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Abstract 

 

Dual specificity phosphatases (DUSPs) have a well-known role as regulators of the immune 

response through the modulation of mitogen activated protein kinases (MAPKs). Yet the 

precise interplay between the various members of the DUSP family with protein kinases is not 

well understood. Recent multi-omics studies characterizing the transcriptomes and proteomes 

of immune cells have provided snapshots of molecular mechanisms underlying innate immune 

response in unprecedented detail. In this study, we focused on deciphering the interplay 

between members of the DUSP family with protein kinases in immune cells using publicly 

available omics datasets. Our analysis resulted in the identification of potential DUSP-

mediated hub proteins including MAPK7, MAPK8, AURKA, and IGF1R. Furthermore, we 

analyzed the association of DUSP expression with TLR4 signaling and identified VEGF, FGFR 

and SCF-KIT pathway modules to be regulated by the activation of TLR4 signaling. Finally, 

we identified several important kinases including LRRK2, MAPK8, and cyclin-dependent 

kinases as potential DUSP-mediated hubs in TLR4 signaling. The findings from this study has 

the potential to aid in the understanding of DUSP signaling in the context of innate immunity. 

Further, this will promote the development of therapeutic modalities for disorders with aberrant 

DUSP signaling. 

1. Introduction 

Reversible phosphorylation and dephosphorylation events serve as regulatory switches that 

control the structure, activity as well as the localization of the proteins in subcellular space 

thereby influencing vital biological processes [1, 2]. A coordinated interplay between protein 

kinases (PKs) and protein phosphatases is crucial to regulate these intracellular signaling events 

as perturbation events in the basal phosphorylation levels of proteins can lead to undesirable 

consequences including development of diseases such as cancer [3]. Over the years, over 500 

PKs have been reported [4], a majority of which are druggable [5]. On the contrary, protein 

phosphatases although being essential regulators of signaling, have drawn less attention. 

Among the protein phosphatases, the dual-specificity phosphatase (DUSP) family of 

phosphatases are the most diverse group with a wide-ranging preference for substrates. A 
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unique feature that distinguishes DUSPs from other protein phosphatases is their ability to 

dephosphorylate both serine/ threonine and tyrosine residues within the same substrates [6]. 

Recent studies have suggested that there are about 40 members of the DUSP family and nine 

subfamilies [7]. These DUSPs have been implicated as critical modulators of several important 

signaling pathways that are dysregulated in various diseases. 

DUSPs were initially referred to as Mitogen-activated protein kinase phosphatases (MKPs) and 

their role as regulators of MAPK signaling mediated cellular processes in both innate and 

adaptive immunity have been widely discussed [8-10]. For instance, DUSP1 also known as 

MKP-1 has been found to be a primary regulator of innate immunity [11] and was identified 

as an important regulator of T cell activation [12]. Additionally, it was also shown to regulate 

IL12-mediated Th1 immune response through enhanced expression of IRF1 [13]. Upon LPS 

treatment, DUSP1-deficient mouse macrophages showed increased expression and activation 

of p38MAPK leading to increased production of chemokines such as CCL3, CCL4, and 

CXCL2 thereby increasing the susceptibility to lethal LPS shock [14]. In the same study, 

DUSP-deficient murine macrophages primed with LPS showed transient increase in JNK 

activity, elevated levels of pro-inflammatory cytokines and increased p38MAPK activation. 

Further, DUSP10-deficient mice induced with autoimmune encephalomyelitis showed reduced 

incidence and severity and prevented LPS-induced vascular damage by regulation of 

superoxide production in neutrophils [15] indicating its key role in innate and adaptive immune 

responses. Similarly, other DUSPs such as DUSP2 and DUSP5 have been found to participate 

in the positive regulation of inflammatory processes [16] and are required for normal T cell 

development and function [17]. 

In addition to their potential role in immune regulation, studies have implicated the association 

of DUSPs namely DUSP1, DUSP4 and DUSP6 in oncogenesis especially in the epithelial-to-

mesenchymal transition of breast cancer cells and the maintenance of cancer stem cells [18]. 

Inhibition of DUSP1 and DUSP6 induces apoptosis of highly aggressive breast cancer cells 

through the increased activation of MAPK signaling [19]. Furthermore, DUSP1-deficient mice 

form rapidly growing head and neck tumors causing increased tumor-associated inflammation 

[20]. In addition to members of MKP subfamily, members of the Protein tyrosine phosphatase 

type IV subfamily (PTPIV, also known as PRLs) have also been suggested to be potential anti-

tumor immunotherapy targets due to their role in carcinogenesis with antibody therapy against 

PRL proteins inhibiting metastasis in PRL-expressing tumors [21, 22]. Additionally, PTP4A3 

(PRL-3) has been reported to trigger tumor angiogenesis through the recruitment of endothelial 

cells [23]. Owing to their regulatory roles in cancer and immunological disorders, DUSPs have 

been identified as promising therapeutic targets of these diseases [24].  

Although the role of certain members of DUSPs have been well characterized, the mechanism 

by which other members especially atypical DUSPs modulate immune response is still largely 

unknown. Furthermore, the interplay between members of DUSP family and PKs and their 

reciprocal actions is minimally understood. Systems biology and integrative biology offer 

several approaches to identify molecular mechanisms operating behind biological processes in 

unprecedented detail. Integrated approaches such as Proteogenomics can provide macro-

resolution snapshots to facilitate understanding of intricate molecular mechanisms in cancers 

[25, 26] and infectious diseases [27, 28]. Applying integrated approaches in the context of 

immunology can therefore offer unique insights into mechanisms of innate and adaptive 

immunity. In the past few years, several high-throughput datasets were published on naïve and 
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activated immune and hematopoietic cells [29-38]. In this study, an integrated meta-analysis 

of high-throughput omics datasets related to innate immunity was carried out to delineate the 

expression dynamics of DUSPs in hematopoietic cells. Additionally, the signaling crosstalk 

between DUSPs with the members of the protein kinase families in immune cells was 

deciphered. Finally, we analyzed the association of DUSP signaling pathways downstream of 

TLR4 signaling Collectively, this study provides potential DUSP-mediated signaling pathways 

and hubs thus facilitating better understanding of DUSP signaling in innate immunity. 

2. Results 

2.1 DUSP classification into subfamilies and evolutionary conservation 

We compiled a list of DUSPs from previously published studies and used it to for further 

analysis. We also aligned protein sequences for known DUSPs, classified them into subfamilies 

according to their clustering patterns and validated the classification using domain analysis. 

The classification of DUSPs based on sequence similarity was performed by multiple sequence 

alignment analysis of DUSP protein sequences (Figure 1a). For the analysis, the list of dual 

specificity phosphatases and their subfamilies was compiled from a recent study [7]. The 

results were found to be concordant with the classification system described by Chen et al [7]. 

The classification includes members belonging to CDC14, DSP, DSP14, DSP15, DSP3, DSP6, 

DSP8, PRL, and Slingshot subfamilies. Protein domain analysis of all DUSP members also 

validated the sub-classification of DUSPs (Figure 1b). Most DUSP subfamily members 

exhibited similar architectures with a common DSPc domain. However, members of a few 

subfamilies contained additional domains besides DSPc namely CDC14 subfamily (N-terminal 

DSP domain), DSP1, DSP6, and DSP8 (Rhodanese-like domain) subfamilies and members of 

Slingshot subfamily (DEK domain at the carboxy terminus). Next, we aimed to determine the 

evolutionary conservation of dual specificity phosphatases across eukaryotic species by 

calculating the number of orthologs for all human DUSPs obtained from Homologene database 

[39]. Our analysis revealed distribution of DUSPs ranging from a minimum, of six orthologs 

for DUSP2 to 20 for DUSP12 (Figure 1c). The distribution of the entire human proteome was 

similar with a minimum of one and a maximum of 21 ortholog counts. Most DUSPs were found 

to be conserved in mammals, and particularly among primates suggesting evolutionary 

conservation across eukaryotic species. 

2.2 Expression of dual specificity phosphatases and protein kinases in hematopoietic cells, 

primary and secondary lymphoid organs  

Earlier reports suggest that the expression of DUSPs are regulated during development in a cell 

type specific manner or upon cell activation in contrast to their ubiquitous substrate expression 

[8]. In addition, PKs play important roles in immunity [40, 41] and are widely known to be 

modulated by DUSPs. In order to determine the extent of expression of DUSPs and PKs across 

human hematopoietic cells, we analyzed the proteomic data from Rieckemann et al [29] as it 

is currently the largest high-resolution dataset containing expression data pertaining to 28 

different hematopoietic cell types analyzed on a single platform (Supplementary Table S4, 

Supplementary Figure 1). On an average, 15 DUSPs and 240 PKs were found to be expressed 

across hematopoietic cells (Figure 2a) at the protein level. Among the various cell lineages, 

T8 TEMRA (terminally differentiated effector memory T cells which express CD45RA, as 

opposed to TEM cells which are CDC45RA-negative) cells expressed the highest number of 

DUSPs (19), while erythrocytes did not express any. On the contrary, 264 PKs were found to 
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be expressed in NK CD56bright cells, whereas only 15 were found to be expressed in 

erythrocytes. NK CD56bright cell types have been previously described to be regulatory in nature 

influencing innate immunity through cytokine production as opposed to NK CD56dim cells, 

which have cytotoxic activity [42]. 

Among the DUSP family members, 11 DUSPs were found to be expressed in a large majority 

of the hematopoietic cells analyzed. These include DUSP12, DUSP23, DUSP3, SSH3 and 

PTP4A2, which were found to be expressed in 27 of 28 hematopoietic cells and DUSP11, 

DUSP22, PTPMT1, RNGTT, SSH1 and SSH2 found to be expressed in 26 of the 28 cells. 18 

members of the DUSP family were not identified in any of the cell types. Furthermore, we did 

not observe restricted expression of DUSP members to any one cell type. Among the PKs, only 

287 were found to be identified in at least one hematopoietic cell type with the rest not being 

identified in any cell type. While 13 members of the PKs including MAPK1, MAP2K2, ILK, 

and ROCK2 were found to have ubiquitous expression, four kinases including PRKCD, 

KALRN, MYLK and PTK2 were found to have restricted expression in thrombocytes. At least 

five PKs including MKNK2, STK33, CSNK1E, TAOK2 and BLK were found to be restricted 

to 2 of the 28 cell types. Of these, MKNK2, STK33 and BLK were expressed commonly in B 

memory cells. STK33 was expressed in B naïve and B memory cells and seemed to be linked 

with B cell types. We compared proteomics and transcriptomics datasets to see if changes at 

the transcript level could be equated with changes in protein expression (Figure 2b, 

Supplementary Table S5).  

We analyzed tissue expression levels of DUSPs and PKs in immune-related tissues. We chose 

to study expression data pertaining to lymphoid organs that are the major components of the 

immune system involved in producing B- and T- cells (primary) and are responsible for the 

coordinating the cell-mediated immune response (secondary) [43]. The primary lymphoid 

organs consist of the thymus and the bone marrow while the secondary lymphoid organs consist 

of lymph nodes, spleen, tonsils, and the mucosa-associated lymphoid tissues such as Peyer’s 

patches [44]. More recently, the appendix has been deemed to be a lymphoid organ capable of 

carrying out immunological functions [45, 46]. For the analysis, we compiled gene expression 

data (Supplementary Table S6) from multiple projects including FANTOM5 [47], Genotype-

Tissue Expression (GTEx) Project [48], The Human Protein Atlas [49, 50], Illumina Body Map 

[51], NIH Roadmap Epigenomics Mapping Consortium [52] and the ENCODE project [53]. 

The PK and DUSP expression in these various tissue expression datasets largely correlated 

(Figures 3a and 3b). A majority of the 505 PKs were found to be expressed in at least one 

lymphoid organ and expression of only a mere 7 kinases were not observed. A significant 

observation was that all the members of the DUSP family were present in at least one lymphoid 

organ. 460 of the 505 PKs were found to be expressed in all 7 lymphoid organs while 36 of the 

40 DUSPs were expressed in as many lymphoid organs. Two kinases-EPHA8 and PAK5 were 

found to be restricted to only lymphoid organ -spleen and thymus respectively. DUSP21 was 

found to be restricted in the bone marrow while DUPD1 was found to be restricted to only the 

thymus and the tonsil. Similarity matrices indicated a similar distribution of kinases and DUSP 

expression across primary and secondary lymphoid organs suggesting potential reciprocal pairs 

(Figure 3a and 3b). In conclusion, members of the DUSP family was found to be expressed 

in every lymphoid tissue suggesting DUSP mediated control of protein kinase activity. 

2.3 Correlation of dual specificity phosphatase activity with protein kinase activity in 

immune cells 
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Since it is widely known that DUSPs regulate protein kinases, identifying DUSPs and protein 

kinases pairs with reciprocal activities could identify regulatory mechanisms that can be 

potentially exploited to develop strategies for therapeutic interventions in conditions such as 

systemic inflammatory and autoimmune disorders. To identify potentially reciprocal DUSP-

kinase pairs and to determine its probable role in immune cells, we correlated the expression 

profiles of DUSPs and PKs expressed in hematopoietic cells from Rieckemann et al [29] 

(Supplementary Table S7, Figure 2c). We identified 231 DUSP-kinase pairs with similar 

coexpression patterns in immune cells with a Spearman’s rank correlation coefficient of 0.9 or 

more indicating high confident reciprocal pairs. Similarly, 701 DUSP-kinase pairs with similar 

coexpression patterns in immune cells had a Spearman’s rank correlation coefficient of 0.8 or 

more. Some of the pairs identified include SSH1-AURKA (= 0.94), DUSP1- MAPK7 (= 

0.79), DUSP1-MAPK8 (= 0.82), DUSP10-MAPK8 (= 0.81). Among these, the role of 

DUSP1 and DUSP10 as negative regulators of MAPK8 is well known. The significance of 

SSH1-AURKA pair in immune cells is currently not well described at this time. 

We also used an interactome-based approach to identify co-expressed and co-interacting 

proteins to identify potential DUSP-kinase regulatory mechanisms. Interactome analysis to 

identify reciprocal DUSP-protein kinase pairs from baseline protein-protein interaction (PPI) 

data from the comPPI database resulted in the generation of an interaction network containing 

1715 DUSP-specific interactions with 1,276 nodes (Supplementary Figure 2). Since the 

network was too complex to comprehend the interplay between DUSPs and PKs, we separated 

interactions between DUSPs and kinases and generated an additional kinase and DUSP-

specific network. This network contained 195 protein-protein interactions between 35 DUSP 

members and 82 PKs (Figure 3c, Supplementary Table S8). Several potential hub proteins 

that communicate with the dual specificity phosphatase family members were deduced from 

the interaction network. Among the PKs, MAPK1 and MAPK3 had 12 and 10 interactions 

(directed edges) respectively with DUSPs. Other PKs with a high number of interactions 

included MAPK14 (9), IGF1R (9), AATK(9) and ERBB4 (8). Among the DUSPs, DUSP18 

and DUSP19 had the most number of directed edges -14 each. Other DUSP family members 

with several directed edges included STYX (13), DUSP 1 (11), DUSP14 (10), DUSP9 (9) and 

DUSP 10 (9). It is interesting to note that DUSP19, and STYX are some of the poorly 

characterized members. The PKs with the highest betweenness centrality included MAPK1, 

IGF1R, AURKB, and AATK. Combining the directed edge and the betweenness centrality data 

revealed several kinases belonging to the MAPK family and receptor tyrosine kinases such as 

MAPK1, MAPK3, IGF1R, AATK, MAPK14, ERBB4, LMTK2, MAPK9 and MAPK8 to be 

strongly associated with DUSPs. 

2.4 Expression landscape and signaling dynamics of DUSPs and kinases in activated 

immune cells 

The data provided by Rieckemann et al also includes steady-state and activated protein 

expression profiles of 17 cell types which were analyzed to determine the effect of various 

activating ligands on the expression of DUSPs and PKs (Supplementary Table S9). Our 

analysis resulted in the identification of 152 events of differential expression of 18 DUSPs 

across 17 cells types (Supplementary Figure 3a) Of these, 57 and 95 were found to be 

overexpressed and downregulated respectively across the activated cell types. Similarly, we 

identified 2,311 events of differential expression of 269 PKs across 17 cells types 

(Supplementary Figure 3b). Of these, 1,058 and 1,253 were found to be overexpressed and 
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downregulated respectively across the activated cell types. Several kinases and DUSPs were 

found to be differentially expressed in multiple activated cell types. The most overexpressed 

DUSPs included DUSP12 (9 cell types), DUSP23 (7 cell types), DUSP1, DUSP10 (6 cell types 

each) and STYX (4 cell types), while the most downregulated DUSPs included SSH3 (13 cell 

types), PTPMT1 (12 cell types), DUSP3 (10 cell types), SSH2 (9 cell types), DUSP1 (8 cell 

types) and SSH1 (7 cell types). Similarly, among the kinases the most overexpressed included 

CDK1 (14 cell types), PLK1 (14 cell types), TGFRB1 (13 cell types), RIOK3 (13 cell types) 

and RIOK2 (13 cell types) while the most downregulated included ATM (15 cell types), 

MAST3 (14 cell types), PRKACB (13 cell types), MAP3K5, LMTK2 and SYK (12 cell types 

each).  

Several studies have focused on the genome-wide effects of TLR ligands on hematopoietic 

cells such as monocytes [54]. In the current study, we aimed to determine the specific roles of 

DUSPs and PKs in TLR4 signaling. An integrated analysis of RNA and protein expression 

datasets [29, 33, 55] pertaining to dendritic cells (DCs) and monocytes (MOs) activated by LPS 

was performed (Supplementary Table S10). The data were categorised into murine DCs 

(mDCs), human DCs (hDCs) and human MOs (hMOs) and a list of molecules differentially 

expressed in response to LPS was generated (Supplementary Table S11). 57 proteins 

including 4 DUSPs and 53 PKs were found to be overexpressed in mDCs while 80 were 

downregulated (2 DUSPs, 78 PKs) in response to LPS. In hDCs, 50 proteins (4 DUSPs, 46 

PKs) and 154 (10 DUSPs, 144 PKs) proteins were found to were found to be overexpressed 

and downregulated respectively. In the case of hMOs, 35 (1 DUSP, 34 PKs) were 

overexpressed and 80 (6 DUSPs, 74 PKs) were downregulated.  

DUSPs overexpressed in dendritic cells included Dusp1/DUSP1 (mDCs and hDCs), Dusp14, 

Dusp16, Ptp4a2 (all in mDCs), DUSP5, DUSP7, and DUSP 10 (all in hDCs). Downregulated 

DUSPs included Dusp3, Dusp19 (mDCs), DUSP4, DUSP11, DUSP12, DUSP23, PTP4A2, 

PTPMT1, SSH1, SSH2, SSH3, and STYX (hDCs) (Figure 4a and Supplementary figure 5a, 

5b and 5c). In hMOs stimulated with LPS, DUSP 10 was overexpressed while DUSP1, 

DUSP11, PTP4A2, PTPMT1, RNGTT, and SSH3 were found to be downregulated. DUSP1 

(Dusp1) seems to be important in both hDCs and mDCs signaling as it was found to be 

upregulated in both species in response to LPS and is in in concordance with previously 

published studies on dendritic cells stimulated with LPS [14]. However, it was found to be 

downregulated in hMOs. The over expression of DUSP1 in dendritic cells identified from our 

analysis is in concordance with previously published studies on dendritic cells stimulated with 

LPS. DUSP10 was found to be upregulated in both hDCs and hMOs while in mDCs, it was not 

found to be differentially expressed. Among differentially expressed genes in dendritic cells, 

Dusp14 and Dusp16 were exclusively overexpressed in the dendritic cells from mice while 

DUSP5, DUSP7, and DUSP10 seemed to be exclusive to humans. Taken together, our analysis 

suggests probable existence of species-specific differential expression of DUSPs in TLR4 

signaling. In a recent paper, human and murine macrophages were found to have varying 

mechanisms of immunometabolism [56]. Funtional analysis of differentially expressed PKs 

and DUSPs in murine dendritic cells stimulated with LPS showed enrichment of several 

processes including MAPK cascade, response to reactive oxygen species, cellular senescence 

an cell migration pathways among others (Figure 4b). 

We next performed pathway enrichment analysis using pathway data from Reactome database 

for DUSP and PKs showing differential expression upon LPS stimulation (Supplementary 
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Table S12, Figure 5a). We found several pathways including TLR signaling, MyD88 cascade, 

and MAPK signaling pathways to be enriched across LPS-activated MOs and DCs. Oxidative 

stress-induced senescence pathways were downregulated in mDCs, hDCs, and hMOs. VEGF 

signaling also seemed to be affected through DUSP and PKs after stimulation with LPS. While 

induction of TLR signaling by LPS is widely known, there are a few reports on the induction 

of VEGF signaling by LPS stimulation [57]. FGFR signaling and SCF-KIT signaling pathways 

were up in hDCs, while C-lectin receptor signaling pathway was downregulated in hMOs upon 

LPS stimulation. Apoptotic pathways was found to be downregulated in hMOs while being 

upregulated in hDCs suggesting opposing cell death phenotypes in hMOs and hDCs in response 

to LPS.  

To identify DUSP-kinase pairs with reciprocal activities, correlation analysis between DUSP 

and kinase expression in DCs and MOs treated with LPS was carried out (Supplementary 

Table S13 and Supplementary Figure 5d). Our analysis resulted in the identification of 

several important pairs including Ptpmt1-Mast3 (=0.97), Dusp1-Egfr (=0.73), Dusp1-

Mapk8 (=0.66), Dusp16-Mapk8 (=0.83), Dusp16-Lrrk2 = (0.86), Dusp10-Igf1R (=0.99). 

To identify the interacting partners of DUSPs in TLR4 signaling, we carried out interactome 

analysis of members of the DUSP and protein kinase families that were found to be 

differentially expressed in dendritic cells and monocytes (Supplementary Figures 6, 7, and 

8). Analysis of network properties identified several proteins that seemed to be regulated by 

DUSP signaling. In the networks of differentially expressed proteins identified in activated 

mDCs, proteins including Akt1, Lrrk2, Pim1, Dusp1, Dusp16 (overexpressed), Mapk1/3, 

Pik3cg, Cdk1,Dusp3 and Dusp19 (downregulated) had high number of edges and high 

betweenness centrality suggesting their importance in innate immunity. In activated hDCs, 

proteins including MAPK1, CDK2, PIK3CA, MAPK13, DUSP1, DUSP5, DUSP7 and 

DUSP10 (upregulated), PRKACA, LRRK2, CHUK and DUSP13 (downregulated) had a high 

betweenness centrality and were identified to be relevant in LPS-induced signaling. Similarly 

in activated hMOs, PRKCZ, CDK6, DUSP10, TGFBR1 (upregulated), LRRK2, ATM, ATR, 

MAPK1, DUSP1, MAP3K1 (downregulated) among others had a high betweenness centrality. 

3. Discussion 

 

Dual-specificity phosphatases (DUSPs) are a family of phosphatases that can act on both 

serine/threonine and tyrosine residues of several protein substrates leading to wide-ranging 

effects on cellular signaling and biological processes. With the exact number of DUSP 

members still being controversial [7, 58, 59], we chose to consider the latest classification 

described by Chen et al [7], consisting of 40 DUSPs with 9 subfamilies containing more than 

one member. We validated the subfamily-based classification of DUSPs using two approaches 

namely-sequence alignment and SMART-based domain analysis. Evolutionary conservation 

analysis of DUSP family members revealed high sequence conservation of all DUSP members 

especially in higher mammals. 

To determine the extent of expression of dual specificity phosphatases and protein kinases 

across the human hematopoietic cells and lymphoid organs, publicly available datasets were 

mined. Since hematopoietic cells are derived from lymphoid tissues, we chose to analyze 

expression profiles of these. To date, Rieckemann et al. have provided the largest expression 
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dataset pertaining to 28 different hematopoietic cell types consisting of high throughput omics 

data acquired under a single platform containing. Our analysis of this dataset revealed new 

insights into the expression dynamics of several understudied DUSPs such as slingshot family 

of phosphatases (SSH1, SSH2 and SSH3) and STYX in various hematopoietic cell types. 

Additionally, our analysis also resulted in the evaluation of the expression patterns of several 

understudied protein kinases described by Huang et al. [60] including STK17A, SCYL3, 

MAST3, CSNK1G2, and the RIO family of kinases (RIOK1, RIOK2 and RIOK3). 

Furthermore, among the hematopoietic cells, erythrocytes and thrombocytes (platelets) 

expressed the least number of DUSPs and PKs The restricted expression patterns of these 

proteins could be potentially exploited for therapeutic modalities in erythrocyte and platelet 

disorders. In fact, four different PKs (PRKCD, KALRN, MYLK and PTK2) showed restricted 

expression in thrombocytes. PRKCD has been previously reported to modulate collagen-

induced platelet aggregation [61] while MYLK and PTK2 have been reported to be important 

in megakaryopoiesis [62, 63]. Further, the different patterns of DUSP and PK expression in 

erythrocytes and thrombocytes compared to the rest of the hematopoietic cells may be 

attributed to their structures, diverse biological functions performed by these cells, their 

numbers in the human body and the differing lineages that form erythrocytes and thrombocytes 

during hematopoiesis.  

Among the 701 DUSP-kinase pairs with potential reciprocal activities identified through our 

analysis, several pairs with previously known reciprocal actions were also identified thereby 

proving our analysis methods. Among these, SSH1-AURKA pair was identified with a high 

Spearman's rank correlation coefficient (= 0.94). Aurora Kinase A (AURKA) overexpression 

has been previously reported to increase the expression of slingshot kinase 1 (SSH1) resulting 

in increased cofilin activation and migration of breast cancer cells [64]. Other notable pairs that 

we identified from the correlation and that were previously reported in the literature included 

DUSP1- MAPK7 (= 0.79) and DUSP1-MAPK8 (= 0.82). DUSP1 gene silencing has been 

shown to increase the expression of MAPK7 and MAPK8 transcripts in osteosarcoma cells 

suggesting reciprocal actions between them [65]. DUSP10 (MKP-5) has been well known to 

dephosphorylate MAPK8 (JNK) [66] and has also been implicated in immune function. 

Knocking down DUSP10 expression increased JNK activity and inflammation in murine 

mesangial cells while its overexpression led to decreased JNK activation [67]. A study by 

Zhang et al. further found that Dusp10-deficient murine cells exhibited increased JNK 

(MAPK8) activity, elevated levels of proinflammatory cytokines and increased T cell 

activation [68]. In our correlation analysis, the DUSP10-MAPK8 pair was identified with a 

Spearman’s rank correlation coefficient of 0.81 

We used a subset of omics datasets to investigate the expression of DUSPs and their interplay 

with PKs upon LPS stimulation in activated dendritic cells and monocytes. Though a previous 

study on the meta-analysis of TLR4 signaling datasets exists, its focus was on activated 

macrophages [69]. We also correlated DUSP and PK expression in these cells and carried out 

interactome analysis to identify key molecules that are potential regulators of LPS-induced 

signaling. Correlation analysis indicated the presence of DUSP-PK pairs with reciprocal 

activities in response to activation. Some of these pairs including DUSP1-MAPK8, DUSP1-

MAPK8 have already been described in previous literature, thus confirming our findings. 

DUSP-16 (MKP-7) has previously been identified to regulate MAPK8 (JNK) in LPS-activated 

macrophages [70] and in activated endothelial cells [71]. Dusp16 (MKP-7) was also reported 
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to have a critical role in the activation and functioning of T cells. Dusp16-deficient T cells had 

an exaggerated response to TCR activation and had enhanced proliferation properties.[72] 

DUSP16-deficient macrophages have also been reported to overproduce IL-12 in the context 

of TLR stimulation [73]. DUSP1 has been reported to play a key role in the feedback control 

and regulate MAPK8 during glucocorticoid-mediated repression of inflammatory gene 

expression [74]. DUSP1 is already known to regulate the expression of LPS-induced genes 

[14]. We also found DUSP 1 and DUSP16 to be important regulators of several MAP kinases 

from the interactome analysis. 

Several novel DUSP-PK pairs were identified and these require further characterization to 

confirm their role in immunity. Particularly interesting among these include pairs involving 

slingshot phosphatases which constitute a group of understudied phosphatases. SSH1-CDK13, 

SSH1-CDK19, SSH2-EPHB2 were identified with high significance. Slingshot phosphatases 

have been previously implicated in cancer progression [75, 76] and have been known to 

mediate caspase-modulated actin polymerization towards bacterial clearance upon Legionella 

infection [77]. In our analysis, Slingshot phosphatase members SSH1, SSH2 were found to be 

downregulated exclusively in human DCs, while SSH3 was downregulated in both human DCs 

and MOs. Slingshot phosphatase members SSH1 and SSH2 were found to be downregulated 

exclusively in human DCs, while SSH3 was downregulated in both human DCs and MOs. 

DUSP10 and IGF1R expression were also found to be highly correlated. Insulin-like growth 

factors have been known to inhibit anti-tumoral responses of dendritic cells through the 

regulation of MAP kinases and have therefore been suggested to be targets for immunotherapy 

[78]. IGF1 has also been reported to influence activation of macrophages in response to high-

fat diet or helminthic infection [79]. Additionally, we identified LRRK2 (leucine-rich repeat 

kinase 2) from the interactome analysis in activated DCs and MOs, to be potentially important 

in the context of immune signaling. LRRK2 was found to interact with DUSP1 and DUSP16. 

LRRK2 has been mainly associated with familial cases of Parkinson's disease [80] and has 

been known to play an important in innate immunity in the peripheral and central nervous 

system [81], especially in microglial inflammatory processes [82]. This current finding 

suggests the possibility of LRRK2 to be additionally important in DUSP-mediated immune 

signaling. 

4. Materials and Methods 

4.1 Datasets 

Studies pertaining to immune cells acquired using high-throughput techniques were searched 

using PubMed. The data matrices pertaining to each dataset were downloaded from the site of 

the publisher of these articles. Gene expression datasets were downloaded from Gene 

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) wherever applicable. The 

details of all the studies used in this study are provided in Supplementary Table 1. 

4.2 DUSP and kinase lists for analysis 

The list of DUSPs used for the analysis was sourced from Chen et al [7]. The list of human and 

mouse kinases was sourced from UniProt (https://www.uniprot.org/docs/pkinfam) which used 

data from [4, 83, 84]. The master list of dual specificity phosphatases and PKs used for data 

analysis in the current study are provided as Supplementary Tables 2 and 3. 
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4.3 Classification of DUSP family members, domain analysis and species conservation 

analysis of DUSP sequences  

The similarity tree between DUSPs was drawn using iTOL with alignment performed with 

Clustal Omega. Briefly, RefSeq accessions of the longest protein isoforms for all dual 

specificity phosphatases were retrieved from NCBI gene (https://www.ncbi.nlm.nih.gov/gene). 

The protein sequences were obtained with Batch Entrez 

(https://www.ncbi.nlm.nih.gov/sites/batchentrez) and aligned using Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) using default settings. The output alignment in 

PHYLIP (.ph) format and was visualized with Interactive Tree of Life (https://itol.embl.de/) 

with custom colors and tracks. 

Domain analysis was carried out for the longest isoforms of all proteins belonging to DUSP 

subfamilies with multiple members using the SMART domain prediction tool 

(http://smart.embl-heidelberg.de/) [85], using the option “PFAM domains”. Orthology data for 

all human genes were obtained from Homologene (Release 68, downloaded on October 4, 2018 

from https://www.ncbi.nlm.nih.gov/homologene) for the analysis of sequence conservation 

across species. The counts for all genes in the Homologene database were obtained and the 

Taxonomy ID for each gene was mapped to the species type. The densities of ortholog counts 

for DUSP family members was plotted against the density of ortholog counts for all human 

genes in the background using R (v3.5.1). 

 

4.4 Landscape of DUSPs and kinases in immune cells 

Proteomic and transcriptomic data matrices were obtained from supplementary files of 

respective articles and accessions were converted into Entrez gene accession formats using 

bioDBnet:db2db (https://biodbnet-abcc.ncifcrf.gov/db/db2db.php) [86] and g:Profiler 

(https://biit.cs.ut.ee/gprofiler/gconvert.cgi) [87]. Gene expression data was also downloaded 

from Gene Expression Omnibus (GEO) wherever supplementary data was not available. Z-

score-based normalization of data matrices from all studies was carried out using base R 

(v3.5.1). DUSP and kinase expression data were subsequently obtained from the normalized 

datasets. Cell type data and cell sorting information wherever available were retrieved for each 

of the expression datasets and appended with the expression data. Heatmaps were drawn in 

Morpheus (https://software.broadinstitute.org/morpheus/) with hierarchical clustering based 

on Euclidean distance metric, complete linkage method and clustering by rows and columns. 

We carried out correlation and interactome analysis to look at the interplay between DUSPs 

and PKs in naïve and activated immune cells. Correlation analysis between z-scores of kinase 

and DUSP profiles of immune cell proteomes was performed using “Spearman” method 

through R (v3.5.1). Heatmaps were drawn using Morpheus 

(https://software.broadinstitute.org/morpheus/). 

4.5 Landscape of DUSPs and kinases in primary and secondary lymphoid organs 

We compiled tissue-based expression data from various datasets present in the Expression 

Atlas (https://www.ebi.ac.uk/gxa/home). Briefly, the pre-processed datasets from The 

FANTOM5 project [47] , Genotype-Tissue Expression (GTEx) Project [48], The Human 

Protein Atlas [49, 50], Illumina Body Map [51], NIH Roadmap Epigenomics Mapping 

Consortium [52] and the ENCODE project [53] were downloaded (Supplementary Table 1, 

Download date January 11,2019). The datasets were subjected to z-score-based normalization 

using R (v3.5.1). Data from primary and secondary lymphoid tissues were selected and DUSP 
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and kinase expression data were compiled using in-house scripts. The data was plotted as 

heatmaps with Morpheus using the same parameters as in the previous section. 

4.6 Baseline DUSP Interactome 

We analyzed publicly available Protein-protein interaction (PPI) data to identify DUSP-kinase 

interactions. We chose the comPPI database (Compartmentalized Protein-Protein Interaction 

Database, v2.1.1, http://comppi.linkgroup.hu/home) to identify biologically significant high-

confident interactions between proteins with similar subcellular localization patterns. ComPPI 

is an integrated database of protein subcellular localization and protein-protein interactions 

from multiple databases including BioGRID, CCSB, DIP, HPRD, IntAct and MatrixDB. [88]. 

The highly confident interactomes of each member of the dual specificity phosphatase family 

for Homo sapiens were fetched from comPPI, filtering for localization score and interaction 

score thresholds of 0.7 each. The accessions of interacting proteins were obtained through 

bioDBnet: db2db (https://biodbnet-abcc.ncifcrf.gov/db/db2db.php) and g: Profiler 

(https://biit.cs.ut.ee/gprofiler/gconvert.cgi) and the set of interactions were compiled and 

visualized in Cytoscape (version 3.7.0) to obtain an integrated DUSP interactome. The 

interactome was clustered into DUSP neighborhood networks using the AutoAnnotate (v1.2) 

package. The network statistics of the interactome were analyzed using the Network Analyzer 

tool in Cytoscape [89]. The betweenness centrality measure was used to identify protein hubs 

central to the DUSP network, which could influence the flow of information triggered by 

DUSPs. Individual interactomes of each DUSP member were also analyzed to identify central 

proteins associated with DUSPs using the betweenness centrality measure. 

4.7 Landscape of DUSPs and kinases in activated immune cells 

Data matrices from proteomics and transcriptomics datasets containing gene/protein 

expression data were fetched from the supplementary tables or GEO for the following studies 

[29, 32, 33, 55]. DUSP and kinase expression data were obtained from the normalized datasets. 

Fold-change ratios were calculated by dividing the ratio of intensity/RPKMs of 

activated/stimulated cells by the ratio of respective intensity/RPKM values of steady-

state/unstimulated cells. The fold-change ratios were converted into log2(fold-change) by log 

transformation. Genes/proteins with log2(fold-change) of 1 (fold-ratio of 2) were considered to 

upregulated while those with -1 (fold-ratio of -1) were considered to be downregulated. 

Genes/proteins with ambiguous trends across studies were ignored (both up and down) and 

only those with overall trends of either up and down were considered for further analysis and 

genes. We carried out correlation and interactome analysis to investigate the interplay between 

DUSPs and PKs in activated immune cells. Correlation analysis between z-scores of kinase 

and DUSP expression profiles of activated immune cells was performed as described above. 

4.8 Functional, pathway and network analysis 

The differentially expressed molecules in response to LPS were analyzed with  Gene Ontology-

based functional analysis through CLUEGO (ClueGO v2.5.2 + CluePedia v 1.5.2) [90] in 

Cytoscape (v 3.7.0) to identify processes affected by LPS. The parameters used included 

‘ClueGO: Functions’ analysis mode, murine ‘GO: Biological Process’ (dated 18.01.2019), 

global network specificity, pV <= 0.05000 with GO Term grouping. Hypergeometric 

enrichment-based pathway analysis was performed using Reactome Pathways [91] in 

R/Bioconductor 3.5.1/3.7 [92] with clusterProfiler 3.8.1 [93] and reactome.db 1.64.0. Genesets 
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with less than 10 genes were excluded from the analysis and p.values were adjusted by 

Benjamini-Hochberg correction. Pathways reaching adjusted p-values <= 0.0075 were curated 

manually and plotted with ggplot2 3.1.0. Network analysis of activated DCs and MOs was 

performed using STRING in Cytoscape. The network properties were calculated using 

Network Analyzer. 

5. Conclusions 

Though the role of dual specificity phosphatases in innate and adaptive immunity is known, 

their interplay with kinases was not precisely understood. In the current study, we expanded 

the knowledge on the role of dual specificity phosphatase signaling in activated and steady-

state cells through the analysis of high-resolution expression datasets. We confirmed the 

importance of several known DUSPs such as DUSP1 and DUSP10 in innate immunity. We 

also report potentially novel role of DUSPs such as the Slingshot phosphatases and PKs such 

as LRKK2 in immune signaling. These need to be further validated to confirm their roles. we 

also identified selective patterns of expression of a few DUSPs and PKs across hematopoietic 

cells which could be used as potential therapeutic targets. Furthermore, we also identified 

potential species-specific events of DUSP signaling which need to be further validated. Finally, 

we demonstrate the utility of meta-analysis of existing datasets to identify molecular 

mechanisms of various biological processes and fill existing gaps in understanding 

understudied proteins. The findings from this study will aid in the understanding of DUSP 

signaling in the context of innate immunity. 
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Figure Legends 

 

Figure 1: (a) Dendrogram describing the sequence similarity of members of the dual 

specificity phosphatase (DUSP) family. Protein sequences for various members of the dual 

specificity family obtained from RefSeq were aligned using Clustal Omega. The DUSPs were 

classified into subfamilies and their chromosomal location mapped using data and 

classification system from Chen et al (2017), Science Signaling. The tree shows largely distinct 

clustering of distinct DUSP subfamilies. (b) Domain architecture of DUSP subfamilies. 

Members of the DUSP family were subjected to domain analysis using SMART domain 

prediction. (c) Conservation of dual specificity phosphatases across species. Ortholog 

counts were obtained for all human genes from Homologene and the density of ortholog counts 

for DUSP family members was plotted against the density of ortholog counts for all human 

genes in the background. The graph largely indicates conservation of DUSPs across various 

species. 

 

Figure 2. (a) Protein kinases and dual specificity phosphatase expression in hematopoietic 

cells. Hematopoietic cell expression data for protein kinase and dual specificity phosphatases 

(DUSPs) were obtained from Rieckmann et al, Nat Immunol (2017). All hematopoietic cells 

except erythrocytes and thrombocytes expressed similar number of kinases and DUSPs. (b) 

Correlation of transcriptomic and proteomic data of cells. Transcriptomic and proteomic 

data for T4 naïve, T4 TCM, B memory and classical monocytes from Rieckmann et al, Nat 

Immunol (2017) showed poor correlation. (c) Correlation of protein kinase and DUSP 

expression patterns in hematopoietic cells. The correlation was carried out using Spearman’s 

rank correlation to identify kinase-DUSP pairs that may have reciprocal activities. The kinase-

DUSP pairs with high correlation coefficients are shown on the right-hand side. 

 

Figure 3. (a) Similarity matrix for protein kinase expression in primary and secondary 

lymphoid organs. (b) Similarity matrix for DUSP expression in primary and secondary 

lymphoid organs. The expression data Bone marrow, spleen, thymus, lymph node, tonsil, 

appendix and Peyer’s patches were obtained from various studies including FANTOM5, HPA, 

GTEx, ENCODE, Illumina Bodymap and NIH Roadmap project consortia. The PK and DUSP 

expression in these various tissue expression datasets largely correlated (c) DUSP-Protein 

kinase interaction network. Protein-protein interaction data between DUSP and protein 

kinases obtained from Compartmentalized Protein-Protein Interaction (comPPI) Database were 

analyzed in Cytoscape using Network Analyzer to obtain network properties including 

Betweenness Centrality. Protein kinases with high Betweenness Centrality indicate primary 

regulatory proteins associated with DUSPs.  

 

Figure 4. DUSP and kinase dynamics in response to TLR ligands. (a) Venn diagram 

showing differentially expressed protein/transcripts in human monocytes and dendritic 

cells stimulated with LPS. Members of the DUSP family are indicated within insets. (b) 

Enriched biological processes in murine dendritic cells stimulated with LPS. Differentially 

expressed protein kinases and DUSPs in response to LPS were analyzed using ClueGO in 

Cytoscape. Different colors indicate clusters of similar processes.  

Figure 5 (a) Pathway analysis of DUSPs and kinases differentially expressed in response 

to LPS. Differentially expressed genes were tested for hypergeometric enrichment of 

Reactome Pathways. Genesets with less than 10 genes were excluded from the analysis and p-

values were adjusted by Benjamini-Hochberg (FDR) correction   
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Abbreviations 

DC Dendritic cells 

MO Monocytes 

LPS Lipopolysaccharides 

DUSP Dual Specificity Phosphatase 

PK Protein Kinase 

GO Gene Ontology 

 

Appendix A 

Supplementary Tables 

Supplementary Table S1. List of datasets used for the study  

Supplementary Table S2. List of DUSP family genes used for the study and their details 

Supplementary Table S3. List of protein kinases used for the study and their details 

Supplementary Table S4. Expression of kinases and DUSPs (z-scores) in hematopoietic cells 

(matrix from Rieckmann et al, Nat Immunol (2017)) 

Supplementary Table S5. Matrix for corresponding RNA and protein expression data (z-

scores) for T4 naïve, T4 TCM, B memory and classical monocyte cells 

Supplementary Table S6. Expression of DUSPs and protein kinases in primary and secondary 

lymphoid tissue expression datasets. 

Supplementary Table S7.Correlation matrix between DUSP and protein kinase expression in 

hematopoietic cells (data from Rieckmann et al, Nat Immunol (2017)). Spearman's rank 

correlation coefficient was used. 

Supplementary Table S8. List of nodes and their properties from the comPPI interactome 

for DUSP family members. The interactions were obtained from the comPPI database and the 

network properties analyzed using Network Analyzer in Cytoscape. 
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Supplementary Table S9. Expression of kinases and DUSPs in activated hematopoietic 

cells (matrix from Rieckmann et al, Nat Immunol (2017)). Ratios obtained by dividing 

expression values in the activated state by expression values in the steady-state. 

Supplementary Table S10. log2(fold-change) of kinases and DUSPs in LPS-stimulated 

hematopoietic cells. Ratios obtained by dividing expression values in the activated state by 

expression values in the steady-state and log transformation to the base 2. The study code 

indicated in the header can be referred to in Supplementary Table 1. The kind of biomolecule 

assayed and the time point after LPS stimulation is mentioned in the header. 

Supplementary Table S11. List of DUSPs and kinases differentially expressed in monocytes 

and dendritic cells in response to LPS 

Supplementary Table S12. List of enriched pathways containing proteins differentially 

expressed in monocytes and dendritic cells in response to LPS 

Supplementary Table S13. Correlation matrix between DUSP and protein kinase expression 

in activated DCs and MOs. Spearman's rank correlation coefficient was used. 

 

Supplementary Figures 

Supplementary Figure 1. Baseline expression of A.DUSPs and B. protein kinases in 

hematopoietic cell line proteomic data. The raw hematopoietic cell expression data obtained 

from Rieckmann et al, Nat Immunol (2017) was scaled to obtain Z-scores. Z-scores were 

plotted as a heatmap using Morpheus and hierarchical clustering was carried out using 

Euclidean distance, complete linkage by both rows and columns. 

Supplementary Figure 2. DUSP interaction network. Protein-protein interaction data 

between DUSP and other proteins were obtained from Compartmentalized Protein-Protein 

Interaction (comPPI) Database were analyzed in Cytoscape using Network Analyzer to obtain 

network properties including Betweenness Centrality. Proteins with high Betweenness 

Centrality indicate primary regulatory proteins associated with DUSPs. Manual clustering of 

proteins within the vicinity of DUSPs was carried out using AutoAnnotate 1.3 in Cytoscape. 

Supplementary Figure 3. (a) Differential expression of DUSPs in various activated 

hematopoietic cells. (b). Differential expression of protein kinases in various activated 

hematopoietic cells. 

Supplementary Figure 4. Expression of (a) DUSPs and (b) protein kinases in activated 

hematopoietic cells. Expression ratios from activated and steady-state hematopoietic cells 

were calculated from expression data obtained from Rieckmann et al, Nat Immunol (2017) and 

log transformed. Expression values were plotted as a heatmap using Morpheus and hierarchical 

clustered by Euclidean distance and complete linkage by both rows and columns. Similarity 

matrices for (c) DUSP and (d) protein kinase expression in hematopoietic cells. DUSP and 

protein kinase expression in various cell types was correlated via Spearman’s rank correlation. 

Supplementary Figure 5: Venn diagrams showing the overlap of molecules differentially 

expressed in response to LPS in (a). murine and human dendritic cells (DCs). (b). human 

dendritic cells and monocytes (upregulated molecules). (c) human dendritic cells and 

monocytes (downregulated molecules). (d) Correlation of protein kinase and DUSP 
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expression patterns in activated DCs and MOs. The correlation was carried out using 

Spearman’s rank correlation method to identify kinase-DUSP pairs that may have reciprocal 

activities.  

Supplementary Figure 6. Network analysis of DUSPs and kinases that were (a). upregulated 

and (b). downregulated in activated murine dendritic cells 

Supplementary Figure 7: Network analysis of DUSPs and kinases that were (a). upregulated 

and (b) downregulated in activated human dendritic cells 

Supplementary Figure 8: Network analysis of DUSPs and kinases that were (a). upregulated 

and (b) downregulated in activated human monocytes 
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