time at which depletion occurs. We consider simulations 169

with different vaccination times representing the initial phase (tv = 2), the main phase 170

(tv = 3, 5, 7) and the last phase (tv = 9) of the epidemic and we compute the value of the 171

epidemic characteristics. We do not report the depletion entity because of the instant 172

drop in susceptible population. Lastly, we plot the evolution over time of the forward 173

generation time for comparing this depletion scenario with the baseline scenario. 174

Pure depletion scenario 175

In this scenario infectives propose infectious contacts only to individuals who no other 176

infectors proposed an infectious contact to. In this way, there is no competition and 177

only depletion would be responsible for contraction. We consider populations of size 178

N = 100, 500 and 1000 and reproduction numbers R0 = 1.5, 2, 3, 4, 5 and we compare 179

this scenario with the baseline scenario in which competition is present. For every 180

non-extinct simulation we compute the loess regression and we keep track of the 181

maximum value, the minimum value and the range defined as the difference between 182

maximum and minimum. We do not report here the relative number of generations 183

affected by competition because of requiring huge computational memory to monitor all 184

these generations. However, for a small sample size, values are in line with the 185

simulations for N = 100, 200. 186

Competition among infectious persons 187

In the competition scenario, we force individuals to compete for the same susceptible 188

persons in a fixed time frame. To do that, every time an individual proposes an 189

infectious contact we force that individual to propose it to a susceptible person who 190

already someone else proposed an infectious contact to. We consider a scenario with 191

population size N = 1000 and R0 = 1.5 and, without loss of generality, we modify the 192

code increasing competition when the outbreak time is in the interval (3, 7). We select 193

this time interval to allow for starting from a reasonably sized infectious population. 194

Results 195

Impact of infectious period, reproduction number and 196

population size on the realized generation intervals. 197

Table 1 summarizes the results of the baseline scenario showing remarkable differences 198

when different infectious period distributions are considered: an higher variance of the 199

infectious period distribution enlarges the disparity between the value of the mean 200

forward and backward generation times, specially in the case of low value of the 201

reproduction number. Moreover, the outbreaks last longer and the backward and 202

forward generation times are registered to be larger. This discrepancy between mean 203

backward and forward generation time decreases for scenarios with lower variance 204

resulting almost the same when a constant infectious period is considered. The average 205

mean generation time decreases as the basic reproduction number increases, in line with 206

previous studies [5, 6, 8]. 207
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Table 1. Epidemic characteristics - baseline scenarios
Pop. size N = 100 N = 500 N = 1000

R0 1.5 2 3 4 5 1.5 2 3 4 5 1.5 2 3 4 5

In
fe
c
ti
o
u
s
P
e
ri
o
d

C
o
n
st

(1
) Tmax 7.09 6.19 4.38 3.54 3.05 11.62 8.25 5.59 4.39 3.70 13.66 9.11 6.05 4.77 4.00

FS 56.85 79.61 94.19 98.03 99.36 291.70 398.64 470.32 490.09 496.53 581.92 797.00 940.28 980.11 993.01
ωf 0.48 0.46 0.40 0.34 0.28 0.49 0.47 0.40 0.34 0.28 0.49 0.47 0.40 0.34 0.29
ωb 0.48 0.46 0.41 0.35 0.30 0.49 0.47 0.41 0.35 0.30 0.49 0.47 0.41 0.35 0.31

Γ
(2
,0
.5

) Tmax 8.76 8.35 6.45 5.44 4.97 15.88 11.87 8.45 7.09 6.31 18.84 13.20 9.17 7.72 6.95
FS 55.09 77.74 93.87 98.10 99.22 283.83 397.29 469.64 489.82 496.33 575.75 796.39 940.30 980.23 992.78
ωf 0.60 0.56 0.46 0.36 0.30 0.61 0.57 0.47 0.37 0.31 0.61 0.57 0.47 0.38 0.31
ωb 0.70 0.63 0.50 0.39 0.33 0.70 0.64 0.51 0.41 0.33 0.71 0.65 0.51 0.40 0.33

E
x
p
(1

) Tmax 9.97 9.87 8.25 7.12 6.67 19.24 15.20 11.10 9.44 8.73 23.66 16.87 12.19 10.53 9.62
FS 52.79 75.45 93.40 97.82 99.18 286.27 396.88 469.69 489.78 496.36 572.23 796.06 940.45 979.78 992.86
ωf 0.70 0.65 0.53 0.42 0.34 0.72 0.67 0.54 0.43 0.35 0.72 0.67 0.54 0.43 0.35
ωb 0.87 0.79 0.61 0.47 0.37 0.93 0.83 0.63 0.48 0.38 0.94 0.83 0.63 0.48 0.38

Γ
(0
.5
,2

) Tmax 11.17 12.33 11.25 10.05 9.43 25.80 21.42 16.21 13.85 12.89 31.39 24.16 17.70 15.65 14.52
FS 49.50 72.46 92.40 97.40 98.96 290.26 394.28 469.93 489.51 496.29 572.21 790.85 938.90 979.94 992.77
ωf 0.84 0.81 0.67 0.53 0.43 0.91 0.85 0.69 0.54 0.43 0.92 0.85 0.69 0.55 0.43
ωb 1.18 1.11 0.84 0.63 0.50 1.36 1.20 0.88 0.65 0.50 1.38 1.21 0.87 0.65 0.50

Average values of duration (Tmax), final size (FS), mean forward (ωf ) and mean
backward (ωb) generation times.

In Figs 1 and 2 we show the evolution over time of the mean forward and backward 208

generation times in a population of size N = 1000, respectively, for R0 = 1.5, 2, 3, 4, 5 209

and for the infectious period distributions specified before. The mean forward 210

generation interval contracts as the reproduction number increases but still slightly even 211

for low values of the reproduction number. In the backward observation, the generation 212

time shows an increasing trend that is steeper for high value of the reproduction number 213

and for higher variance of the infectious period. The evolution over time for both the 214

forward and the backward generation intervals show a similar pattern for the different 215

infectious period distributions though we notice that a higher variability is observed for 216

scenarios in which the infectious period distribution has larger variance.

Fig 1. Evolution of the mean forward generation time. (A) Assumes a constant
infectious period of unitary length, (B) a gamma infectious period Γ(2, 0.5), (C) an
exponential infectious period of rate 1 and (D) a gamma infectious period Γ(0.5, 2).
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Fig 2. Evolution of the mean backward generation time. (A) Assumes a
constant infectious period of unitary length, (B) a gamma infectious period Γ(2, 0.5), (C)
an exponential infectious period of rate 1 and (D) a gamma infectious period Γ(0.5, 2).

Lastly, we observe that the different population sizes do not affect considerably the 217

average value of the forward and backward generation time (Table 1). In Fig S5 we show 218

that also the evolution over time is similar for the different sizes considered in the paper. 219

Contraction of the mean forward generation time 220

In this section, our focus is on the evolution over time of the mean forward generation 221

time and on the impact of competition and depletion thereon. We firstly show that 222

competition and depletion are present in our model reporting, respectively, the mean 223

value of the generations where competition is present and the variation in the number of 224

susceptible individuals. 225

Results reported in Table 2 show that when the reproduction number increases, also 226

the number of generations affected by competition and the mean number of competitors 227

increase. Furthermore, pc is stable for the tested population size, while the depletion 228

intensity is more accentuated in small population. 229

Table 2. Competition and depletion intensity
Pop. size N = 4 N = 10 N = 20 N = 50 N = 100 N = 200

R0 1.5 3 5 1.5 3 5 1.5 3 5 1.5 3 5 1.5 3 5 1.5 3 5

pc 0.08 0.18 0.25 0.06 0.21 0.30 0.06 0.22 0.32 0.05 0.22 0.33 0.05 0.22 0.33 0.04 0.22 0.33
µc 2.03 2.08 2.10 2.05 2.18 2.28 2.06 2.16 2.27 2.07 2.16 2.28 2.05 2.16 2.29 2.03 2.16 2.29
ϕ 3.11 3.70 5.12 0.89 1.18 1.94 0.45 0.88 1.53 0.25 0.74 1.33 0.19 0.71 1.29 0.16 0.68 1.26

Average values of the proportion of generations affected by competition (pc), the mean
number of competitors (µc) and the depletion intensity (ϕ).
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In Fig 3 we show the phenomena of competition and depletion over time in a 230

population of size N = 500. Each point reported in the graph represents the start of the 231

infectious period of an individual for which one (G-1), two(G-2), three(G-3) or four 232

(G-4) generations are affected by competition. Generations affected by competition are 233

concentrated in the declining phase of the forward generation time, close to the 234

maximum contraction point. In the graph we report also the probability of encountering 235

a susceptible individual and the time at which the depletion is at its maximum; the 236

latter is in the region where contraction is at maximum. 237

Fig 3. Competition and depletion. Number of infectious individuals over time
(black line), mean forward generation time (orange line), proportion of susceptible
individuals (green dashed line), time of maximum depletion (grey dashed line) and
number of generations affected by competition for a single individual (G-1,G-2,G-3,G-4).

In the vaccination scenario individuals are vaccinated at a precise time during the 238

epidemic. In Table 3 we report the values of the epidemic characteristics for different 239

vaccination times in a population of size N = 1000 and a reproduction number of 1.5. 240

When the vaccination coverage is high, i.e. 90%, the mean values are always smaller 241

with respect to the baseline scenario, independently from the vaccination time. This 242

difference is higher when vaccination takes place in the increasing phase of the epidemic 243

(tv = 3) and in the main phase (tv = 5). Vaccination in the last part does not affect 244

remarkably the mean values of the generation time distributions. When the vaccination 245

is performed in the early stage of an epidemic (tv = 2), the impact is clearly visible for 246

high vaccination coverage (60%, 90%) while for a small coverage the impact seems 247

negligible. 248

Table 3. Epidemic characteristics - vaccination scenario
Vacc. time tv = 2 tv = 3 tv = 5 tv = 7 tv = 9

Coverage 30% 60% 90% 30% 60% 90% 30% 60% 90% 30% 60% 90% 30% 60% 90%

Tmax 12.46 5.92 3.84 11.75 6.70 4.83 11.38 8.27 6.79 11.53 9.75 8.66 11.89 11.04 10.35
FS 177.57 120.55 113.85 211.02 146.52 136.48 329.86 271.18 245.43 452.72 420 394.23 539.33 516.17 508.79
ωf 0.49 0.44 0.38 0.49 0.45 0.41 0.48 0.47 0.44 0.49 0.48 0.47 0.49 0.48 0.48
ωb 0.49 0.45 0.40 0.49 0.46 0.43 0.49 0.47 0.45 0.49 0.48 0.47 0.49 0.48 0.48
pc 0.01 0.02 0.03 0.04 0.02 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04
µc 2.01 2 1.9 2.02 2.01 2.01 2.03 2.02 2.02 2.02 2.02 2.02 2.02 2.03 2.03

Average values of duration (Tmax), final size (FS), mean forward (ωf ) and mean
backward (ωb) generation times together with the proportion of generations affected by
competition (pc), mean number of competitors (µc) and depletion intensity (ϕ).

In Fig 4, we report the simulated evolution over time of the mean forward generation 249
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interval for the vaccination times tv = 5. We can appreciate the phenomenon of 250

contraction that increases with an increasing in the vaccination coverage reaching the 251

maximum contraction right before the vaccination time. In S1 Appendix we report the 252

forward generation time in case of tv = 2, 9 showing a similar trend to the plot reported 253

hereunder (S2 Fig). 254

Fig 4. Evolution of the mean forward generation time - Vaccination
scenario. Comparison of the evolution of the mean forward generation time between
the baseline scenario (blue line) and the vaccination scenarios. The vaccination time is
set at tv = 5 and the vaccination coverages considered are 30% (red line), 60% (green
line) and 90% (orange line).

In the pure depletion scenario the phenomenon of competition is not present 255

anymore. We compare Table 4 (pure depletion scenario) with Tables 1 and 5 (baseline 256

scenario) to assess the impact of competition. Results show that there are no 257

remarkable differences among these two scenarios, neither for different values of the 258

reproduction number nor for different population sizes. We observe that the mean 259

values of the generation time distributions are slightly smaller when competition is 260

present, both in the forward and in the backward scheme. 261

Table 4. Epidemic characteristics - Pure depletion scenario
Pop. size N = 100 N = 500 N = 1000

R0 1.5 2 3 4 5 1.5 2 3 4 5 1.5 2 3 4 5

Tmax 7.06 5.75 3.89 3.11 2.73 11.26 7.59 4.78 3.72 3.23 12.70 8.35 5.19 3.97 3.42
FS 61.56 86.96 98.93 99.96 100 315.60 434.84 494.77 499.86 500 629.80 868.91 989.73 999.73 999.99
ωf 0.49 0.47 0.41 0.35 0.29 0.49 0.47 0.42 0.35 0.30 0.49 0.48 0.42 0.35 0.30
ωb 0.49 0.47 0.42 0.36 0.31 0.49 0.48 0.42 0.36 0.31 0.49 0.48 0.42 0.36 0.31

Max loess 0.68 0.65 0.61 0.56 0.51 0.63 0.62 0.60 0.56 0.54 0.61 0.61 0.60 0.55 0.54
Min loess 0.33 0.33 0.27 0.20 0.16 0.39 0.38 0.31 0.22 0.17 0.40 0.40 0.33 0.23 0.18

Range loess 0.34 0.32 0.34 0.36 0.35 0.23 0.25 0.28 0.34 0.37 0.20 0.22 0.27 0.32 0.36
ϕ 0.21 0.43 0.85 1.20 1.52 0.16 0.39 0.83 1.17 1.48 0.16 0.40 0.82 1.16 1.48

Average values of duration (Tmax), final size (FS), mean forward (ωf ) and mean
backward (ωb) generation times, maximum, minimum and range of the loess regression
(Max loess, Min loess and Range loess) and depletion intensity (ϕ).
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Table 5. Loess regression values and depletion intensity - Baseline scenario
Pop. size N = 100 N = 500 N = 1000

R0 1.5 2 3 4 5 1.5 2 3 4 5 1.5 2 3 4 5

Max loess 0.69 0.66 0.62 0.58 0.53 0.62 0.63 0.63 0.60 0.56 0.60 0.61 0.62 0.61 0.58
Min loess 0.33 0.31 0.27 0.21 0.17 0.39 0.38 0.32 0.26 0.21 0.41 0.39 0.34 0.28 0.22

Range loess 0.36 0.35 0.35 0.37 0.37 0.23 0.25 0.30 0.33 0.35 0.19 0.22 0.28 0.33 0.36
ϕ 0.19 0.36 0.71 1.02 1.29 0.14 0.32 0.67 0.97 1.25 0.13 0.32 0.69 0.97 1.24

Average values of maximum, minimum and range of the loess regression (Max loess,
Min loess and Range loess) and depletion intensity (ϕ).

In Fig 5 we report the mean forward generation interval over time comparing the 262

pure depletion and the baseline scenarios in the case of R0 = 5, where the number of 263

generations affected by competition is higher. However, the evolution of the curves 264

result to be similar, showing a little difference between the two considered scenarios. 265

Fig 5. Evolution of the mean forward generation time - Pure depletion
scenario. Comparison of the evolution of the mean forward generation time between
the baseline scenario (blue line) and the pure depletion scenarios (purple line).

In the competition scenario, we increase competition in the time interval (3, 7), for a 266

population of size N = 1000 and a reproduction number of value R0 = 1.5. In Table 6 267

we report the epidemic characteristics; we notice that the mean value of the generation 268

time is smaller compared to the one in the baseline scenario (Table 1), both for the 269

forward and the backward scheme. We also notice that the mean number of generation 270

affected by competition and the mean number of competitors is higher respect to the 271

baseline scenario with same reproduction number (Table 2). 272

Table 6. Epidemic characteristics - Competition scenario

Tmax FS ωf ωb pc µc ϕ
13.49 349.10 0.45 0.46 0.10 2.61 0.09

Average values of duration (Tmax), final size (FS), mean forward (ωf ) and mean
backward (ωb) generation times, generations affected by competition (pc), mean number
of competitors (µc) and depletion intensity (ϕ).

In Fig 6 we show the evolution of the forward generation interval comparing the 273

competition and the baseline case. It is clearly visible that the mean forward generation 274
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time contracts around the interval in which the competition intensity is increased. 275

Fig 6. Evolution of the mean forward generation time - Competition
scenario. Comparison of the evolution of the mean forward generation time between
the baseline scenario (blue line) and the competition scenario (purple line). The dotted
lines represent the interval in which the competition is increased.

Discussion 276

The present study was designed with the aim of characterizing the main cause of 277

contraction in the evolution over time of the mean forward generation interval. The 278

results of this investigation address both depletion of susceptible individuals and 279

competition among infectors as causes of contraction. Scenarios where the depletion or 280

the competition effects are increased show that the mean forward generation interval 281

contracts with a peak close to the time point of maximum depletion or maximum 282

competition, even for a small value of the reproduction number. In the pure depletion 283

scenario, depletion clearly causes the phenomenon of contraction. Given that results are 284

similar to the baseline scenario where depletion and competition are both present, we 285

can conclude that depletion is predominant in shaping the evolution over time of the 286

mean forward generation time. 287

A rapid depletion forces the infectious person to make more shorter infectious 288

contacts because the probability of encountering a susceptible individual drastically 289

decreases over time. This phenomenon is highlighted for high values of the reproduction 290

number: the rate of the contact process is higher implying that infectious individuals 291

propose on average more infectious contacts during their infectious period. The higher 292

depletion effect increases the proportion of short contact intervals resulting in a faster 293

and larger contraction of the mean forward generation time. 294

Competition also affects the generation time distribution but its effect is directed to 295

a single generation. To have a similar impact on the mean forward generation time as 296

caused by depletion, competition should affect most of all the generations that an 297

individual makes. This is simulated in the scenario where competition is increased and 298

results show a potentially large impact of competition on the forward generation time. 299

However, in a baseline scenario where competition is not increased rarely more than one 300

generation per single individual is affected by competition and the mean number of 301

competitors is not particularly high to be able to explain a decreasing mean forward 302

generation time (Fig 3). Furthermore, the effect of competition is strongly dependent on 303
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the competitor’s infection time and does not not always affect the considered generation. 304

The contact interval that leads to the generation time can be the longest one among the 305

contact intervals proposed by the infectors since the next generation is the minimum of 306

the set given by the infection times plus the proposed contact times. Competition is 307

slightly affecting the forward and backward generation time: Table 6 shows a small 308

decrease probably due to the competition effect. 309

This paper’s focus is on the evolution over time of the mean forward generation time 310

but the backward generation scheme is of interest too. The mean backward generation 311

time is known to be increasing [6, 20] and differently from the forward scheme a single 312

generation is considered for every time point. The increasing trend is due to the fact 313

that the probability of encountering a susceptible decreases over time, but a more 314

intense competition can, also in this case, modify the evolution of the mean value over 315

time. This is shown in Fig S6, where in a preliminary investigation the baseline, 316

vaccination, increasing competition and pure depletion scenarios are compared. The 317

effect of competition clearly flattens the increasing trend of the mean backward 318

generation time over time while increased depletion (vaccination scenario) causes a 319

steeper increase. 320

Another aim of this study was to investigate the effect of the reproduction number, 321

the infectious period and the population size on the mean generation time in the 322

backward and forward scheme. Results show that their mean values over time decrease 323

faster and more with increasing reproduction number. Furthermore, the infectious 324

period distribution affects remarkably these mean values with a higher impact when the 325

variance of the selected infectious period distribution is higher. This finding can be 326

explained with the mathematical framework developed by Nishiura (2010) where he 327

mathematically relates the probability density function of the generation interval to the 328

infectious period distribution. The population size does not remarkably influence the 329

mean generation intervals for the tested sizes. 330

Although we have looked at compartmental SIR models, we expect our conclusion to 331

hold for more complicated compartmental models, and even for epidemics models on 332

structured contact networks. A limitation of our investigation is the assumption made 333

for the infectious contact process to be described by a Poisson process and to be 334

homogeneous in the population: in a structured population the infectious contact 335

process depends on the location where the contacts take place because of different 336

behaviour of individuals yielding different contact processes [21]. 337

The findings of the present study clearly show the non-constant behaviour of both 338

backward and forward generation interval, in line with the literature [5, 6, 8, 20]. 339

Moreover, this has been the first attempt to thoroughly examine the cause of the 340

contraction: competition and depletion are both capable of affecting the evolution over 341

time of the mean generation interval. As result, in such models, estimators of the 342

generation time distribution, accounting for both depletion of susceptible and 343

competing-risk, are to be preferred. 344
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Supporting information

Stepwise algorithm

Consider an introductory case in an entirely-susceptible population of size N at time
t(1) = 0 and assume the person recovery period is known. The epidemic evolves in the
following way: the introductory case makes contacts with all the susceptible person in
the population {τ(1)j : j ∈ St(1)} according to a contact interval distribution with hazard
function h(1)j (τ). Among all contacts made by the introductory case, only the infectious
contact have potential to generate the secondary cases. Set {t∗(1)·} = {t(1) + τ∗(1)·} as the
proposed infection times of all the infectious contacts made by the first case, where τ∗(1)·
denotes all the infectious contact intervals of the first case. Note that all recipients of
these infectious contacts will be infected at or before time t∗(1)·, either from person (1) or
from another infector. In fact, the second infected case corresponds to the smallest

proposed infection time and occurs at time t(2) = min
(
{t∗(1)·}

)
. Now there are two

infected persons in the population. Similarly, the second case makes contacts
{τ(2)j : j ∈ St(2)} with the remaining N − 2 susceptible persons according to the hazard
function h(2)j (τ). Set {t∗(2)·} = {t(2) + τ∗(2)·} as the proposed infection times. The third
case occurs at the minimum proposed infection time between the available infectious

contacts made by the first and second infected case: t(3) = min
(
{t∗(1)·} \ t

∗
(1)(2), t

∗
(2)·

)
.

Note that all proposed infectious time for already-infected cases has to be omitted. The
third case can be infected either by the first or the second infected case, depending on
which one has made the first infectious contact. The epidemic continues until there are
no infectious persons. We summarize the algorithm in 5 steps.

For the ith infected person:

1. Generate contact intervals {τ(i)j : j ∈ St(i)} according to the hazard function
h(i)j(τ).

2. Record the proposed infection time {t∗(i)·} = {t(i) + τ∗(i)·}.

3. Recursively, set {T ∗(i)} = {t∗(i)·} ∪ {T
∗
(i−1)}, where T ∗(0) = ∅.

4. The next infected case occurs at time t(i+1) = min
(
{T ∗(i)}

)
.

5. Set {T ∗(i)} = {T ∗(i)} \ {t
∗
·(i+1)}, where {t∗·(i+1)} is the set of all proposed infection

times for the (i+ 1)-th case from all the potential infectors.

The outbreak ends when there are no longer infectious persons. This algorithm
highlight the phenomenon of competition among infectious persons (Kenah et al. 2008).

Parallel algorithm

The other algorithm for generating epidemics is the parallel algorithm by Scalia Tomba
et al. (2010). The epidemic begins with an imported infection from outside the
population at time t(1) = 0. The introductory case has an infectious period of length
r(1), according to a desirable statistical distribution F . We assume that the total
number of contacts for a fixed length of the infectious period r, follows a homogeneous
Poisson process with constant intensity βr, where β is a known constant. Consequently,
the inter-arrival contact times for an infected case i, denoted by {δi1, δi2, · · · } are
independent and follow an exponential distribution of parameter βr. The introductory
case will randomly meet the first individual at time t∗(1)1 = t(1) + δ(1)1. If this contact
happens within the infectious period r(1), i.e. t∗(1)1 ≤ t(1) + r(1), it is an infectious
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contact and the infection time of the next case is t(2) = t∗(1)1. At this stage, the newly
infected case and its infector will contact other people randomly in the population.
Unlike the stepwise algorithm, this contact can be potentially generated also for already
infected person. In parallel, the first case will generate his or her second contact at time
t∗(1)2 = t(1) + δ(1)1 + δ(1)2 and the second case will generate his or her contact at time
t∗(2)1 = t(2) + δ(2)1. As long as the contacts are made with susceptible persons and lie
within the respective infectious period, they will be infectious contact. The third case
will correspond to an infectious contact with the earliest contact time. The epidemic
grows in this way until there are no infectious person anymore. We summarize the
parallel algorithm:

For each infectious case i:

1. Generate the next inter-arrival contact time δi+

2. Set T ∗i+ = T ∗i + δi+ as the proposed next contact time of person i where T ∗i is the
previous contact time made by case i.

3. If T ∗i+ > ti + ri the case i is already recovered and the contact can not be an
infectious contact, then discard it. If the contact is made with a susceptible
person it is a proposed infectious time and record T ∗i+.

4. The next infectious time is the minimum over all the proposed infectious time.

5. Generate the recovery time for the newly infected.

Comparison of the simulation algorithms

The two algorithms give the same results when looking at the mean value of the
considered epidemic characteristics and when plotting the evolution over time of the
mean forward and backward generation times. In S1 Table we reported the average
quantities of mean duration Tmax, mean final size FS, mean forward generation time
ω̄f and mean backward generation generation time ω̄b for simulations with the stepwise
algorithm. Values are almost the same as the ones reported for the parallel case in
Table 1. In S1 Fig we compare the evolution over time of the mean forward generation
time in the vaccination scenario for R0 = 1.5, 3 varying the infectious period and using
both parallel and stepwise algorithms. The plot shows that the results are independent
from the selected algorithm and infectious period. Same conclusions hold also for the
gamma infectious period distributions considered in this paper.

S1 Table. Epidemic characteristics - baseline scenarios
Pop. size 100 500 1000

R0 1.5 2 3 4 5 1.5 2 3 4 5 1.5 2 3 4 5

In
fe
c
ti
o
u
s
P
e
ri
o
d

C
on

st
(1

) Tmax 7.09 6.19 4.38 3.54 3.05 11.62 8.25 5.59 4.39 3.70 13.66 9.11 6.05 4.77 4.00
FS 56.85 79.61 94.19 98.03 99.36 291.70 398.64 470.32 490.09 496.53 581.92 797.00 940.28 980.11 993.01
ωf 0.48 0.46 0.40 0.34 0.28 0.49 0.47 0.40 0.34 0.28 0.49 0.47 0.40 0.34 0.29
ωb 0.48 0.46 0.41 0.35 0.30 0.49 0.47 0.41 0.35 0.30 0.49 0.47 0.41 0.35 0.31

Γ
(2
,0
.5

) Tmax 8.76 8.35 6.45 5.44 4.97 15.88 11.87 8.45 7.09 6.31 18.84 13.20 9.17 7.72 6.95
FS 55.09 77.74 93.87 98.10 99.22 283.83 397.29 469.64 489.82 496.33 575.75 796.39 940.30 980.23 992.78
ωf 0.60 0.56 0.46 0.36 0.30 0.61 0.57 0.47 0.37 0.31 0.61 0.57 0.47 0.38 0.31
ωb 0.70 0.63 0.50 0.39 0.33 0.70 0.64 0.51 0.41 0.33 0.71 0.65 0.51 0.40 0.33

E
x
p
(1

) Tmax 9.97 9.87 8.25 7.12 6.67 19.24 15.20 11.10 9.44 8.73 23.66 16.87 12.19 10.53 9.62
FS 52.79 75.45 93.40 97.82 99.18 286.27 396.88 469.69 489.78 496.36 572.23 796.06 940.45 979.78 992.86
ωf 0.70 0.65 0.53 0.42 0.34 0.72 0.67 0.54 0.43 0.35 0.72 0.67 0.54 0.43 0.35
ωb 0.87 0.79 0.61 0.47 0.37 0.93 0.83 0.63 0.48 0.38 0.94 0.83 0.63 0.48 0.38

Γ
(0
.5
,2

) Tmax 11.17 12.33 11.25 10.05 9.43 25.80 21.42 16.21 13.85 12.89 31.39 24.16 17.70 15.65 14.52
FS 49.50 72.46 92.40 97.40 98.96 290.26 394.28 469.93 489.51 496.29 572.21 790.85 938.90 979.94 992.77
ωf 0.84 0.81 0.67 0.53 0.43 0.91 0.85 0.69 0.54 0.43 0.92 0.85 0.69 0.55 0.43
ωb 1.18 1.11 0.84 0.63 0.50 1.36 1.20 0.88 0.65 0.50 1.38 1.21 0.87 0.65 0.50

Average values of duration (Tmax), final size (FS), mean forward (ωf ) and mean
backward (ωb) generation times for simulations based on the stepwise algorithm.
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S1 Fig. Evolution of the mean forward generation time - Parallel and
Stepwise algorithm Mean forward generation time in the vaccination scenario
comparing stepwise and parallel algorithms. (A) and (B) identify the parallel algorithm
while (C) and (D) identify the stepwise algorithm. The considered infectious period is
exponential with unitary rate and the population is of size N = 1000. The reproduction
number is of value R0 = 1.5 for (A) and (C) and of value R0 = 3 for (B) and (D). The
vaccination time is, respectively, tv = 9 (A and C) and tv = 5 for (B and D).

Maximum depletion

Every time an infectious contact is proposed we keep track of the current time tj and the
probability of encountering a susceptible individual at that specific time ξtj , computed
as the proportion of susceptibles over the population size. We than fit a 5-parameters
logistic curve f(x|{tj}j , {ξtj}j) to the simulated values using the function drm of the
drc package in R. At this point we approximate the derivative of the fitted function as:

f ′(x|{tj}j , {ξtj}j) ≈
f(x+ h|{tj}j , {ξtj}j)− f(x|{tj}j , {ξtj}j)

h

where in our simulation h is set to be h = 0, 001. According to this discretization, for a
specific simulation we define the maximum depletion to be:

ϕ =

∣∣∣∣min
j

(
f ′(tj |{tj}j , {ξtj}j))

)∣∣∣∣
We then compute the mean of the depletion intensity value among all the non extinct
simulations.
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Vaccination time

Vaccination affects the phenomenon of contraction differently, depending on the
vaccination time. In S2 Fig we report plots for two different vaccination times tv = 2, 9
in the scenario with R0 = 1.5 reported in the results section representing the ascending
phase and the descending phase of an epidemic outbreak. Even if the intensity is
different the phenomenon of contraction is always present.

S2 Fig. Evolution of the mean forward generation time for different
vaccination times. Mean forward generation time for a vaccination time of tv = 2 (A)
and tv = 9 (B). The population is of size N = 1000, the reproduction number of value
R0 = 1.5 and the infectious period is constant.

Regression of the simulated data

The simulated data are analyzed in R; generations resulting from the first n non-extinct
simulations are merge together in a unique data file and we predict the value of a loess
regression to express the evolution over time of mean forward or backward generation
time. This analysis required a huge computational memory, limiting the number of
simulations that can be considered. However, this R function allows us to construct a
confidence interval to quantify the variability of the loess regression used. In S3 Fig we
show how different numbers of considered simulations affect the results. The quality of
the fit is based on the number of generations considered and this number is directly
related to the population size. We present the evolution over time for the mean forward
generation time in a population of size N = 1000 for a constant infectious period. These
plots enforce the analysis we conducted even if a limited number of simulations are
considered.
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S3 Fig. Prediction of the mean forward generation time. Prediction of the
mean forward generation time based on, respectively, n = 5 (A), n = 20 (B) and n = 30
non extinct simulations. The selected infectious period is constant with unitary length,
the population size is N = 1000 and the simulations are obtained with the parallel
algorithm. The reproduction number R0 = 1.5, 2, 3, 4, 5.

Another important aspect in the loess regression is the considered span. The fitting
is done locally and the considered neighbourhood of a point x is based on the value of
the span, parameter that has to be given as input in the loess function. In S4 Fig we
report the evolution over time of the mean forward generation time for R = 1.5 in the
vaccination scenario for three different values of the span parameter: 0.5, 0.75(default
value) and 1.5 in the case of exponential infectious period. The plot shows differences
between the curves in the last part of the outbreak after the vaccination time where few
generations are registered. This is probably due to the little number of generations that
happen after the vaccination time. We want to remark that the result of contraction
holds independently on the type of span considered.
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S4 Fig. Prediction of the mean forward generation time - varying the span
parameter Prediction of the mean forward generation time based on different value of
the span parameter (loess regression). Respectively, span=0.75 (A), span=1 (B) and
span=0.5 (C). The population is of size N = 1000, the vaccination time is tv = 9, the
reproduction number R0 = 1.5 and the infectious period is exponential of unitary rate.

Lastly, we want to show the evolution over time of the mean forward generation time
for different population sizes. In S5 Fig we report this quantity for population of size
N = 100, 500 and 1000 in the case of exponential infectious period. We notice that one
plot is the re-scaling of the others; the general evolution of the forward generation
intervals is not affect by the population size. The same results apply for the backward
generation interval.
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S5 Fig. Evolution of the mean forward generation time - Population sizes
Evolution of the mean forward generation time in the baseline scenario for different
population size. A, B and C identify, respectively, a population of size
N = 100, 500, 1000. The infectious period considered is exponential with unitary rate
and the reproduction number varies with R0 = 1.5, 2, 3, 4, 5.

Effect of competition and depletion on the mean backward
generation time

In a preliminary study, we investigated also the effect of competition on the mean
backward generation time. In S6 Fig we report the evolution over time of the mean
backward generation interval R0 = 1.5, 3, 5 comparing the baseline, the vaccination, the
competition and the pure depletion scenario. We note an overall relevant impact of
competition when its effect is incremented (competition scenario), registering a
smoothed increase. Furthermore, for R0 = 3, 5 we observe that the pure depletion and
the baseline scenario have different evolution indicating an impact of competition.
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S6 Fig. Evolution of the mean backward generation time Evolution of the
mean backward generation time comparing the baseline scenario, the vaccination (90%
coverage) scenario, the competition scenario and the pure depletion scenario. The
infectious period is constant, the population is of size N = 1000 and the considered
reproduction number is, respectively, R0 = 1.5 (A), R0 = 3 (B) and R0 = 5 (C).
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