
1What the odor is not: Estimation by elimination
Vijay Singha,b, Martin Tchernookovc, and Vijay Balasubramaniana,b,1

aComputational Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA, 19104, USA; bDepartment of Physics, University of Pennsylvania, Philadelphia, PA,
19104, USA; cDepartment of Physics, University of Wisconsin, Whitewater, WI, 53190, USA

The olfactory system uses the responses of a small number of
broadly sensitive receptors to combinatorially encode a vast num-
ber of odors. Here, we propose a method for decoding such a dis-
tributed representation. Our main idea is that a receptor that does
not respond to an odor carries more information than a receptor that
does, because a typical receptor binds to many odorants. As a re-
sult, it is easier to identify what the odor is not, rather than what
the odor is. We demonstrate that, for biologically realistic numbers
of receptors, response functions, and odor mixture complexity, this
remarkably simple method of elimination turns an underdetermined
decoding problem into an overdetermined one, allowing accurate de-
termination of the odorants in a mixture and their concentrations.
We give a simple neural network realization of our algorithm which
resembles the known circuit architecture of the piriform cortex.

Olfaction | Receptors | Odor Decoding

The olfactory system enables animals to sense, perceive, and
respond to mixtures of volatile molecules that carry messages
about the world. There are many monomolecular odorants,
perhaps 104 or more (1–3), far more than the number of
receptor types available to animals (≥ 50 in fly, ≥ 300 in
human, ≥ 1000 in rat, mouse and dog (4–7)). The problem of
representing such a high-dimensional chemical space in such a
low-dimensional response space may be solved by the presence
of many receptors that bind to numerous odorants (8–14),
leading to a distributed, combinatorial representation of odors
(see, e.g., (12, 15–23)).

We focus on the inverse problem: the estimation of odor
composition from the response of olfactory receptors. We
use a realistic competitive binding model of odor encoding
by receptors (24–27), and propose a scheme to decode odor
composition from such responses. The scheme works over
a large range of biologically relevant parameters, does not
require any special constraints on receptor-odorant interac-
tions, and works for systems with few receptors, suggesting
why the relatively small olfactory receptor repertoires of most
organisms are su�cient for detecting complex natural odors.

Our main idea is that a receptor that does not respond
to an odor carries a lot more information about the odor
than a receptor that does respond to it. This is because a
receptor that does not respond to an odor signals that none
of the odorants (individual chemicals) that could bind to
this receptor are present in the odor. With just a few such
non-responding receptors, most of the odorants that are not
present can be identified and eliminated. Thus, it is easier to
identify what the mixture is not, rather than what the mixture
is. For a large range of biologically relevant parameters, this
elimination turns the estimation of odor concentration from
an underdetermined problem to an overdetermined one. Thus,
the concentration of the rest of the odorants can be estimated
from how the remaining receptors respond. The specifics of
the second step depends on the receptor encoding model.

We propose a neural network to implement our decoding

scheme. Remarkably, the statistics of olfactory receptor bind-
ing to natural odors (10, 28), and circuits in the olfactory
epithelium, the olfactory bulb (29) and the olfactory cortex
(30–32), all reflect properties of this network. We developed
our scheme with the olfactory system in mind but the method
is general, and can be used for other types of chemical detec-
tion systems, such as electric noses (33, 34) for odor detection,
and in medical tests.

Results

Decoder of odor composition – high noise. First, suppose that
noise in receptor activity is high. Then, binding dynamics is
highly stochastic and the exact binding state is hard to predict.
Instead, receptor activation is determined by a threshold set
by the noise level. If the concentration of an odorant is high
enough for the activity of a receptor to be above threshold,
then the odorant is considered to be present and the receptor
is said to respond. Otherwise, the odorant is not present and
the receptor is considered inactive (no response). The main
features of our proposed decoding scheme can be explained in
this binary model of receptor activity.

In detail, consider a mixture of NL odorants represented by
the binary vector c = (c1, c2, . . . , cNL ), where ci = 1 represents
the presence of the i’th odorant. Let odors have complexity K:
on average only K odorants are present. These odorants bind
to NR receptors whose response is given by the binary vector
R = (R1, R2, . . . , RNR ). Receptor sensitivity to the odorants
is given by a matrix S. Sij = 1 indicates that the odorant j
can bind to receptor i and Sij = 0 means it can not. Suppose
that the probability that an odorant binds to a receptor is s,
i.e., P (Sij = 1) = s. Then, on average each odorant binds to
sNR receptors and each receptor to sNL odorants.

In this model a receptor will respond (Ri = 1) when stimu-
lated by an odor that contains at least one odorant that binds
to this receptor (i.e., Ri = 1 if, for some j, cj = 1 & Sij = 1).
If no such odorant is present, the receptor is inactive (Ri = 0).
The receptor thus acts as a binary ‘OR’ gate.

Odors encoded in this way can be decoded (odor estimate
ĉ) in two simple steps (Fig. 1):

1. First, all inactive receptors are identified and all odorants
that bind to them are considered absent from the odor
(ĉj = 0 for all j for which Sij = 1 while Ri = 0).

2. The remaining odorants are considered to be present.

This simple decoder does not miss any odorant that is
present in the mixture. This is because, assuming every odor-
ant binds to at least one receptor, if an odorant is present
(cj = 1) all receptors that bind to it will respond. Hence, the
decoded concentration ĉj will not be set to zero.
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Fig. 1. Binary response model: When noise is high, a receptor is considered
active only if an odorant that binds to it is present at high concentration. In this regime,
the odorant concentration and receptor response can be represented as binary vectors.
Odorants that are present in the mixture and receptors that are active are depicted
as filled blue squares. The elements of the sensing matrix provide information about
receptor-odorant interactions. A filled blue matrix element indicates an odorant that
binds to a receptor. (a) Encoding: A receptor is active if the odor mixture contains at
least one odorant that binds to the receptor. Otherwise the receptor is inactive. (b)
Decoding: (Step 1) First, odorants that are absent from the mixture are identified by
using receptors that are inactive, (Step 2) All remaining odorants are considered to be
present in the odor. (c) The probability of correct decoding (P (ĉ = c)) plotted as a
function of the number of receptors (NR). Markers are numerical simulations, smooth
curve is the approximate analytical result (Eq. S8). P (ĉ = c) was measured as the
fraction of correct decodings over 1000 trials, each conducted with a random choice
of odor mixture and sensitivity matrix (see SI). Mean and error bar (±1 standard
deviation) were computed over 10 replicate simulations, each with 1000 trials. (d)
P (ĉ = c) plotted as a function of the average number of odorants present in the odor
mixture (K) and the average number of receptors responding to an odorant (s ú NR),
with the number of receptors (NR) and the number of odorants (NL) held fixed. We
are plotting P (ĉ = c) as a function of the product s ú NR, since the parameters s
and NR always appear in this combination (in Eq. 2 and Eq. S8). s ú NR, which is
the average number of receptor a typical odorant binds to, determines whether the
odorant can be detected or not. P (ĉ = c) was calculated numerically over 10000
trials, each with a random choice of odor mixture and sensitivity matrix. The smooth
curve in white denotes an approximate boundary of the transition region of P (ĉ = c)

estimated by setting the analytical expression Eq. 2 to half.

However, false positives are possible. This is because an
odorant could be absent, while all receptors that bind to it
have a non-zero response because of other odorants present
in the mixture. Thus, through lack of evidence, ĉj will be
set to 1. We can derive an approximate expression for the
probability of false positives (see SI: Binary decoder):

P (ĉi = 1|ci = 0) ¥ e≠sNRe≠sK

. [1]

We can also derive an expression for the probability of correct
estimation assuming that each odorant can be estimated inde-
pendently of the others (SI: Binary decoder Eq. S8), which is
well-approximated as:

P (ĉ = c) ¥
1

1 ≠ NLe≠sNRe≠sK
2

. [2]

The second term is approximately the probability of false
positives if there are NL odorants in the environment.

These relations provide an intuitive understanding of the
decoding process. For correct decoding the probability of
false positives should be low. So, the term in the exponent of

Eq. 1 should be large, i.e., sNR should be large and sK small.
This makes sense. sNR is the average number of receptors
that an odorant binds to. If the odorant does not bind to
any receptor, then its concentration can not be estimated.
Thus, sNR should be large so that there are many receptors
whose non-response can provide evidence of the absence of
an odorant. Also, for successful decoding, su�ciently many
receptors must be inactive to eliminate all odorants that are
absent. For this to happen, the probability that any particular
receptor responds to at least one of the K odorants in the
mixture should be small. This probability is approximately
sK when the likelihood s that a given odorant binds to a given
receptor is small, and so we require that sK < 1.

The conditions sNR > 1 and sK < 1 will be necessary for
any receptor response model and its decoder. This is because,
in general, if an odorant does not bind to any receptor its
concentration cannot be estimated, while the process of con-
verting an under-determined problem into a well determined
one is going to require su�ciently many inactive receptors. Put
otherwise, for a fixed number of receptors NR, odorants in the
environment NL, and odor component complexity K, receptor
sensitivity should be su�ciently high to ensure coverage of
odorants, but small enough to avoid false positives.

These considerations compare well with the observed sensi-
tivity of olfactory receptor responses to odorants (s ≥ 14% for
Drosophila (28), s ≥ 4% for humans (10)). Thus, for typical
values ({NL, K, NR, s} = {104, 10, 500, 0.05}), the estimated
probability of false positives is low (P (ĉi = 1|ci = 0) ≥ 10≠7;
Eq. 1) and the probability of correct estimate is high (P (ĉ =
c) ≥ 0.998; Eq. 2). These estimates suggested that our pro-
posed decoding scheme will be e�ective at decoding complex
odors in the biologically relevant regime.

We numerically estimated the accuracy of our decoding
scheme. First, we randomly chose the elements of a sensitiv-
ity matrix so that they are non-zero with probability s, i.e.
(P (Sij > 0) = s). Fig. 1c shows the probability of a correct es-
timate (P (ĉ = c)) as a function of the number receptors (NR)
for odors that contain on average K = 10 odorants drawn from
NL = 10000 possibilities. When the number of receptors NR
is too low, the probability of correct decoding is zero. As the
number of receptors increases, there is a transition to a region
where recovery is nearly perfect, with probability approaching
1. The transition is sharp and occurs at NR much smaller than
the number of possible odorants (NL). Over a wide range of
odor complexities (K) and numbers of responsive receptors
(s ú NR), our decoding scheme shows excellent performance
(P (ĉ = c) ¥ 1) (Fig. 1d). Our analytical expression for the
probability of correct decoding (SI Eq. S8) gives a good de-
scription of the numerical results, and an excellent estimate
of the transition point between poor and excellent decoding
(solid lines in Fig. 1c,d; and SI Fig. S1).

Decoder of odor composition – low noise. If noise is low, or
integration times are long, the activity of a receptor is more
appropriately represented by a numerical continuum, along
with the odorant concentrations (ci), receptor sensitivities
(Sij), and receptor responses (Rj). In this case, the decoder
can be modified to estimate not just which odorants are present
in the mixture, but also their concentrations. While the details
of the decoding scheme depend on the encoding mechanism
of the receptor, the main principle remains the same. First,
inactive (below threshold) receptors are used to eliminate some
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odorants. Then, the active receptors are used to estimate the
remaining concentrations.

Receptor responses can be realistically described by a com-
petitive binding (CB) model in which odorant molecules com-
pete to occupy the receptor binding site (24). The receptor
response to a mixture of odorants with concentrations ci is
given by a Hill-type function (24–27):

R =
qNL

j=1 xj1
1 + d ú

qNL
j=1 xj

2 . [3]

Here xj = Sijcj and d parameterizes the a�nity of odorants for
the receptor. The CB model approximates to the binary model
when (d æ Œ) and to the commonly used linear response
model when d æ 0 (35–38).

As discussed earlier, the binary decoder works because an
inactive receptor implies that all odorants that can bind to
this receptor are absent. The concentrations of such odorants
are set to zero, while concentrations of the remaining of the
odorants are set to 1. Thus the success of the binary decoder
depends on ensuring that for every odorant that is absent,
there is at least one receptor that does not respond. In the
continuous case, a weaker condition is su�cient. The starting
point is an under-determined identification problem because
the number of possible odorants exceeds the number of recep-
tors (NL > NR). In the first step, we eliminate odorants that
bind to receptors with below-threshold responses. This leaves
ÑR active receptors responding to ÑL candidate odorants. If
ÑL Æ ÑR the problem is now over-determined and can be
solved (Fig. 2), even if all the absent odorants have not been
eliminated. Specifically, the odor encoding functions (eq. 3)
give a set of coupled equations that relate the ÑL odorant
concentrations to the ÑR receptor responses. These equations
can be inverted to get the unknown concentrations.

Our decoder will not eliminate any of the K odorants that
are present in a mixture because all of them will evoke re-
sponses. To estimate the number of false positives from the re-
maining NL ≠K odorants, let s be the probability that a given
receptor is sensitive to a given odorant (P (Sij > 0) = s). Then,
the number of active receptors will be about ÑR ≥ sKNR
while the number of inactive receptors will be approximately
(1 ≠ sK)NR. The first inactive receptor eliminates approxi-
mately a fraction s of the remaining NL ≠ K odorants. The
second inactive receptor removes roughly another fraction s
of the remaining (1 ≠ s)(NL ≠ K) odorants. Summing over
these eliminations for all (1 ≠ sK)NR inactive receptors leaves
a total of ÑL ≥ K + (NL ≠ K)(1 ≠ s)NR(1≠sK)≠1 odorants
under consideration. Typical parameters {NL, K, NR, s} =
{104, 10, 500, 0.05} give ÑL ≥ K = 10 which is less than
ÑR ≥ sKNR = 250, showing that in the biologically relevant
regime our elimination algorithm leads to an over-determined
and hence solvable identification problem.

We can derive an approximate analytical expression for
the probability of correct estimation (SI: Continuous decoder).
This derivation assumes that the typical number of receptors
that respond to a mixture is larger than the average odor
complexity (ÑR > K), while, at the same time, enough recep-
tors are inactive to eliminate absent odorants. This requires
s(NR ≠ ÑR) > “, where “ > 1 is a parameter that depends
on the receptor response model (details in SI: Continuous

decoder). With these assumptions,

P (ĉ = c) ≥ P (ÑR > K) ú P (NR ≠ ÑR > (“/s))

=

C
1 ≠ �

A
K ≠ ÑR

ÑR

BD
�

A
NR ≠ ÑR ≠ “

s
ÑR

B
. [4]

� is the standard normal cumulative distribution function.
To numerically estimate the probability of correct decoding

(P (ĉ = c)), we generated sparse odor vectors with K odor-
ants on average. Concentrations were drawn from a uniform
distribution on the interval [0, 1). Elements of the sensitivity
matrix were chosen to be non-zero with probability s, i.e.,
(P (Sij > 0) = s). The values of these non-zero elements
were chosen from a log uniform distribution (SI: Numerical
Simulations; similar results with other distributions in SI
Fig. S2). The probability of correct decoding is zero when
there are very few receptors (NR). But the probability transi-
tions sharply to finite values at a threshold NR which is much
smaller than the number of possible odorants (NL) (Fig. 2c).
Odor compositions are recovered perfectly for a wide range
of parameters (Fig. 2d,e), so long as receptors are su�ciently
sensitive s ú NR > 6. Odors with the highest complexity are
decoded when s ú NR ≥ 10 ≠ 15. The dependence on the total
number of odorants (NL) is weak (SI Fig, S4). We quantified
the error in odor estimates and found that even when decoding
is not perfect there is a large parameter space where the error
is small (Fig. 2e).

Since humans have about 300 receptors, our model predicts
that odors with most components can be decoded with s ≥ 3≠
5% so that sNR = 10 ≠ 15. This is consistent with observation
– human receptors have s ≥ 4% (10). For Drosophila, which
has ≥ 50 receptors, the observed sensitivity of s ≥ 14% (28)
gives sNR ≥ 7, in the expected range for successful decoding.

Network implementation. We have demonstrated an e�cient
algorithm for decoding odor identity from a combinatorial
code in which receptors that are below threshold are used
to eliminate the vast majority of odorants, converting an
underdetermined problem into an overdetermined one. Here,
we develop a neural network implementation of the algorithm.

To instantiate our algorithm mechanistically it is important
to have reliable responses and non-responses in receptors,
reflecting the actual concentrations of odorants. However,
receptor-odorant binding is inherently stochastic. So the first
step is to mitigate sensing noise. The simplest way to achieve
this is to have many copies of each receptor and to average their
responses. Indeed, in the first stage of the olfactory pathway
in mammals, each type of receptor is individually expressed
in thousands of Olfactory Sensory Neurons (OSNs) (Olfactory
Receptor Neurons in insects) and, subsequently, responses of
each type are aggregated in glomeruli of the Olfactory Bulb
(Antennal Lobe in insects) (Fig. 3a).

Below-threshold responses are especially important for our
algorithm. To further ensure their reliability we can arrange
for receptor types to compete to suppress each other, thereby
muting the weakest responses. In the presence of a firing
threshold such a suppression will cause units firing at very low
rates to fall silent, as we require. Well-known computational
principles show that recurrent inhibitory circuits can achieve
this e�ect. Indeed, in the second stage of olfactory process-
ing, inhibitory interneurons implement a circuit that shuts
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Fig. 2. Continuous response model: (a) Encoding: Color saturation levels represent concentrations of odorants. Colors in the sensing matrix represent receptor
binding affinity to the corresponding odorant. Receptor activity is represented by colors, white = inactive. (b) Decoding (Step 1 Elimination): Silent receptors are used to
eliminate absent odorants, reducing an initially under-determined problem to a well-defined one. (Step 2 Estimation): Concentration of the remaining odorants can be estimated
from responses of the remaining receptors. (c) Same as Fig. 1(c), now for the continuous decoder. The free parameter (“) in the analytical formula (Eq. 4) was chosen to
minimize mean squared error between the probability obtained numerically and the formula. (d) P (ĉ = c) plotted as a function of number of odorants in the odor mixture (K)
and s ú NR at fixed NR. P (ĉ = c) was calculated numerically over 1000 trials, each with a random choice of odor mixture and sensitivity matrix. The smooth curve in white
is the approximate boundary of the perfect decoding region, estimated by setting Eq. 4 to 0.5 (“ = 3). (e) Error in concentration estimates, defined as Euclidean distance
between actual and estimated odor concentration divided by the number of odorants ((||ĉ ≠ c||2/K)), plotted as a function of number of odorants (K) and s ú NR at fixed
NR. The error is small even when recovery is not perfect. Other measures of error lead to similar results (SI Fig. S3: Other measures of estimation error).

down the output neurons (mitral cells in mammals; projection
neurons in insects) of weakly active glomeruli (39, 40).

Next, we need a mechanism to eliminate absent odorants.
To achieve this, we organize projections from glomeruli of
receptors binding a given odorant to a readout unit whose
activity ĉj represents the odorant concentration (Figure 3a).
We can then implement the elimination step of our decoding
algorithm by setting the readout unit threshold so that most
of its inputs must be active to trigger a response. If odorant j
is not present in the mixture (cj = 0), the probability that a
receptor which binds to this odorant is inactive when respond-
ing to the mixture is P (Ri = 0|cj = 0) ≥ e≠sK (SI: Eq. S15).
So, of the roughly sNR receptors that bind to this odorant,
nearly sNRe≠sK will be inactive. Taking typical numbers
{K, NR, s} = {10, 500, 0.05}, about 25 receptors will respond
to a ligand, and about 15 these will be silent if the ligand is
absent. Hence, the corresponding readout unit will be silent
(ĉj = 0). A similar architecture is seen in the feedforward
projections from the Olfactory Bulb to the Piriform Cortex
in mammals (Antennal Lobe to Mushroom Body in insects).
Specifically, each neuron in the third stage of olfactory process-
ing receives inputs from many glomeruli in the second stage,
but simultaneous activation from most of these is necessary
for a response (31, 32, 41, 42).

Finally we need a mechanism to set the activity of the read-
out units that have not been eliminated to represent concen-
trations of odorants. This can be achieved through a network
of recurrent connections between readout units (Figure 3).
To illustrate, suppose that the responses Ri corresponding to
the ith receptor are conveyed to the jth readout unit with a

feedforward weight Ŝij . Also suppose that the jth readout
unit provides recurrent input to the kth readout unit with a
weight pjk. A standard linearized neural network with these
connections satisfies the equation

dĉj

dt
= ≠ĉj +

NRÿ

i=1

ŜjiRi +
NLÿ

k=1,k ”=j

pjk ĉk , [5]

where ĉj is the response of the jth unit. The first term on
the right side represents decay of activity in the absence of
inputs. In this context, we also linearize the responses so that
Ri =

q
j

Sijcj , where Sij is a sensitivity matrix and cj are
odorant concentrations. The steady state occurs when

0 =

A
≠ĉj + cj

NRÿ

i=1

ŜjiSij

B
+

NLÿ

k=1,k ”=j

A
pjk ĉk + ck

NRÿ

i=1

ŜjiSik

B
.

[6]

In the steady state ĉj = cj , i.e. the activity of readout unit j
equals the concentration of odorant j, provided the feedforward
and recurrent weights are adjusted to obey

NRÿ

i=1

ŜjiSij = 1 and pjk +
NRÿ

i=1

ŜjiSik = 0 [7]

for all j and every k ”= j. The first criterion relates the
feedforward weights Ŝji to the sensing matrix Sij (see (43)
for another context with a similar relation). The second
criterion balances the network – feedforward excitation (Ŝji)
is compensated by recurrent inhibition (pjk). This recurrent
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Fig. 3. Network implemtantion: (a) An odorant cj binds many types of
receptors (colors). Responses are reliably estimated by averaging multiple receptors
of the same type in a second layer, where axons of each type converge. This
average response is relayed to a readout layer. Units in the readout layer also receive
recurrent inhibitory inputs from other readout units. Connections for one odorant
and final readout unit are shown. (b) Probability of correct decoding (P (ĉ = c))
as a function of odor complexity K and s ú NR for NR receptors, with s = the
probability that an odorant binds to a receptor. P (ĉ = c) was calculated numerically
over 100 trials, each with random choice of odor mixture and sensitivity matrix (SI:
Numerical simulations). The criterion for correct decoding was that the Euclidean
distance between the odor vector c and the decoded vector ĉ was less than 0.01.

balanced inhibition recalls circuits of the Piriform Cortex in
mammals where long-range inhibition arises via large-scale
distance-independent random projections from pyramidal cells
to locally inhibitory interneurons (30–32). In insects similar
recurrent inhibition is provided by a giant interneuron.

The NL constraints from the first criterion in (7) can be
solved along with NL(NL ≠ 1) constraints from the second
criterion because we have about s ú NRNL parameters in the
feedforward matrix Ŝ and NL(NL ≠ 1) parameters in the re-
current matrix (p). This gives more free parameters than
constraints if sNR, the typical number of receptors responding
to an odorant, is bigger than one. These network parame-
ters can be acquired through local learning rules because the
feedforward weights for readout unit j are only related to the
sensitivities of receptors to the corresponding odorant j, while
the excitatory-inhibitory balance is local (unit by unit). If the
response Ri is a nonlinear function of its inputs, e.g. Eq. 3,
there will still be enough parameters in a recurrent network
to decode odor concentrations. However, units in the network
may need to have nonlinear responses, or be organized in a
deep network with multiple feedforward layers.

To test our network decoder (details in SI: Numerical sim-
ulations) we selected odor sensitivity matrices Sij such that
each odorant binds randomly to a fraction s of the receptors,
and assumed a response function that is linear in the odorant
concentrations (Eq. 3 with d = 0). This linear response rep-
resented the statistically stable average over many stochastic
receptors. We then selected feedforward projection matrices
Ŝij to readout neurons with recurrent weight matrices pjk

satisfying the constraints in Eq. 7. Imitating the projections
to the olfactory cortex (31, 32, 41, 42), we set a threshold
so that the readout units only responded if at least 95% of
their feedforward inputs were active. Finally, we allowed the
network to decode odor concentrations as the steady state of
the network in Eq. 5. Figure 3b shows that the probability of
correct decoding by the network is similar to results shown for
the abstract decoders discussed in previous sections.

Discussion

Our central idea is that receptors which do not respond to an
odor convey far more information than receptors that do. This
is because the olfactory code is combinatorial – each receptor
binds to many di�erent odorants and each odorant binds to
many receptors. Hence, an inactive receptor indicates that
all the odorants that could have bound to it must be absent.
Natural odors are mixtures of perhaps 10-40 components drawn
from the more than 104 volatile molecules in nature (1–3). We
showed that if most of these molecules bind to a fraction of the
receptors that is neither too small nor too large, odorants that
are absent from a mixture can be eliminated from consideration
with nearly perfect accuracy by a system with just a few
dozen to a few hundred receptors types. The response of
the active receptors can then be used to accurately decode
the concentrations of the molecules that are present. Our
results show that odors of natural complexity can be faithfully
encoded in, and fully decoded from, signals produced by a
relatively small number of receptor types that each bind to
5-15% of odorants. Perhaps this explains why all animals
express ≥ 300 receptor types, give or take a small factor,
although receptor diversity does increase with body size (38).
Even at the extremes, the fruitfly and the billion-fold heavier
African elephant have ≥ 300/6 and ≥ 300 ◊ 6 receptor types
respectively.

We proposed a network implementation of our algorithm
that resembles the architecture of the early olfactory pathway
in the brain. First, with a few dozen to a few hundred receptor
types, our algorithm requires each receptor type to bind to
≥ 5 ≠ 15% of odorants. This requirement, which recalls ideas
from “primacy coding” (44, 45), is consistent with observations
from Drosophila to human (10, 28). If receptors are noisy, the
next step in our decoding network is to pool signals from
multiple receptors of the same type into “glomeruli”, and to
then allow lateral inhibition to suppress spurious responses
due to noise. This pooling and inhibition motif is realized in
the second stage of olfactory processing (39, 40). The third
stage of our decoding network has readout units that pool from
many glomeruli, most of which must be active to produce a
response. In addition, the readout units must have large-scale,
recurrent, balanced inhibition. A similar architecture is visible
in projections from the second to the third stage of the animal
olfactory pathway, and in the recurrent circuits of the third
stage (30–32, 41, 42).

In our network implementation the activation function of
each unit was linear in the activities of other units. Real
neurons have nonlinear activation functions with a threshold,
saturation, and sometimes nonlinear summation of inputs.
Our model, which can be regarded as a linearization of such
neurons around an operating point, can be generalized to
nonlinear units which still have a high threshold for activation
to implement feedforward elimination of absent odorants, and
recurrent inhibitory balance for concentration decoding.

Our network readout units individually represented the
presence or absence of odorants. By contrast, in the brain, ex-
posure to an odorant activates a sparse, distributed collection
of cortical neurons. A simple extension of our network pro-
duces such a representation. Instead of collecting all glomeruli
that respond to a given odorant, we can construct readout
units that sample groups of these glomeruli. An odorant would
then be represented by the collective activation of a set of
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readout neurons, some of which may also participate in the
representation of other odorants, as seen in the brain. We did
not pursue this approach because we assumed knowledge of the
olfactory environment and the receptor sensitivity matrix. But
during development the brain does not know which odorants
are present in the world and which receptors they activate.
Thus, a good wiring strategy would be to project small groups
of glomeruli to target readout neurons. Each such target would
be a guess for a subset of receptors that will be co-activated by
some odorant. The odorant is then represented by activity in
every readout neuron that samples from a proper subset of the
activated receptors. Finally, our feedforward weight matrix
was related to the odor sensitivity matrix in order to decode
the actual concentrations of odorants. As we discussed these
weights could be acquired through a local learning rule. Our
theory could be tested by sampling sensitivities of receptors for
a particular odorant (9, 10), along with feedforward projection
strengths from glomeruli to their targets, perhaps measured by
optogenetically activating individual glomeruli while imaging
the strength of downstream responses.

Our results suggest that the brain may indeed be able to
discriminate the detailed composition of odors, contrary to
our usual experience of olfaction as a synthetic sense. In fact
behavioral experiments do show that it is possible to discrim-
inate complex odors that di�er by just a few components
(46, 47). If our decoding algorithm is realized in the brain,
all odors that bind to an inactive receptor type should be
eliminated. A way of testing this prediction would be to block
a specific receptor type pharmacologically, or via optogenetic
suppression of the associated glomerulus. Our theory predicts
that animals will then tend to behave as if ligands that bind
to this receptor are absent, even if other receptors do bind
them. Finally, in our model odors can be perfectly decoded
(yellow regions in Figs. 1,2) if they are composed of fewer than
Kmax components, where Kmax is determined by the number
of receptor types (Nr) and the fraction of them that bind on
average to the typical odorant (s). This prediction can be
tested by measuring Nr and s for di�erent species and then
characterizing discrimination performance between odors of
complexity bigger and smaller than Kmax.

Our algorithm can decode complex natural odors detected
by chemosensing devices like electric noses (33, 34). In this
engineered setting, the target odorants and response functions
are explicitly known so that our method of “Estimation by
Elimination” can be precisely implemented.
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Supplementary information

Fig. S1. Plot of the difference between P (ĉ = c) as given by Eq. S8 and as
estimated numerically for the binary decoder. For most parameters the analytical
results match the simulations.

A. Analytic estimate of the probability of correct decoding.

A.1. Binary decoder. We want the probability P (ĉ = c) that the
decoded vector ĉ equals the input vector c, i.e., the corresponding
elements of the vectors ĉ and c are equal. Assuming statistical
independence of the decoding of each odorant, we can write

P (ĉ = c) =
NLŸ

i=1

P (ĉi = ci) = [P (ĉi = ci)]NL . [S1]

The assumption of independence is an approximation that we will
validate by comparing with the full numerical results.

The decoded concentration ĉi could be equal to ci, if either both
of them equal 1 or both of them equal zero. Thus, the term in the
square bracket in Eq. S1 can be written as:

P (ĉi = ci) = P (ĉi = 1|ci = 1)P (ci = 1)
+P (ĉi = 0|ci = 0)P (ci = 0). [S2]

where P (ci = 1) = K/NL = – is the probability that an odorant is
present in the mixture, and P (ci = 0) = (1 ≠ –).

The decoder guarantees that if an odorant ci is present and there
is a receptor Rj that is sensitive to it (Sji=1), then the receptor
will respond, and the decoded vector will set the corresponding
element ĉi to 1. If no receptor is sensitive to this odorant (i.e,
’j : j œ [1, NR], Sji = 0), the decoded element will still be set to 1
by default. So, P (ĉi = 1|ci = 1) = 1.

To calculate P (ĉi = 0|ci = 0), recall that in our decoding scheme,
ĉi = 0 if there exists at least one receptor such that Rj = 0 for
which Sji = 1. Thus,

P (ĉi = 0|ci = 0) = P (÷ j : Rj = 0 fl Sji = 1|ci = 0) [S3]

where fl is the binary AND operation. The probability on the right
is 1 minus the probability that for all receptors either Rj = 1 or
Rj = 0 fl Sji = 0. So,

P (ĉi = 0|ci = 0)
= 1 ≠ P (’ j : Rj = 1 fi (Rj = 0 fl Sji = 0)|ci = 0)

= 1 ≠ [P (Rj = 1 fi (Rj = 0 fl Sji = 0)|ci = 0)]NR , [S4]

where in the second step we have again made the assumption that
the receptors are independent conditional on the response of ci.
The quantity in the bracket in Eq. S4 can be written as:

P (Rj = 1 fi (Rj = 0 fl Sji = 0)|ci = 0)
= P ((Rj = 1 fi Rj = 0) fl (Rj = 1 fi Sji = 0)|ci = 0)
= 1 fl (Rj = 1 fi Sji = 0)|ci = 0)
= P (Rj = 1 fi Sji = 0|ci = 0)
= 1 ≠ P (Rj = 0 fl Sji = 1|ci = 0)
= 1 ≠ P (Rj = 0|ci = 0)P (Sji = 1|ci = 0) [S5]

Fig. S2. P (ĉ = c) as a function of NR for the continuous decoder

and alternative choices of the sensitivity matrix. Results for binary
encoding are the same as in Fig. 1c and are plotted here for comparison. (a) Uniform
distribution: Similar to Fig. 2c except that the non-zero elements of the sensitivity
matrix were chosen uniformly at random between [0,1]. (b) Log-normal distribution:
Similar to Fig. 2c except that the non-zero elements of the sensitivity matrix were
chosen at random from a log normal distribution with the corresponding normal
distribution having mean zero and standard deviation 1.

Now, P (Sji = 1|ci = 0) = P (Sji = 1) = s, where entries of the
sensing matrix are chosen to be non-zero independently and with
probability s.

To calculate P (Rj = 0|ci = 0) recall that the receptors are OR
gates with inputs Sjkck. Thus, for Rj = 0 all terms Sjkck should
be zero. The probability that any one such term is zero is (1 ≠ s–).
Since we already have ci = 0, there are (NL ≠ 1) additional terms
that need to be zero. Hence,

P (Rj = 0|ci = 0) = (1 ≠ s–)(NL≠1) , [S6]

and

P (ĉi = 0|ci = 0) =
1

1 ≠
#
1 ≠ s(1 ≠ s–)(NL≠1)$NR

2
[S7]

Putting this all together (using Eq. S7 in Eq. S2), we get:

P (ĉ = c) =
Ë

– + (1 ≠ –)
1

1 ≠
#
1 ≠ s(1 ≠ s–)(NL≠1)$NR

2ÈNL

[S8]

Using Eq. S7, we can also get the (approximate) probability of a
false detection as P (ĉi = 1|ci = 0) = 1 ≠ P (ĉi = 0|ci = 0):

P (ĉi = 1|ci = 0) ¥
#
1 ≠ s(1 ≠ s–)(NL≠1)$NR . [S9]

This expression is approximate due to our independence assump-
tions.

Approximation: Since the average number of odorants present
in the mixture (K = –NL) is small compared to NL and NL ∫ 1,
we can approximate:

(1 ≠ s–)(NL≠1) =
1

1 ≠
sK

NL

2(NL≠1)
¥ e≠sK . [S10]

Now, since the odor sensitivity (s) is small, so that se≠sK is also
small, while NR ∫ 1, we further approximate

#
1 ≠ se≠sK

$NR =
5

1 ≠
sNRe≠sK

NR

6NR

¥ e≠sNRe≠sK
. [S11]

This results in:

P (ĉ = c) =
Ë

– + (1 ≠ –)
1

1 ≠ e≠sNRe≠sK
2ÈNL

[S12]

which simplifies to:

P (ĉ = c) =
Ë

1 ≠ e≠sNRe≠sK
+ –e≠sNRe≠sK

ÈNL
[S13]

This expression approximates to Eq. 2 in the main text:

P (ĉ = c) =
Ë

1 ≠ NLe≠sNRe≠sK
È

[S14]
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Fig. S3. Other measures of estimation error: (a) Total error: L2 norm (or
the root mean square) of the difference between actual and estimated concentrations
for the continuous decoder with compressive binding encoding model. (b) L2 norm of
the difference between actual and estimated concentrations divided by the L2 norm
of the actual concentration.

Similarly, Eq. S6 approximates to

P (Rj = 0|ci = 0) = (1 ≠ s–)(NL≠1) ¥ e≠s–NL = e≠sK , [S15]
and Eq. S9 approximates to

P (ĉi = 1|ci = 0) ¥ e≠sNRe≠sK
. [S16]

A.2. Continuous decoder. For the continuous decoder to give a
unique solution, the number of receptors that respond to the mixture
should be larger than the number of odorants with non-zero con-
centrations (K = –NL). This ensures that the system of equations
is over-determined and can in principle be solved.

Additionally, the number of receptors that do not respond should
be such that the absent odorants can be set to zero. Since every
receptor binds to sNL odorants on average, we need at least 1/s
receptors to cover all the odorants. In general, as the entries of
the sensitivity matrix are statistically distributed, the number of
receptors that do not respond should be larger than “/s for correct
odor estimation, where “ is a small number greater than 1.

Putting this all together, if P (ÑR) is the probability of the
number of receptors with non-zero response, we are interested in
the probability that P (ÑR > K = –NL) ú P (NR ≠ ÑR > (“/s)).
The probability that a receptor responds is:

P (R > 0) = (1 ≠ P (R = 0)) =
!

1 ≠ (1 ≠ s–)NL
"

. [S17]

Taking the number of receptors that respond to be a Poisson variable
with rate

+
ÑR

,
= NR ú P (R > 0), we can estimate the typical

number of receptors that respond. For biologically appropriate
parameters {NL, NR, K, s} ≥ {104, 500, 10, 0.05}, the mean number
of receptors that respond is

+
ÑR

,
≥ 200. The standard deviation isÒ+

ÑR
,

≥ 14. For these values of the mean and variance, we can

approximate the Poisson distribution with a Gaussian P (ÑR) =

N
1

ÑR,


ÑR

2
. Thus,

P (ĉ = c) ≥ P (ÑR > –NL) ú P (NR ≠ ÑR > (“/s))

=

C
1 ≠ �

A
–NL ≠ ÑR

ÑR

BD
�

A
NR ≠ ÑR ≠ “

s
ÑR

B
[S18]

where � is the cumulative distribution function of the standard
normal distribution.

B. Numerical Simulations.

B.1. High noise:. For the high-noise (binary) case, the elements
of the odor vector were chosen to be non-zero withs probability
P (ci > 0) = K/NL. The entries of the sensitivity matrix Sij were
chosen to be non-zero with a probability s, (P (Sij) > 0 = s). The
receptor response was calculated using the binary ‘OR’ function.
The decoded concentration ĉ was estimated using the two steps
described in the main paper. First, the decoded concentration of
any odorant to which an inactive receptor is sensitive, was set to
zero. All remaining concentrations were set to 1.

Fig. S4. Dependence of P (ĉ = c) on NL: P (ĉ = c) plotted as a function
of odor complexity K and sNR at a fixed value of NR = 500. Each panel gives
P (ĉ = c) for different value of the total number of possible odorants NL. The
minimum value of sNR for successful decoding and the optimal value where the
most complex odors can be decoded are both relatively independent of NL.

B.2. Low noise:. For the low noise (continuous) case, the elements
of the odor vector were chosen to be non-zero with probability
P (ci > 0) = K/NL, and the elements of the sensitivity matrix were
chosen to be non-zero with probability s, (P (Sij) > 0 = s). The
values of the non-zero elements in the odor vector were chosen from
a uniform distribution on the interval [0, 1), and for the sensitivity
matrix from a log-uniform distribution between 10≠1 and 101. The
activity of each receptor was determined using Eq. 3 of the main
text (d = 1).

The concentration of any odorant to which an inactive receptor
is sensitive was set to zero. After this elimination, let R̃ be the
vector representing the response of the set of active receptors, c̃ be
the vector representing the concentration of the odorants that have
not been set to zero, and S̃ = {S̃ij} be the ÑR ◊ Ñl sensitivity
submatrix over active receptors R̃ and the remaining odorants c̃.
Then, if ÑR < Ñl (non-invertible case), all decoded concentrations
were set to zero. Otherwise, the decoded concentrations were given
by the vector that minimized the L2 distance ||R̃ ≠ S̃ · c̃||2. The
Levenberg-Marquardt solver with geodesic acceleration from the
GNU GSL library was used to find the minimum.

Multiple trials were run fore each choice of parameters. At the
end of each trial, the L2 norm of the di�erence between actual
and decoded concentration vectors was reported. The trial was
considered a success if this norm was less than a threshold of 0.01.

Simulations were performed in C++. The sensitivity matrix
S and the odorant concentrations were generated from streams
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of (pseudo)random numbers drawn by the Xoroshiro128+ random
number generator. Each stream is seeded with a 264 forward jump
from the seed of the previous stream. The first stream is seeded from
the output of the SplitMix64 generator initialized by current system
time. Random number production as well as vector operation code
were optimized using Intel’s SIMD instruction set.

B.3. Neural network:. To simulate the neural network, we generated
random sparse odor vectors and sensitivity matrices. The elements
of the odor vector were chosen to be non-zero with probability
P (ci > 0) = K/NL, and the elements of the sensitivity matrix were
chosen to be non-zero with probability P (Sij) > 0 = s. The value
of the non-zero elements were chosen from a uniform distribution
on the interval [0, 1). The receptor response was calculated using
a linear response model (d = 0 in Eq. 3). To get the feed forward
connections Ŝji, we first made a matrix S̄ defined as: S̄ji = 1/(Sji)
if Sji is non-zero, and S̄ji = 0 otherwise. The matrix Ŝ was then

chosen as: Ŝji = S̄ji/

3q
i

S̄jiSij

4
. The elements of the recurrent

connectivity matrix were obtained as pjk = ≠
q

i

ŜjiSik.

If more than 5% of the receptors connected to a readout unit cj
were inactive, the decoded concentration ĉj was set to zero. The
feedforward input to the remaining readout units were calculated
as cinit

j = ŜjiRi. The remaining concentrations were computed
as (1 ≠ p̃)≠1cinit, where cinit is the vector representing the total
feedforward input to neurons that have more than 95% of their
receptors active, and p̃ represents the sub-matrix of connection
weights between these neurons.
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