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Abstract:  

Background: Despite being a lifesaving intervention for the most critically ill and circulatory 

compromised patients, veno-arterial extra-corporeal life support (VA-ECLS) is associated with a 

mortality rate of nearly 60%. Understanding how the immune response to VA-ECLS either 

promotes or impedes survival would both enhance risk stratification and uncover new therapeutic 

strategies for these patients. However, conventional enumeration of peripheral blood 

mononuclear cells (PBMCs) and their subsets have failed to identify determinants of outcome 

among these cells.  Methods: Flow cytometry and plasma cytokine measurement was combined 

with single cell RNASeq analysis of PBMCs from patients in circulatory shock being started on 

VA-ECLS to identify clinical, laboratory, and cellular features associated with  72 hour survival. 

Results: Non-surviving patients exhibited higher plasma levels of the tissue aggressive 

inflammatory cytokines IL-1, IL-6, IL-12 and TNF-a. Distribution of cells between conventional 

PBMC subtypes was not predictive of survival. Single cell RNASeq analysis of discriminatory 

markers within each PBMC subtype revealed that the proportion of CD8+ Natural Killer T-cells 

(NKT) that expressed CD52, a known immune-modulator, was associated with improved 

survival. This cell population correlated inversely with IL-6 production.  CD8+/CD52+ NKT cells 

were quantified by flow cytometry in a second, validation cohort. Those patients with a high 

proportion of CD52+ cells among all CD8+ NKT cells had more severe disease relative to the 

low CD52+ group, but nevertheless were nearly 5 time less likely to die in the first 72 hours of 

VA-ECLS (p=0.043 by log rank test). Conclusions: CD8+/CD52+ NKT cells are associated with 

survival in patients undergoing VA-ECLS. Fluidics based scRNASeq can reveal important 

aspects of pathophysiology in complex disease states such as circulatory collapse and VA-ECLS. 

Further studies in animal models will be required to determine if stimulation of CD8+/CD52+ 

NKT cell expansion may be an effective therapeutic strategy in this patient population. 
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Introduction 

Cardiac injury may culminate in circulatory collapse requiring prompt intervention including 

veno-arterial extra-corporeal life support (VA-ECLS). VA-ECLS, also referred to as veno-

arterial extra corporeal membrane oxygenation, represents a lifesaving approach to lung and/or 

heart bypass for critically ill patients. However, patients requiring VA-ECLS have a survival to 

discharge rate of only about 40% (1) - a fact that, while sobering, is not surprising given the dire 

clinical condition of patients requiring VA-ECLS. Mortality while on VA-ECLS is due not only 

to the relentless progression of the underlying disease processes, but also complications of VA-

ECLS itself. These complications include derangement of clotting and the inflammatory 

stimulation produced by the foreign material surfaces and mechanical stresses presented by the 

bypass circuit. Understanding how the immune response in the context of circulatory collapse 

and VA-ECLS either promotes or impedes survival would both enhance risk stratification and 

uncover new therapeutic strategies for these patients. Here we characterized the inflammatory 

milieu of circulatory collapse in terms of cytokine release to identify factors associated with 

survival among these cell-signaling molecules. We then used single cell transcriptomics in an 

effort to identify what cell populations may be key modulators of this inflammatory response as 

it relates to survival.   

Conventional enumeration of peripheral blood mononuclear cells (PBMCs) and their 

subsets have failed to identify determinants of outcome among these cells for this complex 

patient population. Single cell transcriptomic approaches continue to modify and expand our 

understanding of the function and classification of PBMC subsets (2, 3). The degree to which 

these sophisticated approaches will lead to clinically actionable information remains to be 

established (4). To that end, we here took an integrated approach combining plasma cytokine 

quantification, flow cytometry, and single cell transcriptomics to address the challenging 
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question of why some patients survive on VA-ECLS while many do not. We profiled 

approximately 40,000 cells from 38 patients who had undergone VA-ECLS due to 

decompensated heart failure. First, we assigned cells to their canonical PBMC types based on 

RNA expression levels of established surface markers. We then validated these assignments 

using conventional flow cytometry and interrogated each of these subpopulations for survival 

markers across the genome. Finally, we validated our findings in a separate cohort of patients by 

flow cytometry.  

Results  

Clinical characteristics of cohort 

For this study, clinical data and blood samples were obtained prospectively from 38 

patients being started on VA-ECLS due to decompensated heart failure. We analyzed clinical 

and laboratory parameters that were predictive of survival through the first 72 hours of VA-

ECLS in these patients. Consistent with prior literature (5), non-surviving patients exhibited 

more acidosis, higher SOFA score, and worse renal function relative to surviving patients (Table 

1 & Fig 1A). Age was not predictive of survival in this cohort. 

Inflammatory cytokines predictive of mortality 

We quantified the serum levels of 17 cytokines in 38 patients requiring VA-ECLS due to 

decompensated heart failure (supplemental Table S1). After adjustment for multiple 

comparisons, 5 of the 17 were significantly associated with survival (Fig. 1B). Specifically, the 

cytokines IL-1b, IL-4, IL-6, IL-12, and TNAa were all higher in patients who did not survive vs. 

those who survived the first 72 hours of VA-ECLS.  

While it is noteworthy that pro-inflammatory cytokines are a marker of poor outcome in 

these patients, we wanted to gain additional insight into what components of the immune 
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response might be driving these and related components of the inflammatory response. In order 

to determine what cell populations might be responsible for the differential inflammatory 

response between surviving and non-surviving patients, we performed scRNASeq based 

transcriptional profiling of a total of 40,000 peripheral blood mononuclear cells from these 

patients (mean time between sample acquisition and VA-ECLS, ±79 minutes) on the inDrop 

microfluidics encapsulation platform (6). We were interested in identifying whether scRNASeq 

analysis combined with both cytokine levels and flow cytometric data (Fig. 2A) could provide 

additional predictors of—and potentially mechanistic insights into—survival in these patients. 

Cell type assignment 

We assigned cells in our dataset to their respective PBMC subtype based on RNA 

expression of canonical surface markers (supplementary Table S2). Previous work has indicated 

that the expression of genes encoding surface markers is highly correlated to protein levels of 

those surface markers (7). To verify that this was the case in this clinical context of patients 

under extreme physiological stress, we also analyzed these samples by conventional flow 

cytometry (FC). We compared the proportions of cells in the major lymphocyte subtypes as 

defined by the gene expression data vs. direct measurement of surface markers by FC. Cell 

assignments between the two methodologies were highly correlated (Fig. 2B).  

Unsupervised clustering based on genome wide gene expression after data pre-processing 

(see Materials & Methods) revealed minimal clustering by patient ID (Fig. 2C), indicating 

adequate suppression of batch effects. Rather, the cells tended to cluster by major PBMC 

subtypes (Fig. 2D), based on expression of established markers of these cell populations. This 

observation suggests that scRNASeq can capture the major themes of cellular biology even in 

this clinically complex and dynamic setting—provided appropriate steps are taken to account for 

technical dropouts and batch effects.  
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Effect of technical dropout imputation 

Droplet based scRNASeq results in sparse expression data where most genes are not 

detected in any given cell. These “dropouts” are both biological (not all genes are actively being 

expressed by any given cell at any given time), and technical (the droplet based scRNASeq 

method, while very high throughput, will fail to detect some RNA transcripts that are in fact 

present in a cell). To circumvent this shortcoming, technical dropouts were imputed using the 

ALRA algorithm (8). Prior to imputation of technical dropouts, only 54% of cells could be 

unambiguously assigned to a specific PBMC subtype, compared to 81% after imputation. 

However, we wanted to verify that this imputation restored biologically meaningful information 

as opposed to introducing noise into the data. That is, we wanted to be sure this approach turned 

false negatives into true positives, as opposed to turning true negatives into false positives. To 

verify that this was the case, we examined the correlation with our FC data before and after 

imputation. Notably, imputation had no significant effect on either the slope of the regression 

line or the R2 between the proportion of lymphocytes assigned to each subclass by either FC or 

scRNASeq (in fact, both values increased slightly after imputation—supplemental Table S3). 

The fact that the correlation between lymphocyte subset proportions as defined by FC and 

scRNASeq did not deteriorate following imputation suggests that the substantial increase in cell 

assignment achieved by imputation identified the true biological type of these cells as opposed to 

random noise.  

Conventional cell types not predictive of survival 

There was no clear tendency of cells to cluster based on outcome (Fig. 2E), indicating 

that transcriptional events related to survival were obscured by the dimensional reduction 

required to visualize gene expression in this way. We therefore proceeded to compartmentalize 

our analysis according to major PBMC subtypes. We sought to determine whether conventional 
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PBMC classification could predict outcome. Using our gene expression-based cell type 

assignments, we looked for differences in proportions of these cell types in surviving and non-

surviving patients. Although some trends were apparent, none of the observed differences were 

statistically significant after adjustment for multiple comparisons (Fig. 3). This suggested we 

needed to look deeper into each major cell type to try to identify novel sub-populations that may 

relate to survival. 

Biological processes associated with survival 

We identified the set of highly variable genes (Supplemental Data S2) within our dataset 

based on normalized dispersion (9). For each patient, we then quantified the proportion of cells 

of each subtype that expressed each of these genes. For each gene, the proportions among 

surviving patients were compared to the proportions among non-surviving patients using the 

Wilcoxon rank sum test. This allowed us to identify genes within each PBMC subtype that were 

associated with survival (blue bars in Fig. 4A) or non-survival (red bars in Fig. 4A). We 

clustered the genes based on this measure of differential expression, and annotated the resulting 

gene clusters based on their enrichment (10) for Gene Ontology biological process terms (Fig. 

3B, and Supplemental Table S4). Within multiple PBMC subtypes, patients who died exhibited 

higher proportions of cells expressing genes associated with GO terms related to inflammation 

including antigen binding and receptor ligand binding. This suggests a widespread increase in 

inflammatory response across cell types in these non-surviving patients. This is consistent with 

the higher plasma levels of pro-inflammatory cytokines observed in non-surviving patients as 

noted above.  

However, other processes appeared to have more discreet patterns of activation within 

specific cell types. Genes associated with cadherin binding and RAGE receptor binding 

exhibited an inverse relationship between CD8+ naïve T cells compared to CD8+ NKT cells. 
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Non-surviving patients exhibited higher proportions of CD8+ naïve T cells expressing genes 

related to these biological processes at the time of initiation of VA-ECLS, while the inverse was 

true of CD8+ NKT cells. Although the CD8+ naïve T cells constituted a small cell population, 

these cells can proliferate when they encounter their target antigens (11). Similarly, genes related 

to cytokine activity were more strongly upregulated in CD4+ effector cells and natural killer cells 

from non-surviving patients, whereas this trend was either not as strong or reversed in other cell 

types. 

We also examined the expression of genes encoding cytokines themselves (Fig. 4B). We 

again saw widespread upregulation of pro-inflammatory cytokines across most cell types in non-

surviving patients. This signal was particularly strong in CD8+ effector and memory T cells as 

well as natural killer and NKT cells (with the exception of CD4+ NKT cells). 

Novel surface markers associated with survival 

The results of our analysis of plasma cytokine levels as well as gene expression patterns 

in specific PBMC subtypes suggested that surviving and non-surviving patients exhibit different 

inflammatory responses either leading to or in response to circulatory collapse and subsequent 

VA-ECLS. While this may be simply a manifestation of distinct disease processes, we 

hypothesized that there were one or more specific immune cell populations that were 

contributing to this difference in inflammatory response. In an effort to isolate these cells, we 

next focused our differential gene expression analysis on surface markers (Fig. 5A). Two surface 

markers exhibited differential expression with a false discovery rate of 10% or less. These were 

CD52 (overexpressed by CD8+ NKT cells among surviving patients), and CD36 overexpressed 

by CD4+ effector T cells among surviving patients. The CD4+/CD36+ effector cell population 

was very small (0.06% of all cells) compared to the CD8+/CD52+ NKT cells population (5% of 

all cells). The CD8+/CD52+ NKT population was selected for downstream validation. 
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We stratified the patients based on the proportion of their CD8+ NKT cells that were 

CD52+, using the median proportion as the cutoff. This stratification identified patients with 

significantly different mortality risks on VA-ECLS during the first 72 hours of support (Fig. 5B). 

Patients in the low CD8+/CD52+ NKT group were more than 6 times more likely to die in the 

first 72 hours of VA-ECLS compared to the high CD8+/CD52+ NKT group (c2 = 8.1, p=0.0043 

by log rank test). 

The proportion of CD8+ NKT cells in each patient that were positive for CD52 as 

determined by scRNASeq correlated inversely with plasma IL-6 levels (Fig. 5C). As 

CD8+/CD52+ NKT cells were associated with improved survival and lower levels of IL-6, we 

expected that this proportion would also correlate with arterial pH at start of VA-ECLS, and this 

proved to be the case (Fig. 5D). 

Validation of CD8+/CD52+ NKT Cells as predictors of outcome 

The preceding analysis relied on FDR adjustment of p-values to control the family wise 

error rate of our identified survival markers. Based on this measure, there is less than a 10% 

chance that the predictive nature of CD8+/CD52+ NKT cells was due to random noise in the data. 

Nevertheless, it remains possible that this observation represents a biological reality for these 

patients that cannot be generalized to other patients due to either random variation or undetected 

confounding. To evaluate this possibility, we performed flow cytometric analysis of a second 

cohort of 21 patients that were not included in the original scRNASeq analysis. For each patient, 

we quantified the proportion of CD8+ NKT cells that were CD52+ (Fig. 6A). The same gate was 

used across all patients to define the CD52+ cells based on their empiric distribution 

(Supplemental Fig. S1). Using the same cutoff defined in the initial cohort, we stratified these 21 

patients into “High CD52+” and “Low CD52+” based on their CD52 levels in CD8+ NKT cells. 

We compared these two groups in terms of the clinical parameters we analyzed in our initial 
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cohort (Fig. 6B).  Again, while there was no statistically significant difference in the age of these 

two groups, the High CD52+ patients exhibited less acidosis. Intriguingly, the High CD52+ 

patients in this validation cohort had higher SOFA scores at the start of VA-ECLS, and worse 

renal function. But despite these unfavorable clinical characteristics, the High CD52+ group once 

again exhibited improved survival relative to the Low CD52+ group (Fig. 6C) , Patients in the 

low CD8+/CD52+ NKT group were nearly 5 times more likely to die in the first 72 hours of VA-

ECLS compared to the high CD8+/CD52+ NKT group (c2 = 4.1, p=0.043 by log rank test). 

Discussion  

Inflammation has long been identified as a key factor in mortality in critical care populations 

(12). With the development of new biologic agents the opportunities for a more specific 

modulation of the inflammatory response has grown exponentially. As a consequence, intriguing 

opportunities for new treatments targeting details in the inflammatory response opens up. In this 

study, for the first time, we combine flow cytometry, cytokine measurement, and single cell 

RNASeq analysis of PBMCs from patients being put on VA-ECLS due to circulatory collapse in 

the context of acute illness.  

Single cell transcriptomics was developed over 25 years ago (13-15, reviewed in 16), but 

the technology made a quantum advance in terms of throughput in the last several years as a 

result of development of microfluidics based cell encapsulation systems (6, 9, 17). The ability to 

quantify the transcriptomes of thousands of individual cells holds the promise to reveal new 

information about heterogeneous disease states, enabling fine tuning of personalized medicine 

efforts to target specific cell populations (18). This technology holds the promise to uncover new 

information about the pathophysiology of complex disease states in high detail. Initial efforts in 

this direction with human material have focused on cancer (4, 19-21), although examples in other 

diseases are emerging (22, 23) including one example of identification of a PBMC repertoire 
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associated tuberculosis progression (2) and a second related to survival in acute infectious 

disease based on analysis of ~100 cells from 2 patients (3).   

While the promise of the scRNASeq approach is substantial with respect to deeper 

understanding of pathological processes, the extent to which scRNASeq is both feasible and 

informative in the dynamic setting of critical illness remains largely unknown. Our results 

provide evidence that not only can this technology detect biological signal in a heterogeneous 

and rapidly changing clinical context but can do so in a way that reveals deeper understanding of 

physiologic events associated with—and potentially driving—clinical outcomes. 

VA-ECLS is a powerful stimulator of the immune response against a background of 

already tenuous perfusion and end organ function (24). Whether this immune response is 

adaptive or mal-adaptive remains unclear.  On the one hand, immunoparalysis was associated 

with worse outcomes (though not in a statistically significant fashion) in one small series (25). 

Also, the 2006 ARDS Network Trial (26) found worse outcomes when steroids were started late 

in the disease course, and no change in outcomes when they were started earlier (despite short 

term improvements in physiologic measures of ventilation and perfusion). On the other hand, the 

use of steroids has been associated with survival in elderly patients in one registry based review 

(27) as well as dramatic clinical improvement on VA-ECLS in a number of case reports (28-31). 

These contradictory results underscore the need for delineating the inflammatory response in 

these patients in more detail. Furthermore, all of this evidence comes from the setting of acute 

respiratory failure. There is little or no data to inform us about the role of inflammation with 

respect to survival among patients undergoing VA-ECLS for acute decompensated heart failure. 

In this study we show that the complexity of the inflammatory response in patients with 

circulatory collapse can be deconvoluted by means of scRNASeq combined with appropriate 

bioinformatic methods and validation with flow cytometry.  
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We found that higher proportions of CD8+ NKT cells that were CD52+ was associated 

with improved survival.  CD52 has been implicated as an immunomodulatory protein along 

several lines. CD4+CD25+FoxP3 cells suppress T-cell functions through the binding of free 

CD52 of Siglec-10 on CD52- T-cells. Subsequently it was shown that cross linking of 

CD4+/CD52+ T-cells by the 4C8 antibody leads to their expansion and resultant suppression of 

other CD4+ and CD8+ cells. Notably, these cells suppress IL-2 production by other T populations 

upon subsequent stimulation, and prevented lethal graft-versus-host reactions in SCID mice (32, 

33).  While this data all focuses on CD4+/CD52+ T cells, additional data suggests there is a 

subset of CD8+ cells that are protective against autoimmune disease (34), and that these 

protective cells are likewise CD52+ (35).  

In our study the strongest association with survival among CD52+ cells was among CD8+ 

NKT cells and to a lesser degrees CD8+ effector T-cells. The association was confirmed both on 

the mRNA and protein level across two separate cohorts. Since the patients were sampled for 

cells around the time of cannulation, it is unlikely that the CD52+ population is a response to 

VA-ECLS itself. Rather, this population may reflect the degree to which the immune system is 

poised for a pathological vs. adaptive response to the inflammatory stimulation of VA-ECLS. 

Insofar as these cells promote a permissive (rather than reactive) immune state, this observation 

is consistent with the hypothesis that attenuating the immune response to VA-ECLS may be 

beneficial in patients with severe heart failure.  Moreover, the strong negative association of 

these cells to the tissue-aggressive inflammatory marker IL-6—which was itself associated with 

decreased survival—supports the immuno-attenuating effect of these cells.  

Fluidics based scRNASeq enables transcriptomic characterization of individual patient 

cells at high throughput. The resulting data presents specific challenges and pitfalls. However, 

we have demonstrated that these factors can be overcome through appropriate analysis 
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techniques and that this technology allows detection of biologically meaningful signal in these 

cells even in a dynamic and complex clinical setting. We anticipate that future applications of 

this approach will continue to reveal new information about the roles of both known and novel 

cell populations in human disease, and this information will continue to establish new 

biomarkers and therapies to the benefit of our patients. 

Even if our current results do not allow us to determine whether the associations 

identified are cause or effect, they do delineate important pathways and interesting drug targets 

for future interventional studies. Subsequent studies examining the effect of activation of 

CD8+/CD52+ NKT cells via cross linking with 4C8 in animal models of circulatory collapse 

will be an important next step to clinical application of this strategy. 

Materials and Methods 

Patient materials   

This study was approved by our institution’s Institutional Review Board, and all patients 

or their representatives gave informed consent to participate.  All samples and data were 

anonymized prior to the analysis described here.  Plasma albumin, AST, ALT, bilirubin, pH, 

lactate, creatinine, sodium, potassium, magnesium, and glucose were measured in our clinical 

laboratory as part of standard of care evaluation of the patients. 

Approximately 10ml of whole blood from VA-ECLS patients at time of boarding (mean 

difference from pump start time:  ±79 minutes) were collected in EDTA Vacutainers. Peripheral 

blood mononuclear cells (PBMC) were isolated by density centrifugation using Ficoll-Paque 

PLUS (GE Healthcare) and cryopreserved in CryoStor (Sigma-Aldrich) at approximately 4x106 

cells per vial.  

Cytokine Measurement 
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Approximately 10ml of whole blood from ECLS patients at time of boarding (mean 

difference from pump start time: + 79 minutes) were collected in EDTA Vacutainers. Plasma 

was isolated by centrifugation. The concentrations of cytokines in plasma were measured using 

the Bio-Plex Pro™ Human Cytokine 17-plex Assay kit  immunoassay run on the Bio-Plex 

200 (BioRad), with reference to an 8 point standard curve.  

Flow cytometry  

Cryopreserved PBMCs were rapidly thawed at 37ºC, washed in RPMI (10% FBS, 2mM 

L-glutamine, 1:10000 Benzonase), and rested overnight in 200µl of RPMI (10% FBS, 2mM L-

glutamine) in a 96 well plate at a concentration of 1.0x106 cells per well. Prior to surface staining 

non-viable cells were labelled with Fixable Viability Stain 450 (FVS450) and Fc receptors were 

blocked. A multiparameter flow cytometry panel was designed for detection of surface antigens. 

The panel consisted of directly conjugated anti-human antibodies; CD3-BB515, CD4-BUV395, 

CD8-APC-H7, CD19-APC, CD56-APC-R700, and CD16-BV510. CD52 expression was 

measured by CD52-PE-4C8 directly conjugated anti-human antibodies (BD Life Sciences). For 

cell surface markers, cells were stained in PBS supplemented with 2% FBS and 2mM EDTA for 

35 minutes at 4ºC. Stained cells were analyzed on a BD Influx flow cytometer equipped with 

488nm, 355nm, 561nm, 405nm, and 640nm lasers, using a 100µM nozzle, at 20 psi, and an 

offset of 1.0. Gating strategy for major PBMC populations is summarized in Fig. S2. Gating 

strategy for the CD52 analysis in the validation cohort is summarized in supplemental Fig. S1.  

Flow experiments included single-stained controls, fluorescence minus one controls, and well-

characterized healthy control. Acquisition of flow cytometry data was performed using Sortware 

v1.2 and analyzed with FlowJo v10.0.8. 

Single cell encapsulation and reverse transcription 
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At the time of cell encapsulation for single cell RNASeq, cryopreserved PBMCs were 

rapidly thawed at 37ºC, washed in twice in RPMI (10% FBS, 2mM L-glutamine, 1:10000 

Benzonase) and 2x105 cells were resuspended in 1x PBS. To exclude non-viable cells from 

sorting, 3 nM of SYTOX Green (Thermo Fisher Scientific) was added to each sample tube. Cells 

were sorted on a BD Influx flow cytometer using a 100µM nozzle, at 20 psi, and an offset of 1.0. 

The following gating hierarchy was used: PBMCs were separated from debris based on 

distribution of light scatter by SSC/FSC; cell doublets were excluded by signal pulse 

characteristics of FSC-W/FSC-H and SSC-H/SSC-A. Viable cells with intact cell membranes 

were gated as SYTOX Green negative. For each patient sample 20,000 events were sorted 

(51.2ul) directly in 112.8µl of 1xPBS. Prior to InDrop 36ul of optiprep was added to each tube. 

Thawed, sorted and diluted cells were encapsulated along with barcoded beads and 

reverse transcription reagents using the inDrop platform (1CellBio, Watertown, MA).  Flow rates 

were adjusted periodically throughout the experiment, with the help of high speed video 

microscopy, to ensure that the number of droplets containing one bead was maximized while 

minimizing droplets with two or more beads.  Run times were calculated to capture 1500 cells 

per sample.  Each sample was run on a separate, freshly silanized microfluidics device.  Reverse 

transcription was performed following the manufacturer’s protocol.  Briefly, barcoding oligo 

were cleaved by exposing each droplet emulsion aliquot to UV light for 10 minutes. The 

emulsions were then incubated at 50°C for one hour, and then 70°C for 15 minutes.  The 

emulsion was then broken, and the aqueous phase containing the cDNA removed. The cDNA 

was cleaned up with MinElute columns (Qiagen, Hilden, Germany) and excess barcodes 

enzymatically removed.  Second strand synthesis was performed using the NEBNext Ultra II 

second strand synthesis kit (NEB, Ipswich, MA) according to the manufacturer’s protocol. The 

samples were then again cleaned up on MinElute columns, and sample integrity confirmed by 
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Bioanalyzer (Agilent, Santa Clara, CA).  In vitro transcription was then performed using the 

NEB HiScribe High Yield RNA synthesis kit according to the manufacturer’s instructions.  

Sample integrity was again verified by Bioanalyzer. The IVT products were then reverse 

transcribed using random hexamers. Amplification cycles were optimized by diagnostic qPCR, 

and then the samples were amplified using unique PE1/PE2 indexing primers such that samples 

could be pooled prior to sequencing. Amplified cDNA was then cleaned up using AMPure beads 

(Beckman Coulter, Indianapolis, IN).  Library integrity and fragment size was confirmed by 

BioAnalyzer prior to sequencing. 

Data and code availability 

The single cell RNASeq expression data (as a matrix of raw counts) and supporting 

metadata is available from GEO (GSE127221). Code used to perform the analysis and generate 

the figures, with accompanying documentation and explanation including system requirements 

and dependencies, is available from Github at http://github.com/vanandelinstitute/va_ecls. A 

rendered html file providing the analysis details is also provided along with this manuscript as 

Supplmental Data File S3. 

Sequencing 

Prepared libraries were normalized and pooled, and sequenced on a NovaSeq 6000 

sequencer (Illumina, San Diego, CA) using the S2 100 cycle kit. Read one was 36 cycles, the 

index read was 6 cycles, and Read 2 was 50 cycles.  Cells were sequenced to an approximate 

depth of 90,000 reads per cell. Resulting sequencing data was converted to demultiplexed 

FASTQ files prior to downstream analysis. 

Data processing 

The sequencing data was aligned to the human genome (assembly GRCh38) and unique 

feature counts obtained using the software pipeline developed by the inDrop manufacturer 
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(https://github.com/indrops/indrops).  The raw count data was then filtered, normalized, imputed, 

and batch corrected using tools for the R statistical analysis platform.  Full details of the data 

processing and analysis are presented in Supplemental datafile D1, and is also available as an R 

markdown document at https://github.com/vanandelinstitute/va_ecls. 

Statistical analysis 

For differential gene expression analysis, the expression matrix was filtered to include 

only variably expressed genes as described (36).  Briefly, for each gene, the mean was calculated 

across all cells.  The dispersion of (variance / mean) was also calculated for each gene across all 

cells.  The genes were then split into 20 bins based on mean expression.  Within each bin, 

dispersions were converted to robust z-scores (the absolute difference between each dispersion 

and the median dispersion for that bin, divided by the median absolute deviation for that bin).  

Genes with a dispersion z-score > 2.0 were retained for further analysis. 

Given that the single cell RNASeq expression data was a sparse matrix, we compared 

patients in terms of proportions of cells expressing genes of interest.  For any given gene, the 

proportion of cells (of a given subtype of interest) was calculated.  Surviving patient and non-

surviving patients were then compared in terms of median proportion, and difference between 

patient groups was tested by mean of Wilcoxon rank sum analysis of the proportions in each 

group.  Given the large number of genes under analysis, all p-values were adjusted using the 

false discovery rate method (37). 

When comparing proportions of cells in each of the major subtypes between outcome 

groups (Fig. 4A), the same approach was used, but since the number of comparisons was 

relatively small and we wanted to avoid any type I errors (as opposed to simply constraining the 

family wise error rate), p-values were adjusted using the method of Holm.  
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 Survival analysis was performed by plotting Kaplan Meijer curves and comparing the 

curves using the log-rank test.  Given that only 3 survival curves were analyzed, no p-value 

adjustment was performed (although the results would have remained significant even under the 

most stringent adjustment including Bonferroni correction). 

Supplementary Materials 

Tables S1-S5 and Figures S1-S2, and supplemental data files D1 and D2 are provided in 

separated files. 

References: 

1. E. Registry, in International Summary (2020). 

2. Y. Cai et al., Single-cell transcriptomics of blood reveals a natural killer cell subset 

depletion in tuberculosis. EBioMedicine 53, 102686 (2020). 

3. Z. Wang et al., Clonally diverse CD38(+)HLA-DR(+)CD8(+) T cells persist during fatal 

H7N9 disease. Nat Commun 9, 824 (2018). 

4. F. Valdes-Mora et al., Single-Cell Transcriptomics in Cancer Immunobiology: The 

Future of Precision Oncology. Front Immunol 9, 2582 (2018). 

5. A. E. Jones, S. Trzeciak, J. A. Kline, The Sequential Organ Failure Assessment score for 

predicting outcome in patients with severe sepsis and evidence of hypoperfusion at the 

time of emergency department presentation. Crit Care Med 37, 1649-1654 (2009). 

6. A. M. Klein et al., Droplet barcoding for single-cell transcriptomics applied to embryonic 

stem cells. Cell 161, 1187-1201 (2015). 

7. M. Stoeckius et al., Simultaneous epitope and transcriptome measurement in single cells. 

Nat Methods 14, 865-868 (2017). 

8. G. C. Linderman, J. Zhao, Y. Kluger, Zero-preserving imputation of scRNA-seq data 

using low-rank approximation. bioRxiv, https://doi.org/10.1101/397588 (2018). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2020. ; https://doi.org/10.1101/568659doi: bioRxiv preprint 

https://doi.org/10.1101/568659


 
 

19 
 

9. E. Z. Macosko et al., Highly Parallel Genome-wide Expression Profiling of Individual 

Cells Using Nanoliter Droplets. Cell 161, 1202-1214 (2015). 

10. G. Yu, L. G. Wang, Y. Han, Q. Y. He, clusterProfiler: an R package for comparing 

biological themes among gene clusters. OMICS 16, 284-287 (2012). 

11. J. M. Brenchley et al., Expansion of activated human naive T-cells precedes effector 

function. Clin Exp Immunol 130, 432-440 (2002). 

12. M. Talmor, L. Hydo, P. S. Barie, Relationship of systemic inflammatory response 

syndrome to organ dysfunction, length of stay, and mortality in critical surgical illness: 

effect of intensive care unit resuscitation. Arch Surg 134, 81-87 (1999). 

13. C. A. Klein et al., Combined transcriptome and genome analysis of single 

micrometastatic cells. Nature biotechnology 20, 387-392 (2002). 

14. J. Eberwine et al., Analysis of gene expression in single live neurons. Proc Natl Acad Sci 

U S A 89, 3010-3014 (1992). 

15. G. Brady, M. Barbara, N. N. Iscove, Representative in vitro cDNA amplification from 

individual hemopoietic cells and colonies. Methods Mol Cell Biol 2, 17-25 (1990). 

16. B. Hwang, J. H. Lee, D. Bang, Single-cell RNA sequencing technologies and 

bioinformatics pipelines. Exp Mol Med 50, 96 (2018). 

17. D. M. DeLaughter, The Use of the Fluidigm C1 for RNA Expression Analyses of Single 

Cells. Curr Protoc Mol Biol 122, e55 (2018). 

18. A. K. Shalek, M. Benson, Single-cell analyses to tailor treatments. Sci Transl Med 9,  

(2017). 

19. J. Fan et al., Linking transcriptional and genetic tumor heterogeneity through allele 

analysis of single-cell RNA-seq data. Genome research 28, 1217-1227 (2018). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2020. ; https://doi.org/10.1101/568659doi: bioRxiv preprint 

https://doi.org/10.1101/568659


 
 

20 
 

20. L. Wang et al., Integrated single-cell genetic and transcriptional analysis suggests novel 

drivers of chronic lymphocytic leukemia. Genome research 27, 1300-1311 (2017). 

21. R. Sen et al., Single-Cell RNA Sequencing of Glioblastoma Cells. Methods Mol Biol 

1741, 151-170 (2018). 

22. H. Zhang et al., A multitask clustering approach for single-cell RNA-seq analysis in 

Recessive Dystrophic Epidermolysis Bullosa. PLoS Comput Biol 14, e1006053 (2018). 

23. J. C. H. Tsang et al., Integrative single-cell and cell-free plasma RNA transcriptomics 

elucidates placental cellular dynamics. Proc Natl Acad Sci U S A 114, E7786-E7795 

(2017). 

24. J. E. Millar, J. P. Fanning, C. I. McDonald, D. F. McAuley, J. F. Fraser, The 

inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of 

the pathophysiology. Crit Care 20, 387 (2016). 

25. A. G. Beshish et al., The Functional Immune Response of Patients on Extracorporeal Life 

Support. ASAIO J 65, 77-83 (2019). 

26. K. P. Steinberg et al., Efficacy and safety of corticosteroids for persistent acute 

respiratory distress syndrome. The New England journal of medicine 354, 1671-1684 

(2006). 

27. P. Mendiratta et al., Extracorporeal membrane oxygenation for respiratory failure in the 

elderly: a review of the Extracorporeal Life Support Organization registry. ASAIO J 60, 

385-390 (2014). 

28. P. Diana, D. T. Money, M. G. Gelvin, N. Lunardi, Effective and Safe Use of 

Glucocorticosteroids for Rescue of Late ARDS. Case Rep Crit Care 2017, 6740532 

(2017). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2020. ; https://doi.org/10.1101/568659doi: bioRxiv preprint 

https://doi.org/10.1101/568659


 
 

21 
 

29. K. Trager et al., Cytokine Reduction in the Setting of an ARDS-Associated Inflammatory 

Response with Multiple Organ Failure. Case Rep Crit Care 2016, 9852073 (2016). 

30. J. R. Miller et al., Rituximab Induced Pulmonary Edema Managed with Extracorporeal 

Life Support. Case Rep Crit Care 2018, 6039045 (2018). 

31. H. Mahboob, R. Richeson Iii, R. McCain, Zinc Chloride Smoke Inhalation Induced 

Severe Acute Respiratory Distress Syndrome: First Survival in the United States with 

Extended Duration (Five Weeks) Therapy with High Dose Corticosteroids in 

Combination with Lung Protective Ventilation. Case Rep Crit Care 2017, 7952782 

(2017). 

32. J. Masuyama, S. Kaga, S. Kano, S. Minota, A novel costimulation pathway via the 4C8 

antigen for the induction of CD4+ regulatory T cells. J Immunol 169, 3710-3716 (2002). 

33. T. Watanabe et al., CD52 is a novel costimulatory molecule for induction of CD4+ 

regulatory T cells. Clin Immunol 120, 247-259 (2006). 

34. S. Sinha, A. W. Boyden, F. R. Itani, M. P. Crawford, N. J. Karandikar, CD8(+) T-Cells 

as Immune Regulators of Multiple Sclerosis. Front Immunol 6, 619 (2015). 

35. S. von Kutzleben, G. Pryce, G. Giovannoni, D. Baker, Depletion of CD52-positive cells 

inhibits the development of central nervous system autoimmune disease, but deletes an 

immune-tolerance promoting CD8 T-cell population. Implications for secondary 

autoimmunity of alemtuzumab in multiple sclerosis. Immunology 150, 444-455 (2017). 

36. G. X. Zheng et al., Massively parallel digital transcriptional profiling of single cells. Nat 

Commun 8, 14049 (2017). 

37. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful 

approach to multiple testing. J Roy Statist Soc Ser B 57, 1 (1995). 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2020. ; https://doi.org/10.1101/568659doi: bioRxiv preprint 

https://doi.org/10.1101/568659


 
 

22 
 

Acknowledgments: We would like to acknowledge Jennifer Schuitema for overseeing 

recruitment, consent, and collection of blood samples, the ECMO nursing staff for collecting 

blood samples and processing plasma after-hours, and David Chesla and Donald Daley from the 

Spectrum Health Biorepository for sample processing during after-hours. The authors thank the 

Van Andel Genomics Core for providing sequencing facilities and services. Funding: This work 

was made possible by the generosity of the Helen and Richard DeVos foundation. Author 

contributions: EJK and SJ conceptualized and conceived the project. EJK also performed the 

analysis, developed methodology, and wrote the manuscript. MW performed the flow cytometry 

work described in this work, analyzed data, and reviewed and edited the manuscript. HM, and 

EE performed the single cell encapsulation, and reviewed and edited the manuscript. CK assisted 

with patient enrollment and data collection. EG, ML, SF, TB, GM, TT, MD, and PW provided 

clinical resources and supervision for the project and reviewed the manuscript. NMS performed 

analysis of clinical data. SJ also acquired funding, developed methodology, supervised the 

project, and wrote the manuscript. Competing interests: The authors declare no competing 

interests. Data and materials availability: The expression data is available as a matrix of raw 

counts from GEO (GSE127221). Code used to perform the analysis and generate the figures is 

available from Github at http://github.com/vanandelinstitute/va_VA-ECLS.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2020. ; https://doi.org/10.1101/568659doi: bioRxiv preprint 

https://doi.org/10.1101/568659


 
 

23 
 

  Survived   Died     
Variable N Mean ± SD Min - Max   N Mean ± SD Min - Max p-value Test 
Age (yr) 26 60.42 ± 13.33 24 - 82   12 58.08 ± 13.56 34 - 77 0.62 t  

Height (cm) 26 173.4 ± 7.75 155 - 190.25   12 175.74 ± 13.53 147.32 - 
193.02 0.502 t  

Weight (kg) 26 88.66 ± 12.89 70 - 123   12 101.32 ± 22.84 60.8 - 141 0.094 t  
BMI (kg/m^2) 26 29.58 ± 4.5 20.9 - 40.2   12 32.57 ± 5.48 26.7 - 44.5 0.084 t  
Albumin (g/dL) 26 2.66 ± 0.51 1.4 - 3.6   12 2.05 ± 0.45 1.3 - 2.7 0.001 t  
AST (IU/L) 26 369.62 ± 860.21 20 - 4325   12 1554.17 ± 2200 23 - 6858 0.14 Wilc 
ALT (IU/L) 26 308.15 ± 981.43 7-4997   12 707.5 ± 995.32 16 - 2945 0.106 Wilc 
Bilirubin Total (mg/dL) 26 1.2 ± 0.84 0.3 - 3.9   12 1.89 ± 2.83 0.2 - 10.7 0.705 Wilc 
pH Arterial 26 7.34 ± 0.13 7.1 - 7.6   12 7.15 ± 0.14 6.91 - 7.35 <0.001 t  
Lactate (mmol/L) 26 5.62 ± 3.49 1 - 13.5   12 11.84 ± 4.86 2.3 - 19.8 <0.001 t  
Creatinine (mg/dL) 26 1.24 ± 0.36 0.61 - 2.42   12 1.68 ± 0.58 1.1 - 2.91 0.031 Wilc 

MDRD eGFR 
(ml/min/1.73 m^2) 26 63.88 ± 23.38 27 - 130.68   12 42.91 ± 14.36 23 - 64.3 0.007 t  

Sodium (mmol/L) 26 141.96 ± 5.74 122 - 153   12 145.75 ± 7.56 137 - 162 0.344 Wilc 
Potassium (mmol/L) 26 3.75 ± 0.56 2.6 - 5   12 4.28 ± 0.74 3.2 - 5.9 0.021 t  
Magnesium (mg/dL) 26 2.13 ± 0.4 1.5 - 3.2   11 2.43 ± 0.68 1.7 - 3.6 0.198 t  
Glucose (mg/dL) 26 203.19 ± 81.08 82 - 385   12 212.25 ± 95.21 97 - 410 0.764 t  
CVP(RAP) (mmHg) 26 12.58 ± 6.28 0 - 25   11 13.36 ± 6.28 2-21 0.73 t  
MAP Arterial (mmHg) 26 78.54 ± 14.98 50 - 112   12 63.17 ± 12.07 30 - 76 0.004 Wilc 
SVR 17 1317.06 ± 901.84 568 - 3509   2 1036 ± 1047.93 295 - 1777 0.77 t  
SBP Arterial (mmHg) 26 101.31 ± 25.59 65 - 167   11 85.64 ± 24.05 32 - 116 0.189 Wilc 
DBP Arterial (mmHg) 26 71.81 ± 21.89 42 - 154   11 61.27 ± 19.66 29 - 107 0.122 Wilc 
Core Temperature (0C) 26 36.14 ± 0.91 33.8 - 37.6   10 35.94 ± 1.04 34.5 - 37.4 0.671 Wilc 
Inotrope Score 26 18.44 ± 12.49 0 - 55   12 32.9 ± 30.68 4 - 120 0.087 Wilc 
SOFA score 26 10.08 ± 1.52 7-13   11 11.82 ± 2.48 8-16 0.013 t  

Table 1: Clinical characteristics of study participants. “t” = t-test, Wilc=Wilcox test.
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Figure 1: Clinical and laboratory 

characteristics of surviving and non-

surviving patients. (A) Key clinical 

parameters of patients, stratified by 72 hour 

survival (N=38, p-values are for t-tests 

comparing survived and non-survived). (B) 

Plasma cytokine levels exhibiting 

significant differences between surviving 

and non-surviving (72 hour) patients 

(N=36, p-values are for Wilcoxon rank sum 

test adjusted for multiple comparisons by 

method of Holm). 

A 

B 
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Figure 2. Single cell analysis of PBMCs at time of VA-ECLS initiation. (A) Overview of 

study design. (B) Validation of cell type assignment by RNA expression of canonical surface 

markers. Major lymphocyte populations were quantified by both conventional flow cytometry 

and scRNASeq analysis. The proportion of cells in each population (as a proportion of all 

lymphocytes) was compared for each patient between the two modalities. Assignments showed 

good correlation between conventional flow cytometry and scRNASeq (N=38, p-value is for 
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Pearson’s correlation coefficient). (C) Unsupervised clustering by UMAP algorithm of cells, 

colored by patient ID to identify residual batch effects. (N=33,038 cells from 38 patients). (D) As 

in (C), but colored by cell type assigned based on RNA expression of canonical surface markers. 

(E) As in C, but colored by 72 hours survival.  
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Figure 3. Major PBMC subtypes do not predict survival. Proportion of all PBMCs in each 

major PBMC subtype, stratified by 72 hour survival. Colored by cell type, matching those in Fig. 

2D. P-value is for t-test, adjusted for multiple comparisons by method of Holm. 
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Figure 4. Differential gene expression and biological function analysis. Cell-type specific 

differential gene expression. (A) Proportions of cells expressing each highly variable gene was 

compared between surviving and non-surviving patients (72 hour). For each gene, the p-value 

(adjusted using the FDR method) for difference in proportion of cells expressing that gene 

between surviving and non-surviving patients (72 hour) was calculated within each PBMC 

subtype. Genes expressed in more cells from surviving patients than non-surviving patients 

within a given PBMC subtype are colored blue, while genes expressed in more cells from non-

surviving patient are colored blue. The data was then clustered and plotted. The major cluster 

branches were analyzed for GO term enrichment (Biological Function ontology). The top two 

significant GO terms (where applicable) are shown. A complete list of significant GO terms is 

provided in the supplementary materials. (B). As in A, but restricted to cytokines.  

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2020. ; https://doi.org/10.1101/568659doi: bioRxiv preprint 

https://doi.org/10.1101/568659


 
 

29 
 

 

  

Figure 5: Novel cell surface marker 

identification. (A) Differential expression 

analysis of surface markers. Blue spots 

correspond to surface markers expressed 

by more cell from surviving patients than 

non-surviving patients within each cell 

subtype, while red spots correspond to 

surface markers expressed by more cells 

from non-surviving patients. Intensity of 

color corresponds to the negative log of the 

p-value for the test for difference in 

proportions (more intense color = more 

significant). Size of each spot is 

proportional to proportion of all cells of 

each subtype that express that marker. (B) 

72 hour survival curves for patients with 

high vs. low proportion of CD8+ NKT 

cells that express CD52+, using the median 

as the threshold. P-value is for the log-rank 

test between groups. (C). Correlation 

between plasma IL-6 levels and proportion 

of CD8+ NKT cells that are CD52+ for 

each patient (N=36). (D) As in C, but for 

arterial pH (N=38). P-values for C & D are 

for Pearson’s correlation coefficient. 

A 

B 
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Figure 6: Validation of CD8+/CD52+ 

NKT cells as predictor in separate 

cohort. A second cohort of 21 VA-

ECLS patients was studied by mean of 

conventional flow cytometry to validate 

our findings from the initial cohort. (A) 

Representative density plots from non-

surviving (top) and surviving (bottom) 

patient. Left hand panels depict gating 

for CD8+ cells, followed by CD52 level 

in right hand panel. CD52 gate has been 

set based on distribution of CD52 

across all patients (supplemental Fig. 

S2). (B) Key clinical parameters of 

patients, stratified by proportion of 

CD8+ NKT cells that were CD52+, 

using the same threshold as defined in 

first cohort. (N=21, p-values are for t-

tests comparing the two groups.) (C). 

72 hour survival curves for patients 

with high vs. low proportion of CD8+ 

NKT cells that express CD52+, using 

the threshold defined in the initial 

cohort. (N=21, p-value is for the log-

rank test between groups.  
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