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Abstract 

Bacteria generally live in species-rich communities, such as the gut microbiota. Yet, little is              
known about bacterial evolution in natural ecosystems. Here, we followed the long-term            
evolution of commensal Escherichia coli in the mouse gut. We observe the emergence of              
polymorphism for mutation rate, ranging from wild-type levels to 1000-fold higher. By            
combining experiments, whole-genome sequencing and in silico simulations, we identify          
the molecular causes and evolutionary conditions that allow these hypermutators to           
emerge and coexist within a complex microbiota. The hypermutator phenotype is caused            
by mutations in DNA polymerase III, which increase mutation rate by ~1000-fold (a             
mutation in the proofreading subunit) and stabilize hypermutator fitness (mutations in the            
catalytic subunit). The strong mutation rate variation persists for >1000 generations, with            
coexistence between lineages carrying 4 to >600 mutations. This in vivo molecular            
evolution pattern is consistent with deleterious mutations of ~0.01-0.001% fitness effects,           
100 to 1000-fold lower than current in vitro estimates. Despite large numbers of             
deleterious mutations, we identify multiple beneficial mutations that do not reach fixation            
over long periods of time. This indicates that the dynamics of beneficial mutations are not               
shaped by constant positive Darwinian selection but by processes leading to negative            
frequency-dependent or temporally fluctuating selection. Thus, microbial evolution in the          
gut is likely characterized by partial sweeps of beneficial mutations combined with            
hitchhiking of very slightly deleterious mutations, which take a long time to be purged but               
impose a very weak mutational load. These results are consistent with the pattern of              
genetic polymorphism that is emerging from metagenomics studies of the human gut            
microbiota, suggesting that we identified key evolutionary processes shaping the genetic           
composition of this community.  
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Introduction 

Bacteria typically live in multi-species ecosystems [1]. One of such communities is the             
human gut microbiota, which is key for host health and can host up to 10 13 bacteria and                 
hundreds of species. Over the last decade, extensive efforts have gone into characterizing             
the factors (e.g. diet, antibiotics) that shape the species-level composition of this            
ecosystem (e.g. [2–4]). More recently, it has become clear that there can be abundant              
genetic diversity within each species colonizing a given individual [5–8]. Importantly, strain            
level variation is key for multiple phenotypes ranging from antibiotic resistance and            
virulence to colonization resistance (e.g. [9–11]). However, little is known about how            
different evolutionary mechanisms – mutation, recombination, migration, genetic drift and          
natural selection – shape bacterial genetic diversity within the mammalian gut.  
 
Mutation is the raw material for natural selection. The genomic mutation rate of microbes is               
remarkably constant (0.001/generation) [12]. This suggests that it is shaped by general            
evolutionary forces, independent of phylogeny or niche [12,13]. Nevertheless,         
within-species variation for mutation rates can be observed in natural isolates of            
commensal and pathogenic bacteria (typically to increase mutation rate, i.e. mutator           
clones; e.g. [8,14–17]). Based on the known DNA repair mechanisms, mutators of low to              
very high strength (10 to >10000-fold mutation rate increases) could in principle emerge             
and spread [18,19]. However, from the balance between the capacity to adapt            
(adaptability) and robustness at maintaining current fitness (adaptedness), theory predicts          
that mutator clones with a strength of 10 to 200-fold should be the most common (e.g.                
[20,21]). Indeed, when mutator emergence was observed in vitro , very strong effect            
mutators (>300-fold) have not been detected [22–24]. However, in the experiments above,            
a bacterial lineage evolved in the absence of the multitude of biotic interactions that occur               
in natural ecosystems, such as the mammalian gut microbiota. In this ecosystem, biotic             
interactions can rapidly fluctuate [25,26], either due to changes in community composition            
or migration of novel lineages, often caused by community perturbations as dietary            
changes or antibiotic intake [2,3,27]. Such environmental fluctuations are theoretically          
predicted to lead to mutation rate variation [21,28] . Yet, we have limited knowledge of              
within-host mutation rate variation [14–17,29] and its temporal dynamics within a diverse            
multi-species community [8] . 

 
Here, we followed the long-term evolution of a commensal E. coli , when invading the              
complex ecosystem of the mouse gut after a perturbation caused by antibiotic treatment.             
Using an experimental evolution approach, we tracked the evolution of two defined E. coli              
lineages. The real-time evolution in the gut revealed the coexistence of lineages with             
mutation rates ranging from wild-type levels to 1000-fold higher. We determine both the             
molecular causes and the evolutionary conditions that allow such strong mutators to            
emerge and persist within a complex microbiota. At the molecular level, we show that              
mutations in the proofreading (α) and catalytic (ε) subunits of DNA polymerase III cause a               
1000-fold mutation rate increase and improve hypermutator fitness, respectively. At the           
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evolutionary level, we show that the population dynamics of the mutator lineages and their              
pattern of molecular evolution can be explained if deleterious mutations have very weak             
effects, on the order of ~0.01-0.001%. Such effects are 100 to 1000-fold lower than the               
current estimates from mutation accumulation experiments in laboratory environments         
(1-3%) [30,31] and would be unmeasurable by direct competitive fitness assays. Despite            
the large number of deleterious mutations observed in the mutators, we can identify             
multiple beneficial mutations. However, no fixations were detected, neither of specific           
alleles nor of changes at the functional level (gene/operon). This suggests that negative             
frequency-dependent or fluctuating selection shape the trajectories of most beneficial          
mutations (rather than constant positive Darwinian selection). The data reveal that the            
evolution of commensal bacteria within the mammalian gut is consistent with the nearly             
neutral theory of molecular evolution combined with partial hitchhiking events caused by            
the increase in frequency of linked beneficial mutations (i.e. genetic drafts) [32,33]. 
 

Results and Discussion 
Emergence and maintenance of mutation rate variation in a gut commensal strain 
We used a short-course antibiotic treatment (8 days with streptomycin) to induce a             
perturbation of the microbiota and break colonization resistance, which allows us to study             
the evolution of new E. coli strains as they invade and colonize the mouse gut. With this                 
setup, we colonized four mice with two commensal strains of E. coli (marked with two               
fluorescent-markers: YFP and CPF; both streptomycin-resistant) and followed their         
dynamics for 190 days (~3600 generations, assuming 19 generations/day; Fig. 1A)           
[34,35]. Throughout the entire experiment, both strains coexisted in all mice and E. coli              
generally maintained a population size of >10 7 CFU/faeces gram (Fig. S1), i.e. the typical              
size of its ecological niche in this host [36].  
 
As mutation rate is a key evolutionary parameter that can evolve, both in vitro and in vivo ,                 
we screened a sample of clones from each mouse (n~90 per mouse) for potential changes               
in mutation rate (Fig. 1B). In one of the four mice, we detected clones with increased                
mutation rate. To understand the magnitude and dynamics of the mutation rate increase in              
this host, we performed Luria-Delbrück fluctuation assays for several clones sampled at            
days 45, 136, 148 and 190 and measured their mutation rate towards resistance to              
nalidixic acid (n=10 independent growths per clone; Fig. 1C). At day 45 none of the clones                
exhibited a mutation rate significantly different from the ancestral (5x10 -10; 95% confidence            
intervals for all clones overlap with those of the ancestral). However, from day 136              
onwards, mutation rate varied by three orders of magnitude, ranging between 4.7x10 -10            
and 6x10 -7. Similar levels of mutation rate variation were observed at days 148 (range:              
3.1x10 -10 to 2.8x10 -7) and 190 (1.2 x10 -10 to 4.5x10 -7). Thus, non-mutator clones coexisted             
with both strong hypermutators (mutation rates up to 1200-fold higher than the ancestral)             
and with more commonly observed hypermutators (10-100-fold increases in mutation          
rate). This indicates that multiple mutators had emerged either simultaneously or           
sequentially. To the best of our knowledge, these results represent the first observation of              

3 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 5, 2019. ; https://doi.org/10.1101/568709doi: bioRxiv preprint 

https://doi.org/10.1101/568709


Figure 1. Multiple clones with variable mutation rates (up to 1000-fold higher than 
ancestral) emerge and coexist during long-term adaptation to the mouse gut.  
A) Scheme of the experimental design used to follow the long-term adaptation of E. coli to the 
mouse gut. B) Screen for mutation rate variation shows that mutators emerged in mouse 1. 
83-90 clones, isolated from each mouse at day 190 post-colonization, were grown overnight and 
plated in nalidixic acid. The number of resistant colonies obtained for each clone is shown. The 
same procedure was carried for 96 replicates of the ancestral clones. C) Large scale variation 
for mutation rate emerges in mouse 1. Mutation rates (towards nalidixic acid resistance), 
measured through fluctuation tests, for multiple clones randomly isolated at different time points 
from mouse 1. Each point corresponds to one clone. Error bars represent 95% confidence 
intervals of 10 independent growths (non-overlapping bars indicate significant differences). Blue 
and yellow points correspond to clones from the CFP and YFP backgrounds. Coloured areas 
show the corresponding mutator strength (i.e. fold increase in mutation rate, relative to the 
ancestral). 
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spontaneous emergence of 1000-fold mutator clones and of long-term maintenance of           
large scale mutation rate polymorphism (>1000 generations, i.e. >54 days). 
 
These observations raised two main questions: What is the genetic basis for the observed              
mutation rate increase? What are the evolutionary conditions that could allow for the             
emergence of 1000-fold mutators and for the long-term maintenance of mutation rate            
polymorphism? 
 

Mutations in the proofreading and catalytic subunits of DNA polymerase III cause            

hypermutability and improve mutator fitness, respectively 

To determine the cause of the observed mutation rate variation, we carried out             
whole-genome sequencing of 18 clones, 13 mutators and 5 non-mutators, isolated           
between day 136 and 190 post-colonization. All mutator clones shared 45 mutations, none             
of which was present in the isolates that maintained the ancestral mutation rate (Table              
S2). Among these, we identified a single non-synonymous mutation in the gene dnaQ,             
which could increase mutation rate by 1000-fold. dnaQ encodes the proofreading (ε)            
subunit of DNA polymerase III [37], the main DNA polymerase in E. coli . Following their               
divergence, mutators accumulated mutations in several other genes that may affect           
mutation rate (Fig. S2; none of the genes was mutated in the non-mutators; Table S4).               
Strikingly, these included several mutations in two other subunits of DNA polymerase III:             
the catalytic (α) subunit (encoded by dnaE; mutated in 11 clones) [38] and in the θ subunit                 
( holE; two clones) [39]. The α, ε and θ subunits physically interact to form the core of DNA                  
polymerase III (Fig. 2A) [19,40], and non-synonymous mutations in dnaQ were previously            
shown to cause mutation rate increases ranging to >5000-fold [18]. Mutations in dnaE and              
to a smaller extent in holE were also shown to have anti-mutator effects when linked to                
dnaQ mutations [41,42]. This led us to hypothesize that a first mutation in dnaQ raised the                
mutation rate, which was reduced by subsequent mutations in dnaE, thus leading to the              
observed mutation rate polymorphism. To query if the dnaQ mutation caused the            
hypermutator phenotype and if dnaE could act as a modifier, we engineered single and              
double mutants with the dnaQ mutation (L145P; C TC → C C C) and a mutation in dnaE               
(T771S; ACG → TCG) and measured their mutation rate. We generated ~20 clones             
carrying the DnaQL145P allele, as dnaQ hypermutators can exhibit high mutation rate            
variation, possibly due to the rapid emergence of suppressors [42,43]. The dnaQ clones             
indeed showed a very high mutation rate, reaching 3000-fold increases for both nalidixic             
acid and rifampicin (Fig. 2B). The distribution of mutation rate estimates is bimodal, with a               
group of clones showing ~200-fold increase in mutation rate and another showing an             
increase of ~1000-fold (none of the 95% CIs overlap with the ancestral; Table S1). Given               
that we observe mutation rate increases of ~1000x for clones isolated from mice and due               
to the known possibility of suppressors emerging during the engineering process [42], we             
suggest that the actual effect of the dnaQ mutation is to increase mutation rate by ~1000                
fold.  
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In contrast to our hypothesis, the DnaET771S mutation did not cause any significant change              
in the mutation rate, neither on the ancestral nor on the DnaQL145P backgrounds (Fig. 2B               
and Fig. S3). This suggests that the dnaE mutation did not act to decrease mutation rate.                
However, the independent occurrence of different alleles in the α subunit of DNA             
polymerase III (Fig. 2A and Fig. S2) strongly suggests that mutations in dnaE could be               
beneficial. Consistent with this hypothesis, we observed that DnaET771S strongly improves           
growth of the DnaQL145P mutant (Fig. 2C and S4). Remarkably, the DnaQL145P mutation is              
lethal in minimal media with a single carbon source (either glucose or sorbitol). Its null               
fitness can be rescued by complementing the minimal media with amino acids or in LB,               
which allow the DnaQL145P mutant clones to achieve slow but visible growth (Fig. 2C).              
However, the effect of the dnaE mutation is stronger than that of the environment, as it                
allows growth of the double mutants to recover to levels similar to the ancestral              
(non-mutator) clone, across all media. 
 
As mutation rate and spectrum can depend on the environment (e.g. [44]), we sought to               
determine the mutation rate of the dnaQ and dnaQ+dnaE mutant strains in vivo . The              
classical Luria-Delbruck in vitro assay, designed to avoid selection, is inappropriate for            
estimating the mutation rate in the gut. However, we can use Haldane’s mutation-selection             
balance principle to estimate the in vivo mutation rate of these clones. For that, we               
colonized mice with the ancestral, the dnaQ mutant and a double dnaQ+dnaE mutant and              
measured the equilibrium frequency of rifampicin-resistant (RifR) clones (n=3 mice for each            
genetic background). Under mutation-selection balance, the frequency of resistant mutants          
is directly proportional to the mutation rate [45]. Thus, the ratio of the RifR mutation               
frequency in the mutators, relative to the ancestral, provides a direct estimate of mutator              
strength. The mutation frequency of either the single dnaQ mutant or the double             
dnaQ+dnaE mutant is ~1000-fold higher than observed for the ancestral, but not            
significantly different between mutants (Fig. 2D, see also Fig. S5 for comparison between             
mutation frequency in vivo and in an in vitro propagation; linear mixed model with Tukey               
test: clone effect: 𝛘22=31.89, p <0.0001; ancestral vs dnaQ: t=-12.81, df=6 , p <0.0001;           
ancestral vs dnaQ+dnaE: t=-14.94, df=6 , p <0.0001; dnaQ vs dnaQ+dnaE: t=-1.47, df=6 ,           
p =0.37). When comparing the niche size that each strain occupies in the mouse gut, we               
find that the abundance of the dnaQ mutant (10 5-10 6/feces gram) is significantly lower than              
that of the ancestral (10 8/feces gram; linear mixed model with Tukey test: clone effect:              
𝛘 22=10.16, p =0.006; ancestral vs dnaQ: t=-3.74, df=6 , p <=0.022). Remarkably, the fitness           
defect of dnaQ is fully rescued by the dnaE mutation (Fig. 2E), as the bacterial loads for                 
the double mutant are similar to those for the ancestral (>10 8/feces gram; ancestral vs              
dnaQ+dnaE: t=0.23, df=6 , p =0.97; dnaQ vs dnaQ+dnaE: t=-3.51, df=6 , p =0.029). These           
results are similar to those observed in vitro , when the strains grow in different nutrient               
sources. Taken together, our results establish that the dnaQ mutation massively increases            
mutation rate both in vitro and in vivo , albeit at a fitness cost. This cost can be recovered                  
by a beneficial mutation in dnaE, without strong effects on mutation rate. The causes of               
mutation rate polymorphism are likely to be complex, as most mutator clones are mutated              
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Figure 2. Mutations in DNA polymerase III both drive mutation rate increase by 1000-fold 
(DnaQL145P; ε subunit) and rescue fitness of hypermutator clones (DnaET771S; α subunit). 
A) Structure of the core DNA polymerase III (PDB ID: 5M1S), with each subunit in a different 
colour and non-synonymous mutations highlighted in red or black. B) In vitro fluctuation tests 
were carried for the ancestral clone, the single mutant DnaQL145P and the double mutant 
DnaQL145P+DnaET771S and the double mutant (21 and 5 independent clones were tested for 
each mutant, respectively). Each point shows the mutation rate estimate relative to the ancestral 
(in vitro mutator strength) for an independent clone (10 replicates per clone for ancestral and 
double mutant; 5 replicates per clone for DnaQL145P). For ease of visualization, 95% confidence 
intervals are only shown for the ancestral, but none of the 95% CI of either mutant is 
overlapping with those of the ancestral (See Table S1 for mutation rates and 95% CI). C) in vitro 
phenotypic growth capacity of the ancestral clone, the single mutant DnaQL145P and the double 
mutant DnaQL145P+DnaET771S (spot assay; all inocula had the same OD600nm). D-E) In vivo 
dynamics and summary boxplots of the mutation frequency relative to the ancestral (in vivo 
mutator strength; D) and E. coli CFUs per gram of faeces (E). 
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in ≥3 genes that can affect mutation rates (e.g. a single clone can have mutations in dnaQ,                 
dnaE, recF, katE  and sodB; see Fig. S2). 
 
Survival of hypermutators indicates that deleterious mutations are of small effect 
The emergence and long-term maintenance of mutators with a 500-1000x increase in            
mutation rate raises a conundrum: How can such strong mutators avoid a catastrophic             
fitness decline caused by Muller’s ratchet [46,47]? Clonal populations with a genomic            
mutation rate reaching 1 new mutation per generation should quickly accumulate many            
deleterious mutations and should show severe impediments on fixing adaptive mutations           
(given current estimates for the fitness effect of deleterious mutations of 1-3%; [30,31,48]).             
Due to the accumulating mutational load, such strong mutators should continuously           
decrease in fitness ( i.e. Muller’s ratchet), in a potentially inescapable path towards            
extinction [49,50]. To understand under which conditions mutators could avoid this fate, we             
simulated Muller’s ratchet (see methods) under many combinations of the deleterious           
mutation rate ( U d) and the negative effects of mutations ( sd). We started with the simplest               
model of the ratchet, ignoring compensatory or beneficial mutations. We assumed a            
population of size 10 6 (similar to E. coli ’s population size in the gut; Fig. S1) and quantified                 
fitness and the number of accumulated mutations after 1000 and 2000 generations (~55             
and 110 days, similar to the time during which mutator maintenance was observed).  
 
We first consider sd values of 1%, similar to those typically estimated from in vitro mutation                
accumulation experiments with E. coli [30,31]. Under this sd value, the fitness of lineages              
with very high mutation rates ( U d>0.3) declines to <0.5 within 1000 generations. Such             
lineages should therefore be outcompeted by clones with a wild-type mutation rate (whose             
fitness remains unaltered, independently of sd; Fig. 3A and Fig. S6-7). Remarkably, when             
s d≤0.01%, 100-fold smaller than previously assumed, the simulations predict that: 1)           
hundreds of de novo deleterious mutations should accumulate; 2) strong mutators can            
survive for periods of ~100 days. These general predictions are robust to the presence of               
beneficial mutations (see below and [51]). To determine if these expectations are met in              
the evolving lineages, we analyzed the genomes of the 13 mutator and 5 non-mutator              
clones. The mutator and non-mutator clones followed independent evolutionary paths, with           
non-mutators acquiring only 4 to 5 mutations, while mutator clones accumulated between            
164 and 658 mutations (Fig. 3B). Such a large variation in the number of mutations is hard                 
to explain, as shown in simulations where a lineage with a single mutation rate is               
segregating (Fig. 3A and S6-7). Furthermore, with sd values between 0.1% and 1%,             
lineages with ~600 mutations can only be detected after 2000 generations (when U d>0.5),             
and their fitness declines to between <0.01 and 0.3 (Fig. S6-7). Such strong fitness              
declines would require equally strong beneficial mutations for hypermutator maintenance.          
However, the fitness effects of strongly beneficial mutations in the mouse gut have been              
shown to vary between 2 and 12% [35,52], which would be insufficient to maintain              
lineages with 600 mutations. Moreover, if strong enough beneficial mutations were           
available, these would fix very rapidly [53] which is at odds with the observed frequency of                
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beneficial mutations (see below). In contrast, if the effects of deleterious mutations are at              
least two orders of magnitude lower, sd<0.01%, lineages with ~600 mutations are already             
predicted at 1000 generations and their fitness remains >0.94, being very close to the              
fitness of lineages with 200 mutations (always >0.98). Similar results are obtained in             
simulations with a continuous distribution of fitness effects, where s d is exponentially            
distributed (Fig. S8), rather than constant. As expected from these results, in simulations in              
which clones with distinct mutation rates compete, mutation rate polymorphism can only            
be maintained if sd≤0.01%. This result is largely unaffected when including beneficial            
mutations (Fig. S9). 
 
Thus, the theoretical expectations constrained by the experimental observations ( in vivo           
mutation accumulation and long-term maintenance of mutation rate polymorphism; Fig. 1           
and 3), are consistent with sd values much lower than what has been inferred from               
classical in vitro mutation accumulation experiments ( s d~1 to 3%), including the recent            
estimates from single cells ( sd=0.3%) [54]. Such weak effects of deleterious mutations,            
inferred here to explain the dynamics of the mutators in a natural environment, are much               
more consistent with typical estimates of the fitness effect of deleterious mutations            
obtained from analysis of natural polymorphism (e.g. for Drosophila, sd~10 -5 - 10 -4 when             
estimated from natural polymorphism, 100-1000 fold lower than inferred from mutation           
accumulation data; [55,56]). Moreover, despite the gap in knowledge of the causes of             
polymorphism in commensal bacteria [57], its high level indicates that deleterious           
mutations should typically have small effects [58,59]. Remarkably, by analysing          
polymorphism patterns in species of the human gut microbiome (including E. coli ), Garud             
et al. [5] recently estimated sd/μ = 10 5 ( μ - mutation rate per site). This implies a sd ~ 10 -5,                    
which is fully consistent with our results (with μ = 10 -10, as estimated for E. coli from                 
mutation accumulation experiments coupled with whole-genome sequencing; [60]).  
 
Partial selective sweeps structure the high polymorphism of a commensal strain           

evolving in the mouse gut  

Whereas weak effect deleterious mutations can explain the observed molecular evolution           
patterns, they cannot explain mutator invasion. In in vitro evolution experiments, mutators            
have been seen to invade through hitchhiking with beneficial mutations [23,61,62]. Given            
the fitness defect of the dnaQ mutation described above ( in vitro and in vivo ) and that                
beneficial mutations can emerge rapidly during adaptation to the mouse gut [34,35,52,63],            
we propose that hitchhiking is also the most likely route driving the observed increase in               
mutation rate. Thus, we sought to find signatures of adaptation in the mutator clones. First,               
we computed the ratio of non-synonymous to synonymous changes, dN/dS, to detect            
whether there was evidence of either purifying (dN/dS<1) or positive selection (dN/dS>1)            
[64]. Consistent with the above modelling inference, where a large number of very slightly              
deleterious mutations accumulated in the mutators, dN/dS showed a weak signal of            
purifying selection. (dN/dS < 1 in 3/13 clones; P<0.05; Fig. S10). Furthermore, no sign of               
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Figure 3. Strong, intermediate and weak mutators can escape Muller’s ratchet if the effects of deleterious mutations are 
much weaker (<0.01) than current estimates (1%).  
A) Mean fitness and mean number of mutations in Muller’s ratchet simulations with deleterious mutations of fixed effect and a 
clonal population size of 106 (10 simulations). Colour gradient indicates the mean fitness after 1000 generations, which starts at 1 
and declines to different levels, depending on the combination of selection coefficient (sd) and mutation rate (Ud). Numbers in bold 
and inside a box indicate the parameter space for which there is a fit between the observed and the simulated number of mutations 
(see methods). The observed variation in the number of mutations is only possible if sd<10-4 and if there is mutation rate variation. 
B) Mutation accumulation in wild-type and mutator clones shows extremely large variation in the rate of molecular evolution for 
new lineages emerging within the gut microbiota. Phylogenetic tree for 18 clones from mouse 1 and the ancestral, generated from 
whole-genome sequence data. Branch lengths and tip labels indicate the number of accumulated mutations. Tip point colours 
indicate the day post-colonization at which different clones were isolated. 
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positive selection could be found using this statistic (a well-known difficulty for clonal             
populations). 
However, due to the power of our experimental design, where the same colonizing             
lineages evolve independently in genetically identical animals under the same diet, one            
can seek to identify beneficial mutations via mutational parallelism. For this, we isolated             
3-4 clones per mouse (from the remaining 3 mice) at day 190 post-colonization and carried               
out whole-genome sequencing. We then identified genes or operons that had been            
repeatedly mutated across hosts (i.e. parallelism; Fig. S11) as likely targets of natural             
selection. Using this approach, we identified 12 targets, 8 of which were also mutated in               
the mutator clones. Of these, ptsP, frlR and dgoR were mutated in all the mutators ( i.e. in                 
the mutator common ancestor), while 5 other targets were mutated in at least one of the                
mutator clones (Fig. 4).  
 
Most parallel targets in the mutators have a metabolic function and some have been              
previously observed in other mouse gut colonization experiments. Specifically, while ptsP           
is a novel target of adaptation, frlR and dgoR have been previously identified as targets of                
adaptation to the gut of streptomycin-treated immunocompromised or wild-type hosts,          
respectively [34,63]. frlR and dgoR are negative regulators of the frl and dgo operons              
[63,65,66], which are involved in carbon metabolism, namely of fructoselysine and           
galactonate (respectively). ptsP encodes a phosphoenolpyruvate-protein      
phosphotransferase, which is thought to be involved in the response to nitrogen availability             
and to several stresses (e.g. salt, pH) [67–69], both important pressures in the gut [70–72].               
Of these three, dgoR is the most likely candidate for the adaptive mutation with which the                
dnaQ mutator allele could have hitchhiked, since dgoR is mutated in clones from all other               
mice, but only in the mutator clones from mouse 1. Furthermore, dgoR is the main target                
of adaptation when a uropathogenic E. coli colonizes laboratory mice of a different genetic              
background [63]. This strongly suggests that mutations in dgoR are strongly adaptive and             
such adaptation transcends the specific E. coli -mouse strain combinations. Interestingly,          
the mutations targeting dgoR and frlR (in this and in previous studies) often involve IS               
insertions, indels or nonsense mutations. These are likely to lead to loss of function of the                
negative regulators and thus, overexpression of the regulated operons. Such adaptive           
mutations are expected if galactonate and fructoselysine are present in the gut as limiting              
resources for E. coli . This form of adaptation has been previously shown to occur for the                
case of galactitol [73].  
 
After divergence from their common ancestor, the mutators acquired potentially adaptive           
mutations in the cad operon, ycbC , atoC, psuK/fruA and fruB, and tdcA/tdcR . Of these              
targets, mutations in the last two have previously been observed during adaptation of E.              
coli to the gut of immune-competent or immunocompromised mice [34,36]. Many of the             
adaptive targets are functionally important for regulating carbon ( dgoR, frlR, atoC and,            
potentially, the cad operon) [67,74–76] or nitrogen metabolism ( ptsP and tdcA/tdcR )           
[69,77,78], stress resistance ( ptsP, cad operon, ycbC and, potentially, atoC) and           
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peptidoglycan biogenesis ( ycbC ) [67,74–76]. Interestingly, ptsP, atoC and the cad operon           
appear to be involved in regulating both nutritional competence and stress resistance,            
which suggests that such mutations may modulate a potential trade-off between nutritional            
competence and stress resistance, which is well described in in vitro experiments and             
which is also thought to be important in vivo [71,72,79]. Together with dgoR , the cad               
operon is the only other mutational target that occurs in all other mice, but is specific of                 
mutator clones in mouse 1.  
  
As the mutator clones have largely independent evolutionary histories (long terminal           
branches in Fig. 2B), the concept of parallel evolution can also be used to identify adaptive                
targets that were specific to the mutator lineages. However, as the mutation rate is              
extremely high, parallel mutations can occur just by chance. Thus, we used simulations             
and conservative filters to identify genes for which the observed number of            
non-synonymous SNPs is significantly higher than what would be expected if the observed             
mutations were randomly distributed (see methods; [80]). 41 genes could be detected with             
this method, the majority of which are involved in nitrogen or carbon metabolism (Table              
S3), which is in line with the above results. Among these, we found dnaE and cadC , which                 
had been identified as adaptive via direct experiments or through parallelism across hosts,             
suggesting that the method is capable of identifying beneficial mutations. Additionally, one            
of the mutational targets is rho , which has also been detected during adaptation of              
adherent-invasive E. coli  to the mouse gut [81] and appears in a non-mutator clone.  
 
Among the tens of adaptive mutations that we identified, none reached fixation. Indeed,             
even after 190 days of evolution (~3600 generations), no complete sweep could be             
observed, neither of a single mutation (hard sweep) nor of multiple, functionally equivalent,             
lineages (soft sweep). This indicates that most beneficial mutations in this ecosystem are             
only conditionally beneficial. This suggests that a more complex form of selection, such as              
negative frequency-dependent or fluctuating selection, can maintain the observed         
molecular evolution polymorphism. A dominant role for this form of selection is in complete              
agreement with three observations: lack of fixation of adaptive mutations (Fig. 4 and Fig.              
S11), long-term maintenance of polymorphism for mutation rate (Fig. 1) and at a neutral              
locus (YFP/CFP; Fig. S1). As we have previously observed negative frequency-dependent           
selection acting on beneficial mutations in the mouse gut [35], we simulated a population              
with two clones, differing in mutation rate by 1000-fold ( U=1 and U=0.001), whose             
genotypes include a locus that is under negative frequency-dependent selection of           
strength 0.1. These clones also accumulate recurrent deleterious mutations of effect           
sd=0.001%. Under these conditions, the two clones can coexist for at least 1000             
generations at a stable relative frequency of ~50% (Fig. 4D) and with markedly different              
patterns of molecular evolution. Similar to what we observe experimentally (Fig. 4C),            
negative frequency-dependent selection leads to stable coexistence of individuals carrying          
up to 1000 mutations with those carrying just 3 or 4. Importantly, such stable coexistence               
would not be expected if adaptive mutations were unconditionally beneficial (Fig. S9).  

9 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 5, 2019. ; https://doi.org/10.1101/568709doi: bioRxiv preprint 

https://doi.org/10.1101/568709


Figure 4. Multiple adaptive mutations accumulate in mutator and non-mutator clones 
without fixing, highlighting the importance of negative frequency-dependent selection.  
A) Clustering of clones depending on which candidate targets of adaptation are mutated. B) 
Candidate mutational targets of adaptation that are mutated in each clone (different colours 
indicate different alleles). All targets that showed parallelism across mice are included plus dnaE 
and rho, which were identified from parallelism across mutator clones and for which we have 
independent evidence of adaptation. 39 additional targets were identified through parallelism 
across mutator clones (Table S3). C) Number of mutations accumulated per clone. D) Negative 
frequency-dependent selection can maintain stable coexistence between two clones with largely 
different molecular evolution patterns (mutation rate, U, differing by 1000-fold). Within 1000 
generations, the clone with U=1 accumulates up to 1000 mutations, whereas the clone with 
U=0.001 accumulates only up to 3 mutations. Darker tones of blue and grey indicate larger 
numbers of mutations. Simulation parameters: N=106; sd=10-5; strength of negative frequency-
dependent selection: 0.1. 
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Conclusions  

The emergence and temporal dynamics of mutator populations can provide information on            
key evolutionary parameters where direct experimental measures may be difficult to           
obtain. Of key relevance, these can allow the fitness effects of deleterious mutations to be               
inferred [30,31]. Here, we studied the emergence of multiple mutator lineages during            
colonization of the mouse gut, including a hypermutator with up to 1000-fold increase in              
mutation rate. The pattern of molecular evolution is consistent with fitness effects of             
deleterious mutations on the order of ~10 -4 to 10 -5, 100 to 1000-fold lower than the current                
in vitro estimates [30,31]. While this discrepancy may result from technical difficulties in             
measuring selection coefficients below 1% with direct in vitro competitions, it may also             
have a biological basis. The mammalian gut is a complex environment that may temporally              
fluctuate (e.g. variable diet or time of feeding), which could result in temporal variation of               
the effect of deleterious mutations, with a small time-averaged fitness effect. Indeed, we             
show in Fig. 2C that the availability of particular resources might buffer the fitness effects               
of deleterious mutations. Another mechanism for reducing the effects of deleterious           
mutations is revealed by the nature of the adaptive mutations. As previously observed,             
adaptation of E. coli to the mouse gut involved mutations linked to carbohydrate             
metabolism, which were under negative frequency-dependent selection, likely created by          
niche segregation of the different mutants [35,73]. This segregation may reduce           
competition between lineages and therefore buffer the effect of deleterious mutations. This            
weak effect of deleterious mutations may be of relevance for a variety of processes both               
within the gut microbiota (e.g. evolution of antibiotic resistance) and beyond this            
ecosystem (e.g. cancer evolution). As an example, it has recently been shown that tumour              
mutational load can be a predictor of survival for some, but not all, types of cancer. Our                 
work suggests that determining the fitness effect of deleterious mutations may be key to              
understand these differences. 
 
Overall, our work suggests that the evolutionary dynamics of gut commensals may be             
strongly shaped by beneficial mutations, which increase in frequency but do not fix (partial              
sweeps), and slightly deleterious mutations that can segregate for long periods of time.             
The combination of these two effects could allow strains of the same species to coexist,               
within the gut microbiota, for extended periods with complex temporal dynamics. The few             
available data on temporal dynamics of genetic polymorphism in species of human gut             
commensals is starting to confirm this prediction, at least for some species [5–8,59]. As              
genetic diversity can impact community composition [82], more time series data, similar to             
that obtained here, is needed towards a full understanding of the selective mechanisms             
that shape the eco-evolutionary dynamics within the microbiota [83,84]. 
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Methods 

Bacterial strains 

Strains used in this manuscript derive from the commensal Escherichia coli K12, substrain             
MG1655 [85]. These are strains JB19-YFP, JB18-CFP, RR03-YFP and RR04-CFP.          
JB19-YFP and JB18-CFP were previously described in [35] and have the following genetic             
background: galK::YFP/CFP cm R, str R (RpsL K43R), ΔlacIZYA and gatC::+1bp. The latter          
mutation was acquired during the first step of adaptation to the mouse gut, as described in                
[52]. During a second step of adaptation, clones JB18 and JB19 were allowed to adapt to                
the mouse gut for 24 days. One of the evolved clones (21YFP) acquired two further               
adaptive mutations: yjjP/yjjQ::IS2 and yjjY/yjtD ::+4bp. To obtain this clone with either CFP            
or YFP expression, P1 transductions were used to replace the chloramphenicol resistance            
cassette by an ampicillin resistance cassette [86]. This created clones RR03-YFP and            
RR04-CFP, with the genetic background galK::YFP/CFP amp R, str R (RpsL K43R), ΔlacIZYA,          
gatC::+1bp,  yjjP/yjjQ::IS2 and yjjY/yjtD ::+4bp.  
 

Mice 

All experiments were carried using 6 to 8-week old C57BL/6J male mice raised in specific               
pathogen-free conditions.  
 
Ethics statement 

All experiments involving animals were approved by the Institutional Ethics Committee at            
Instituto Gulbenkian de Ciencia (project nr. A009/2010 with approval date 2010/10/15),           
following the Portuguese legislation (PORT 1005/92), which complies with the European           
Directive 86/609/EEC of the European Council. 
 
In vivo experimental evolution 

To simulate a perturbation of the gut microbiota and allow its invasion by E. coli , we                
provided mice with streptomycin-treated water (5g/L) [52,72] for 24h before gavage with E.             
coli and during one-week post-colonization (Fig. 1A). After this period, mice were given             
normal water until day 190 post-colonization. On the day of gavage, food and water were               
removed from the cage for 4 hours. After this period, mice were gavaged with 10 8 E. coli                 
(suspended in 100μl PBS). Four mice were used in this experiment, with two being              
gavaged with a mixture of RR03-YFP and JB18-CFP and the other two with a mixture of                
RR04-CFP and JB19-YFP. Clones RR03/RR04 represented 10% of the cells in the            
inoculum, whereas clones JB18/JB19 represented 90%. These inocula were prepared by           
growing each clone separately in brain heart infusion medium to OD 600nm = 2 (at 37ºC on                
an orbital shaker). After gavage, animals were separated into individual cages and water             
and food was returned to them. At each sampling point, faecal pellets were collected,              
weighed and dissolved in PBS, with the remaining volume being stored at -80ºC in 15%               
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glycerol. Dilutions were made for plating in LB-agar with streptomycin ( 100 µg/ml; or             
streptomycin ( 100 µg/ml ) + ampicillin ( 100 µg/ml) / streptomycin ( 100 µg/ml ) +            
chloramphenicol ( 30 µg/ml)) and plates incubated overnight at 37°C. CFP and YFP            
colonies were then counted on a fluorescent stereoscope (SteREO Lumar, Carl Zeiss) to             
estimate total numbers of E. coli  and the frequency of YFP and CFP clones (Fig. S1).  
 

Mutator screen and fluctuation tests to estimate mutation rate 

Mutator screen (Fig. 1B): Fecal samples isolated from each mouse at day 190             
post-colonization were plated as described above. ~90 clones per mouse were isolated            
and each clone was inoculated into a different well of a 96-well plate with 200 μl of liquid                 
LB. Plates were incubated overnight at 37ºC on a plate shaker (800 rpm). After the               
overnight, all clones were frozen at -80ºC in 15% glycerol. Stored clones were individually              
defrosted into 200 μl LB in a 96-well plate and incubated overnight as described above.              
10μl of each culture were removed to quantify the total number of bacteria by FACS, which                
was generally >10 8 per well (only 10/430 samples were between 10 7 and 10 8). The              
remaining volume was plated in LB-agar plates with nalidixic acid ( 40 µg/ml ) to determine              
the number of resistant mutants that emerged during growth. Plates were incubated as             
described above.  
 
Fluctuation tests to estimate mutation rate (Fig. 1C and 2B): Individual clones, stored at              
-80ºC, were defrosted into PBS, plated and grown overnight at 37ºC. We then picked              
individual colonies to PBS and used FACS to adjust the inoculum size to 2000 cells per                
replicate. Cells were then inoculated into 200 μl of liquid LB and grown in a 96-well plate for                 
20-24h (incubated at 37ºC, 800 rpm in a plate shaker). For some clones this was done in                 
1000 μl of liquid LB with growth in 96-deep well plates. At this time point, 10μl of each                 
culture were removed and used to make dilutions to quantify the total number of cells by                
plating in LB-agar plates. The remaining culture volume (and/or a 10 -1 dilution) was then              
plated in LB plates with rifampicin ( 100 µg/ml ) or nalidixic acid ( 40 µg/ml ) to quantify the                
number of resistant mutants that emerged during growth. All fluctuation tests were            
repeated in two independent blocks. The total number of colonies and the number of              
resistant colonies were then used to estimate mutation rate (and 95% confidence intervals)             
with FALCOR (using the Ma-Sandri-Sarkar maximum likelihood estimator;        
http://www.keshavsingh.org/protocols/FALCOR.html) [87–91]. Significant differences in     
mutation rates between clones were identified from non-overlapping 95% confidence          
intervals. 
 
Whole-genome sequencing and analysis 

Sequencing: 19 clones were sequenced from mouse 1 (where mutators emerged; 18 CFP             
and 1 YFP), 3 from mouse 2, 3 from mouse 3 and 4 from mouse 4. Bacterial clones were                   
defrosted into liquid LB and grown overnight or into PBS, plated in 2-3 LB agar plates and                 
incubated for 24h at 37ºC. After pelleting the cells, we extracted DNA following the              
procedure described in [92]. DNA library construction and sequencing were performed by            
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the IGC genomics facility. Each clone was paired-end sequenced on an Illumina MiSeq             
Benchtop Sequencer. Standard procedures produced data sets of Illumina paired-end 250           
bp read pairs, with mean coverage of 32-fold (19 to 45-fold per clone). The fastq files for                 
all sequenced clones will be deposited at the NCBI SRA.  
 
Variant calling: breseq v0.26 [93], with default parameters, was used to map reads and              
identify mutations, using the E. coli str. K-12 substrain MG1655 genome as reference             
(NCBI accession: NC_000913.2). Mutations were then determined by comparison with          
the ancestrals (JB18, JB19, RR03, RR04, sequenced for [35]). The reads that breseq             
failed to match to the reference genome were assembled into contigs with SPAdes v.3.13              
[94]. All contigs with coverage >3 were then manually annotated via BLAST [95]. All              
annotated contigs matched the cassettes carrying the antibiotic resistance plus the           
fluorescent protein (with a single exception, a likely contaminant), suggesting that           
horizontal gene transfer did not occur during this experiment. 
 
Phylogeny: The phylogenetic tree in Fig. 3B and S10 is a minimal evolution tree [96],               
constructed with the R package ape (v5.2) [97] by using a matrix of the raw mutational                
distance between clones and plotted with the ggtree  package (v1.14) [98,99]. 
 
Parallel mutational targets across non-mutator clones (for Fig. 4B): These were identified            
by finding the mutational targets (genes and operons) that independently acquired           
mutations in more than one non-mutator clone (Fig. S11). As mutations are random and              
only 3 to 8 mutations accumulated in non-mutator clones, it is very unlikely that we would                
find the same gene/operon being independently mutated if such mutations did not carry a              
fitness benefit [100]. Using this strategy, we identified 13 mutational targets that are             
candidates for adaptation, 12 of which were mutated in clones isolated from different mice              
and a single one that acquired independent mutations in two clones isolated from the              
same animal.  
 
Parallel mutations across mutator clones (within mouse 1; for Fig. 4B) : As mutator clones              
have long terminal branches (Fig. 3B), most of the evolutionary history of each clone is               
independent of the others. Thus, the mutations accumulating at these terminal branches            
can be used to identify parallel mutational targets. However, as the mutation rate is up to                
1000-fold higher than non-mutator clones, there is the possibility that some mutational            
targets would accumulate multiple independent mutations just by chance (e.g. longer           
genes have a higher per gene probability to acquire a mutation). Thus, here we used a                
statistical approach to identify which genes accumulated more SNPs (at the terminal            
branches) across independent clones than would be expected by chance. We focused on             
SNPs because these are the large majority of the observed mutations (Fig. S10) and on               
genes because these are straightforward to define at both the sequence and functional             
levels. The statistical approach we used is similar to the one in [80]. Briefly, we first                
simulated 100 datasets in which we randomly distributed the 3245 independent SNPs            

13 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 5, 2019. ; https://doi.org/10.1101/568709doi: bioRxiv preprint 

https://doi.org/10.1101/568709


(synonymous, non-synonymous and intergenic) that we identified in the mutators. This           
randomization process was done taking into account the observed number of each specific             
substitution ( i.e. if it is A →T or G →C, etc). From these simulations, we kept the                 
non-synonymous mutations and calculated a G score for each gene in each simulation.             
This involved first calculating the expected number of mutations (Ei ), as: 
 

(L /L )Ei = Ntot i tot   
 
where N tot represents the total number of non-synonymous SNPs (per simulation), L i is the              
length of gene i and L tot is the total size of the coding genome. The G score for gene i can                     
then be calculated as: 
 

N  log  (N /E )Gi = 2 i e i i   
 
where N i is the number of non-synonymous SNPs at gene i. When N i =0, we set Gi=0.                
Using the same approach, we calculated G scores for the observed mutations at each of               
the mutated genes. We could then calculate a Z score for each gene i at which mutations                 
were observed: , where Gi, obs and Gi, sim are the G  stdev  Zi =  G  G(  

i, obs −  i, sim) / G( i, sim)           

score for the observed mutations and the simulations at gene i , respectively (overbar and              
stdev indicate mean and standard deviation). The Zi scores were then used to calculate              
Benjamini-Hochberg corrected p-values. Furthermore, we applied two additional        
conservative criteria: 1) we divided the observed N i and N tot by 2 before estimating Gi, obs.                
This takes into account that mutation rates can vary along the genome, in general by               
2-fold [101–103]. Dividing N i and N tot by 2 aims to control for the possibility that significant                
genes are in regions where mutation rate is highest. 2) We included only genes that were                
mutated in at least 3 independent clones, as this leads to a similar probability of a mutation                 
being parallel as for non-mutator clones, where two independent mutations are considered            
( i.e. for non-mutator: U 2 = (5x10 -10) 2=2.5x10 -19; for mutator: U 3 = (5x10 -7) 3=1.25x10-19). This            
analysis led to the identification of the parallel mutational targets described in Table S3. 
 

dN/dS estimates: As above, we used the mutations at the terminal branches to estimate              
dN/dS for each mutator clone, by taking the ratio of the non-synonymous to synonymous              
SNPs. Given that the probability of a SNP to be non-synonymous is not uniform across the                
different types of substitutions, we also estimated the expected dN/dS, given the observed             
mutational spectra of each clone (using a similar approach to the described in [104]).              
dN/dS values, shown in Fig. S10, are normalized by the expected value and p -values are               
obtained with a binomial test. 
 

DNA polymerase III structure (Fig. 2A): obtained from rcsb.org (PDB ID: 5M1S) [40,105]             
and edited with PyMOL to display mutations [106]. 
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Allelic reconstructions 

The mutations DnaQL145P (C TC→C C C) and DnaET771S ( ACG→TCG) were constructed by          
pORTMAGE recombineering [107] in the ancestral (RR04-CFP) background, with the          
pORTMAGE-3 plasmid (carrying the kanamycin resistance cassette; oligomers are listed          
in Table S5). The double mutant was constructed with the same method, by inserting the               
DnaQL145P mutation in the dnaE background. The presence of the desired mutations was             
confirmed by PCR and Sanger sequencing, after which we grew each clone in LB to lose                
the pORTMAGE plasmid (this was confirmed by streaking the clones in LB-agar plates             
with or without kanamycin, 100 µg/ml). 
 
In vivo  and in vitro mutation frequency temporal dynamics 

To measure the in vivo mutation frequency (Fig. 2D-E), we inoculated different mice with              
one of three different clones: Ancestral (RR04), a DnaQL145P single mutant ( dnaQ;            
randomly chosen from the clones with highest mutation rate) and a DnaQL145P + DnaET771S              
double mutant (dnaQ; chosen as for single dnaQ clone). All clones carry the CFP marker.  
Mice were provided with streptomycin-treated water (5 g/L) for 7 days before gavage with              
E. coli . 4 hours before gavage, food and water were removed from the cages. After               
gavage, animals were separated into individual cages and food and normal water (without             
streptomycin) was returned to them. To prepare the inoculum for these experiments, we             
defrosted each clone into PBS and plated in LB agar plates. After overnight incubation at               
37ºC, colonies were scrapped into PBS and OD 600nm adjusted to 2. 100 μl of this               
suspension was then used to inoculate each mouse ( i.e. 10 8 E. coli ). Independent replicate              
inocula were used to colonize independent mice. This procedure for preparing the inocula             
is different from the above because we wanted to minimize the strength of selection for               
compensatory mutations, which might reduce the mutation rate and/or the growth effects            
of the mutations (growth in liquid media, where competition is global, is known to lead to                
more rapid adaptation than in solid media, where competition is local; [108]). Faecal             
samples were then obtained at 6h and every 24h after gavage for 4 days and suspended                
in PBS. These were directly plated in LB-agar plates with streptomycin and rifampicin to              
quantify the number of de novo rifampicin resistant mutants and dilutions were made to              
plate in LB-agar plates with streptomycin to quantify the total number of E. coli (all clones                
are streptomycin-resistant). These two numbers were then used to estimate the           
equilibrium mutation frequency, which is proportional to mutation rate (as described in the             
results section). 
 
As we had estimated mutation rate in vitro with fluctuation tests, we carried a control               
experiment to understand if the equilibrium mutation frequency was similar between the in             
vitro and in vivo conditions. For this, we prepared the inocula of the three different clones                
as described above, but started cultures with 10 6 E. coli in 3 ml liquid LB (in 15ml tubes).                  
Cultures were incubated for 24h at 37ºC in an orbital shaker. Every 24h, cultures were               
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diluted 1000-fold and allowed to grow until saturation (population size ~ 3 to 5x10 9; 10               
generations per day). This procedure was repeated for 4 passages. Every day, the cells              
were plated as described for the in vivo experiment. The results of this experiment showed               
that the mutation frequency for all mutants was similar between the in vitro and the in vivo                 
conditions (Fig. S5). 
 
We used linear mixed models to analyze temporal of mutation frequency and bacterial             
density, with replicate as a random effect. If needed, data were transformed to meet              
assumptions made by parametric statistics.  
 
In vitro growth assays in different media 

Bacteria were defrosted into 150 μ l of liquid LB, grown overnight in a 96-well plate and               
incubated at 37ºC in a plate shaker (at 800 rpm). OD 600nm was then adjusted to 0.01,                
cultures diluted 1:100 and 5 μ l spotted in agar plates and incubated at 37ºC for 48h. After                
incubation, growth of each clone was imaged on a fluorescent stereoscope (SteREO            
Lumar, Carl Zeiss). The same inocula were tested across all media. The media used were               
LB and M9 minimal media with: 0.4% glucose, 0.4% sorbitol and 0.4% glucose plus the 20                
proteinogenic amino acids (each at 0.05 mM) (Fig. 2C). 
 
Statistical analysis 

All analysis were performed in R, version 3.5.1 [109], using the statistical methods             
described in the above sections.  

 

Simulations of Muller's ratchet  

All simulations were run in Mathematica [110]. The annotated simulation code will be             
made available in an online depository.  
Simulations of Muller's ratchet with fixed effects of deleterious mutations were           
implemented similar to those in [49]. Beginning with a mutation-free population of 10 6             
individuals, each generation mutations were drawn from a Poisson distribution with           
parameter μ (mutation rate). The fitness of each individual was computed as w i =(1-sd)i ,             
where i is the number of mutations carried, and sd>0 is the deleterious selection              
coefficient. The next generation of the population was obtained by sampling 10 6 individuals             
from the current population according to probabilities weighed by the individuals' absolute            
fitness. After 1000 and 2000 generations, respectively, we recorded the minimum number            
of mutations accumulated within the population ( i.e., number of mutations in the            
least-loaded class), the mean and standard deviation of the number of mutations carried             
across the whole population, and the mean and standard deviation of fitness within the              
population.  
 
For simulations with a continuous distribution of fitness effects (Fig. S8), upon mutation, an              
individual fitness effect per mutation was drawn from an exponential distribution with            
parameter 1/s d. To consider beneficial mutations, a fraction f of these mutations were             
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randomly chosen and their selection coefficient multiplied with -1, rendering them           
beneficial.  
For a given combination of U d and sd, we considered that the number of mutations in the                 
simulations fitted those in the experiments if the number of observed mutations for any              
clone was contained within the mean±standard deviation of any simulation (Fig. 3A and             
Fig. S6-8). 
 
For simulations of two subpopulations with different mutation rates (Fig. S9), a marker             
locus was implemented that determines the mutation rate within the subpopulation built by             
its carriers. The number of individuals of subpopulation 1 in the next generation             N 1 (t )+ 1  
was sampled from a binomial distribution with parameters N=10 6 and ,           (t )p 1 + 1 = W 1

(W +W )1 2
 

where Wk is the total fitness of subpopulation k at generation t ( i.e. the sum of all current                  
individual fitnesses in this subpopulation). The number of individuals in subpopulation 2            
was then determined as .(t ) (t )N 2 + 1 = N − N 1 + 1   
 
Finally, for simulations with negative frequency-dependent selection (Fig. 4D), the number           
of individuals of subpopulation 1 in the next generation was sampled from a         N 1 (t )+ 1      
binomial distribution with parameters N=106 and 

 , where sfreq=0.1. (t )p 1 + 1 =
(1+s (1−p (t))) Wfreq 1 1

((1+s (1−p (t))) W + (1+s  p (t)) W )f req 1 1 f req 1 2
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Figure S1 - Temporal dynamics of E. coli densities and frequency of two clones over 190 days 
(A) and colony size variation at day 190 (B). Mouse 1 is where mutators emerged. Clones used 
to colonize mice 1 and 2: YFP, gatC::+C (yellow); CFP, gatC::+C, yjjP/yjjQ::IS2, yjjY/yjtD::+TTAT 
(blue). Clones used to colonize mice 3 and 4 have the same genotype, but the markers are 
swapped. Specifically, mice3 and 4 were colonized with: CFP, gatC::+C (blue); YFP, gatC::+C, 
yjjP/yjjQ::IS2, yjjY/yjtD::+TTAT (yellow).
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Figure S2 - Mutators accumulate multiple mutations in genes that can affect mutation rate. 
Each row represents a clone and points with different colors represent different alleles. Genes 
were identified from Ecocyc (by looking at genes involved in DNA repair and replication) [111] 
and from [41,112–115].  
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Figure S3 - In vitro mutator strengths, estimated from fluctuation tests, for the Anc, DnaQL145P, 
DnaET771S, DnaQL145P+DnaET771S. Data for Anc, DnaQL145P and DnaQL145P+DnaET771S are the 
same as in Fig. 2B. These are repeated here to enable visual comparison. For ease of 
visualization, 95% confidence intervals are only shown for the ancestral and DnaET771S, but 
none of the 95% CI of the  DnaQL145P or the  DnaQL145P+DnaET771S mutants overlap with either 
the ancestral or the DnaET771S mutant (See Table S1 for mutation rates and 95% CI).
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Figure S4 - In vitro growth capacity of additional independent clones of the mutants 
DnaQL145P and DnaQL145P+DnaET771S. Spot assay in M9 minimal media with 0.4% 
glucose (Glu 0.4%), 0.4% sorbitol (Sor 0.4%); 0.4% glucose plus the 20 proteinogenic 
amino acids (each at 0.05 mM; AA+Glu 0.4%) or LB.
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Figure S5 - Mutation frequency has similar dynamics in vitro and in vivo. Top: Temporal 
dynamics for the frequency of rifampicin-resistant mutants during an in vitro propagation in 
LB (left) and in vivo colonization of the mouse gut (right) with the Ancestral, DnaQL145P 
mutant and DnaQL145P+DnaET771S double mutant. Bottom: Boxplots showing the pooled data 
points across all time points (colors represent different clones and shapes represent different 
replicates). Using a linear mixed model (with replicate as random effect), we find that there is 
no significant effect of either the interaction between clone and experiment (!2

2=0.60, 
p=0.74) or of experiment (!2

1=0.29, p=0.59), with the clone being the only significant effect 
(!2

1=42.06, p<0.0001).
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Figure S6 - Mean fitness in Muller’s ratchet simulations with deleterious mutations of fixed effect 
and a clonal population size of 106 (n=10 simulations). Colour gradient indicates the mean 
absolute fitness at 1000 and 2000 generations. For each simulation, the mean fitness of the 
population, at 1000 and 2000 generations, was calculated. The numbers inside each square (i.e. 
selection coefficient/mutation rate combination) indicate the minimum (top) and maximum 
(bottom) mean fitness that was observed across the 10 simulations.
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Figure S7 - Mean number of mutations in Muller’s ratchet simulations with deleterious 
mutations of fixed effect and a clonal population size of 106 (n=10 simulations). Colour gradient 
indicates the mean number of mutations at 1000 and 2000 generations. For each simulation, 
the mean number of mutations of the population, at 1000 and 2000 generations, was calculated. 
The numbers inside each square (i.e. selection coefficient/mutation rate combination) indicate 
the minimum (top) and maximum (bottom) mean number of mutations that was observed across 
the 10 simulations.
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Figure S8 - Weak effects of deleterious mutations (sd) are necessary for strong mutators to 
escape Muller’s ratchet, independently of whether sd is fixed or exponentially distributed. 
Mean fitness and mean number of mutations in Muller’s ratchet simulations with deleterious 
mutations of fixed (left) or exponentially distributed effect (right). Colour gradient indicates the 
mean absolute fitness after 1000 (top) and 2000 generations (bottom) for different 
combinations of sd and mutation rate (Ud). Numbers in bold indicate the parameter space for 
which there is a fit between the observed (Fig. 2B) and the simulated number of mutations. 
The observed variation in the number of mutations is only possible if sd<10-4 and if there is 
mutation rate variation. Population size = 106. Fixed sd: averages of n=10 simulations; 
Exponentially distributed sd: n=1 simulation. 
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Figure S9 - Weak effects of deleterious mutations allow 1000-fold mutators to coexist with 
clones with lower mutation rates and this is largely independent of the presence of beneficial 
mutations. Frequency of a clone with U = 1 (1000-fold mutator), when in competition with a 
clone with U = 0.001 (wild-type mutation rate; left) or a clone with U = 0.1 (100-fold mutator; 
right), either in the absence of beneficial mutations (fb = 0; top) or with a 10% fraction of 
beneficial mutations (fb = 0.1; bottom) and with different selection coefficients (population 
size of 106; n=1 simulation per parameter combination). Simulations involve competing pairs 
of clones with different mutation rates, each starting at 0.5 frequency. Beneficial and 
deleterious mutations are drawn from a symmetrical exponential distribution and thus the 
mean fitness effect of beneficial and deleterious mutations is the same, with only the fraction 
of beneficials changing. Mutators coexist for 50, 450-650 or 1000 generations for sd values 
of 0.01, 0.0001 or 0.00001, respectively.
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Figure S10 - Molecular phenotypes of mutator clones. A) Phylogenetic tree for the mutator 
clones sequenced from mouse 1. B) dN/dS with colours highlighting whether this is 
significantly different from neutral expectation, C) mutational spectra. Mutations accumulated 
at the tips were chosen for this analysis as a way to avoid counting the same mutation 
multiple times.
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Figure S11 - Mutations observed across non-mutator clones isolated from the four different 
mice (3 to 6 clones per mouse). Circles represent genomes, different coloured circles 
represent different mice (orange - mouse 1, blue - mouse 2, yellow - mouse 3, green - mouse 
4). Grey rectangles highlight mutations that were parallel across different mice (gene labels in 
black) or for which multiple alleles were found within the same mouse (gene labels in grey). 
Small rectangles crossing a particular circle indicate mutations, with colours representing 
different mutation types. Note that for the figures in the main text, we always show 5 non-
mutator clones from mouse 1 and there are 6 in this figure. This is because we sequenced 
one clone at day 190 from the YFP background. As this is not genetically related to the 
ancestral from which the mutators emerged, we do not show this clone in the main figures.
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