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ABSTRACT 31 
 32 
Psychosocial environments impact normative behavioral development in children, increasing the 33 
risk of problem behaviors and psychiatric disorders across the lifespan. Converging evidence 34 
demonstrates early normative development is affected by the gut microbiome, which itself can be 35 
altered by early psychosocial environments. Nevertheless, these relationships are poorly 36 
understood in childhood, particularly beyond peri- and postnatal microbial colonization. To 37 
determine the gut microbiome’s role in the associations between childhood adversity and 38 
behavioral development, we conducted a metagenomic investigation among cross-sectional 39 
sample of early school-aged children with a range of adverse experiences and caregiver stressors 40 
and relationships. Our results indicate that the taxonomic and functional composition of the gut 41 
microbiome links to behavioral dysregulation during a critical period of child development. 42 
Furthermore, our analysis reveals that both socioeconomic risk exposure and child behaviors 43 
associate with the relative abundances of specific taxa (e.g., Bacteroides and Bifidobacterium 44 
species) as well as functional modules encoded in their genomes (e.g., monoamine metabolism) 45 
that have been linked to cognition and health. We also identified heretofore novel linkages 46 
between gut microbiota, their functions, and behavior. These findings hold important 47 
translational implications for developmental psychology and microbiome sciences alike, as they 48 
suggest that caregiver behavior might mitigate the impact of socioeconomic risk on the 49 
microbiome and modify the relationship between subclinical symptoms of behavioral 50 
dysregulation and the gut microbiome in early school-aged children.  51 
 52 
INTRODUCTION 53 
 54 

Childhood is a formative period of behavioral development that can influence the 55 
trajectory of psychiatric disorders and problem behaviors across the lifespan (1). Research has 56 
recently clarified the profound impact that a child’s economic, social, and caregiving 57 
environment plays in determining such outcomes (2, 3). For example, exposure to environmental 58 
risks early in life, such as growing up under low socioeconomic status (e.g., low income to needs 59 
ratio) or experiencing high family disruption and turmoil, can increase the risk for children to 60 
develop psychiatric disorders and associated problem behaviors (4). Caregivers, however, are 61 
one of the most proximal influences on and predictors of child wellbeing, and can modify how 62 
socioeconomic risk environments impact the child’s neurobiological and behavioral development 63 
(5). Across species, caregivers serve to protect their offsprings’ developing biology from 64 
environmental stressors and modify childhood behavioral response to adverse economic and 65 
social environments (3). Responsive and predictable caregiver behaviors are linked to improved 66 
child outcomes (6). Conversely, negative caregiver behaviors, such as perceived parental stress 67 
or disrupted parent-child relationships, can leave children more vulnerable to biological 68 
perturbations and behavioral dysregulation problems (7). Identifying early risk factors or 69 
correlates of childhood behavioral dysregulation is particularly important given that childhood is 70 
a time when mental health symptoms begin to emerge. 71 

Ongoing research is focusing on understanding the underlying mechanisms by which 72 
adverse environments and caregiving behaviors (both positive and negative) influence a child’s 73 
behavioral development. Such research demonstrates that these factors can alter the 74 
developmental trajectory of central, autonomic and peripheral nervous systems function (8). 75 
These efforts have helped to influence not only the design of subsequent interventions (9), but 76 
also policy and practice (10).  77 
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Similarly, emerging research indicates that the gut microbiome may play a critical role in 78 
determining how a child’s environment ultimately impacts both their neurobiological function 79 
and mental health outcomes (11). The gut microbiome (hereafter “microbiome”) is the 80 
community of microbes that reside within the gastrointestinal tract and may be a key, yet 81 
relatively under-studied driver of neurobiological and behavioral development. Animal 82 
experiments demonstrate that the microbiome communicates with the central nervous system to 83 
influence social, explorative, and affective behavior through several pathways, including 84 
neuroendocrine and immune system coordination, vagal nerve stimulation, and neurotransmitter 85 
metabolism [see (12) for review of mechanisms]. These successional dynamics of the 86 
microbiome’s colonization are increasingly understood to interact with and shape the trajectory 87 
of neurobiological development (13). However, limited research has investigated the 88 
microbiome’s relationship to behavioral dysregulation and to key environments influences such 89 
as socioeconomic risk and caregiver behaviors during childhood (14–16). 90 

Although we understand substantially less about the microbiome’s relationship with 91 
behavioral dysregulation early in life in humans, recent work links the composition of the 92 
microbiome to infant and toddler behaviors, such as surgency/extroversion, fear (15), and 93 
cognitive development (16). In addition, preliminary evidence from human studies of autism 94 
spectrum disorder suggests that the microbiome continues to play an active role in behavioral 95 
development following the first few years of initial gut colonization (17). It remains unclear if 96 
the microbiome associates with other forms of behavioral dysregulation and if it links to the 97 
onset of psychiatric disorders and problem behaviors. Understanding the link between the gut 98 
microbiome and subclinical behavioral dysregulation is particularly important given that 99 
normative behavior and behavioral disruptions develop throughout childhood, and that this 100 
period of development offers opportunities to intervene and treat disorders as they emerge.  101 

Extensive evidence points to the microbiome’s sensitivity to psychosocial environments 102 
(18). Socioeconomic risk as well as caregiving behaviors during the initial programming of the 103 
microbiome can lead to long term changes in the microbiome and symptoms of behavioral 104 
dysregulation. For example, rodent pups that experienced an early life stressor of low resources, 105 
a model designed to mimic low socioeconomic status (SES), exhibited altered microbial 106 
compositions, increased intestinal permeability, and increased anxiety-like behaviors in 107 
adulthood relative to controls (19). Similarly, human adults from lower SES backgrounds 108 
exhibited lower microbial diversity (20).  109 

Ample evidence suggests that caregiver behaviors influence the development of the 110 
microbiome and may modify how adverse environments impact the microbiome and subsequent 111 
childhood outcomes. In both humans and primates, prenatal physiological stress and a negative 112 
mother-infant relationship appear to reduce the level of Bifidobacteria and Lactobacilli in the 113 
infant’s microbiome (21, 22). Similarly, rodent pups exposed to repeated, prolonged maternal 114 
separation experience altered gut microbial profiles and increased intestinal permeability 115 
following social stressors in adulthood (23). The role of socioeconomic risk and caregiver 116 
behaviors on the developing microbiome remains notably understudied, and it is unclear if these 117 
relationships remain beyond the first few years of life. 118 

Based on this prior research, we undertook an investigation of the microbiome’s link to 119 
socioeconomic risk, caregiving behaviors (both positive and negative), and child behavioral 120 
dysregulation. The goal of this study was to determine if and how the microbiome relates to 121 
environmental factors and behavioral dysregulation symptoms in early school-age children (4-7 122 
years old; See Supplemental Table 1 for all sample metadata). Most studies of the microbiome’s 123 
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relationship with behavioral dysregulation leverage 16S rRNA gene sequencing to determine 124 
how the taxonomic composition of the microbiome relates to environmental factors or behavioral 125 
problems and/or mental health outcomes in other populations (16). While this technique offers 126 
powerful insight into the kinds of taxa that constitute the microbiome, it offers no direct 127 
information about the functional mechanisms that they may utilize to respond to environmental 128 
factors or physiology.  129 

In contrast, the approach employed in the present study, a technique known as shotgun 130 
metagenomics (24), alternatively involves simultaneously sequencing the genomes of taxa that 131 
compose the microbiome. In so doing, it offers insight not only into who resides in the gut, but 132 
also clarifies which functional pathways are encoded in their genomes. We generated shotgun 133 
metagenomic data from a cohort of children and determined how both the microbial taxa and the 134 
specific genetic functions they encode associate with subclinical child behavioral dysregulation 135 
symptoms (hereafter “behavioral dysregulation”), socioeconomic risk, and caregiver behaviors. 136 
We first tested if concurrent socioeconomic status influenced the child microbiome and whether 137 
self-reported parental behaviors statistically interacted with this association to explain additional 138 
variance. In addition, we examined how the child microbiome is associated with parent-reported 139 
child internalizing and externalizing behaviors, and whether caregiver behavior statistically 140 
moderated this association. Finally, we investigated if there were specific microbial taxa and 141 
metabolic pathways associated with different metrics of socioeconomic risk and child behavioral 142 
dysregulation. To our knowledge, this is the first study to assess the linkage between the 143 
microbiome, a child’s environment, and behavioral dysregulation symptoms during the 4-7 year 144 
old age range of formative behavioral and biological development. In so doing, this study reveals  145 
that exogenous factors including parental behavior impact the gut microbiome during the first 146 
few years of life, and that the microbiome indicates behavioral dysregulation, even at subclinical 147 
thresholds.  148 
 149 
RESULTS 150 
 151 
 In order to measure the microbiome, we collected stool from 40 children from a mid-size 152 
city in the Pacific Northwest that were already participating in a larger study (25). Parents of the 153 
children filled out questionnaires regarding five covariate categories: socioeconomic risk, 154 
behavioral dysregulation, caregiver behavior, demography, and gut-related history (i.e., factors 155 
known to influence microbiome composition such as antibiotic use). DNA was extracted from 156 
the fecal samples, sequencing libraries were prepared, and shotgun metagenomic sequencing was 157 
conducted according to standard protocols (see Methods). Unique metagenomic sequences were 158 
assigned, if possible, to the bacterial species level which resulted in 213 unique taxon 159 
assignments after quality control. Using these assignments, we estimated the taxonomic 160 
composition of the microbiome. Sequences were also assigned to molecular functional groups 161 
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. These assignments are 162 
referred to as KEGG orthologs (KOs), and represent individual functions within larger genomic 163 
modules, which are components of functional pathways. The sequence set was assigned to 164 
13,183 unique KOs, after quality control. Using these taxonomic and functional assignments, we 165 
constructed community tables (matrices of taxon or KO relative abundances by sample) to test 166 
associations between the microbiome and our covariates of interest in a statistically rigorous 167 
manner (see Methods and Supplemental Methods for specific details regarding participants, 168 
sample collection, molecular methods, and sequence analysis). 169 
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Because the questionnaires filled out by parents encompassed more potential covariates 170 
(52) than microbiome samples (n = 40), we began our analysis by selecting the covariates within 171 
each covariate category that explained a statistically significant amount of variance in the 172 
microbiome composition between samples (see Methods). This covariate selection process 173 
returned an identical set of ten covariates for both taxonomic and functional composition (See 174 
Table 1). In order to test our hypotheses that socioeconomic risk, behavioral dysregulation, and 175 
caregiver behavior covariates significantly associate with the composition of the microbiome, we 176 
utilized a constrained correspondence analysis (CCA) to create ordinations. This method is 177 
particularly appropriate for our study design because it accounts for the variance in the 178 
microbiome explained by factors that prior research indicates may have a strong effect on the 179 
composition of the microbiome, but which are not the direct focus of this research (i.e., 180 
demography and gut-related history). We then ran a permutational analysis of variance 181 
(PERMANOVA) on the remaining, unexplained variance to test the significance of the 182 
relationships between covariates and the composition of the microbiome. Selected covariates 183 
within each category (e.g., demography, gut-related history, child dysregulation behaviors, 184 
socioeconomic risk, and caregiver behavior) were determined by the envfit model. For each set 185 
of covariates, we tested their association with both the taxonomic (species) and functional (KO) 186 
composition of the microbiome. 187 

 188 
Microbiome Composition, Socioeconomic Risk, and Caregiver Behavior 189 
 190 

We first examined whether metrics of socioeconomic risk and caregiver behavior 191 
significantly explain the observed variance in overall microbiome diversity and composition. In 192 
addition, we investigated whether these associations manifested at the level of the taxonomic 193 
identities of the microbiome constituents or the functional potential of the metagenome. We 194 
started by testing the associations between the taxonomic composition of the microbiome and the 195 
selected socioeconomic risk and caregiver behavior covariates. To maximize scientific rigor, we 196 
constructed a CCA model, which is based on a Euclidian distance, that first accounted for the 197 
selected demography (child ethnicity) and the selected gut-linked covariates (previously shown 198 
to influence gut [25–28]; geographic location) by determining the amount of variance explained. 199 
These two demography and gut history covariates accounted for 19.9% of the total variance in 200 
taxonomic composition. The socioeconomic risk and caregiver behavior covariates that remained 201 
in the best model (according to Akaike Information Criterion) explained a further 18.5% of the 202 
variance, leaving 61.6% of the variance unexplained. A PERMANOVA test on this CCA model 203 
revealed a single significant association. Specifically, the taxonomic composition of the gut 204 
microbiome taxonomic was associated with the selected socioeconomic risk covariate (number 205 
of family turmoil associated life events; F = 1.61, p = 0.0094; Fig 1A, Supplemental Table 2). 206 
Additionally, the selection of the best model included an interaction between Poverty Events 207 
(number of poverty-associated life events) and Parent-Child Dysfunction (parenting stress index 208 
subscale), but after controlling for gut-history and demography covariates, it was not significant 209 
(F = 1.39, p = 0.073). 210 

As noted previously, the metagenomic (as opposed to amplicon-based) methodology we 211 
employed made it possible to test the associations between socioeconomic risk, caregiver 212 
behavior, and the functional composition of the microbiome. As in the prior analyses, we set the 213 
two demography and gut-related history covariates as conditional variables, which explained 214 
25.7% of the total variance in functional composition. The socioeconomic risk and caregiver 215 
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behavior covariates that remained in the best model accounted for 28.5% of the total variance in 216 
functional composition, while 45.8% remained unexplained. A PERMANOVA test on this 217 
model found that the caregiver covariate Parent-Child Dysfunction significantly interacted with 218 
both Turmoil Events (F = 2.51, p = 0.0097; Fig 1C) and Income to Needs Ratio (measure of 219 
poverty; F = 1.86, p = 0.041; Fig 1D, Supplemental Table 3). These results provide evidence 220 
that, in terms of the microbiome’s functional potential, caregiver behavior can moderate the 221 
associations between socioeconomic risk covariates and the microbiome. 222 
 223 
Microbiome Composition, Behavioral dysregulation, and Caregiver Behavior 224 
 225 
 In order to address our second question, whether metrics of behavioral dysregulation and 226 
caregiver behavior significantly explain the observed variance in overall microbiome diversity 227 
and composition, we applied the same analysis pipeline as above, substituting the selected child 228 
behavioral dysregulation symptom covariates for the socioeconomic risk covariates. The analysis 229 
of the taxonomic composition of the microbiome revealed no significant associations 230 
(Supplemental Table 4). 231 

For the functional composition of the microbiome, we again found that the caregiver 232 
behavior covariate Parent-Child Dysfunction significantly interacted with two child behavioral 233 
dysregulation symptom covariates: depression (Depressive Problems; F = 2.69, p = 0.0079; Fig. 234 
2A) and ability to inhibit impulses (Inhibitory Control; F = 2.18, p = 0.038; Fig. 2B, 235 
Supplemental Table 5). Again, these results provide evidence that the microbiome is associated 236 
with certain behavioral dysregulation, and that caregiver behavior may moderate these 237 
associations. For this particular study sample, however, the evidence suggests that it is the 238 
composition of functional groups within the microbiome, more so than the taxonomic 239 
composition of the microbiome, which correlates with behavioral dysregulation and caregiver 240 
behavior.  241 
 242 
Individual Taxa, KOs and Socioeconomic Risk, Child Behavioral Dysregulation Symptom 243 
Covariates 244 
 245 
 The above analyses assessed covariates of the overall composition and diversity of the 246 
gut microbiome. To obtain a finer resolution on the interactions between the gut microbiome, 247 
socioeconomic risk, and behavioral dysregulation, we employed a pairwise compound Poisson 248 
generalized linear models (CPGLM) to regress a specific taxon or KO relative abundance in the 249 
gut against each socioeconomic risk or behavioral dysregulation covariate. A comprehensive set 250 
of results of the pairwise relationships that maintained significance after false discovery rate 251 
(FDR) correction can be found in Supplemental Tables 6 & 7. Briefly, we found 67 significant 252 
pairwise relationships between covariates and taxa identified at the species level (48 for 253 
behavioral dysregulation, 19 for socioeconomic risk covariates; Fig. 3). For these taxon-covariate 254 
relationships, we found numerous associations involving butyrate-producing bacteria, and 255 
specific taxa of particular interest, including Bacteroides fragilis and B. thetaiotaomicron, which 256 
have demonstrated anti-inflammatory effects in mice and humans (30). We found significant 257 
relationships between 7 socioeconomic risk and 13 child behavioral dysregulation symptom 258 
covariates and 695 functions defined at the KO level. Of these 695 pairwise results, 94 KOs were 259 
grouped within defined metabolic modules (Fig. 4). Consistent with prior studies, for the KO-260 
covariate relationships we found numerous associations involving monoamine metabolism 261 
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(including tryptophan, tyrosine, glutamate, and leucine) and inter-microbe antagonism (type VI 262 
secretion systems and lipopeptide antibiotics). 263 
 264 
DISCUSSION 265 
 266 

The present study provides novel insights into the relationship between the gut 267 
microbiome and both the psychosocial environment and behavioral dysregulation in a cross-268 
sectional sample of early school-aged children (Figure 5). Furthermore, this is the first study to 269 
assess if caregiving behaviors (i.e., perceived parental stress) can statistically modify the child’s 270 
gut microbiome’s association with their level socioeconomic risk exposure and behavioral 271 
dysregulation. As such, if replicated, the work provides a potentially new avenue of research into 272 
the mechanisms of behavioral intervention in future research. These results provide supportive 273 
evidence that the psychosocial environment continues to shape not only the taxonomic 274 
composition, but also the functional potential of the microbiome beyond initial gut microbial 275 
colonization that occurs in the perinatal period. Notably, the behavioral dysregulation symptoms 276 
measured in this study occurred at thresholds not necessarily indicative of psychiatric disorders 277 
of childhood. That these relationships were observed at subclinical levels of behavioral 278 
dysregulation symptoms suggests that the microbiome may play a role in the emergence of 279 
dysregulated behavior (i.e., providing early associative relationships prior to reaching clinical 280 
thresholds), rather than simply being present in clinical populations. 281 

Importantly, this study also documented that the quality of the caregiver-child 282 
relationship may moderate the microbiome’s association with both socioeconomic risk and 283 
behavioral dysregulation. Because our study relied on correlational methods, it is possible that is 284 
in fact the socioeconomic risk and the behavioral dysregulation symptoms that are moderating 285 
the association between the microbiome and caregiver behavior. However, given that none of the 286 
statistical tests support a significant main effect of caregiver behavior, but there is at least one 287 
significant association between both socioeconomic risk and behavioral dysregulation symptoms 288 
and the microbiome, it is plausible to conclude that the caregiver-child relationship may 289 
moderate the microbiome’s association with the other covariate groups rather than the other way 290 
around. That said, future work should seek to disentangle these relationships.  291 

These findings have important implications for developmental psychological and 292 
developmental microbiome sciences alike, suggesting that the microbiome may be a pathway by 293 
which caregiver behavior may mitigate the impact of socioeconomic risk and influence early 294 
school-aged child outcomes. Caregivers may influence the microbiome in childhood through 295 
reducing or exacerbating their child’s experience of psychosocial stress. For example, increased 296 
parental stress that results from reduced economic or social support may in turn increase the 297 
child’s stress. Conversely, supportive parenting can reduce a child’s physiological and perceived 298 
stress, which may protect the microbiome from perturbations related to the physiology of stress. 299 
Furthermore, the metrics of caregiver behavior assessed in this study may be correlated with 300 
other symptoms of behavioral dysregulation, such as the home environment and diet of the child 301 
that may alter the composition and diversity of the gut microbiome (31, 32). Alteration of the 302 
child microbiome through the home environment and diet may in turn influence the level of 303 
physiological stress response in the child. 304 

While we detected a significant association between parent-reported family turmoil and 305 
the taxonomic composition of the microbiome, we cannot conclude that caregiver behavior 306 
moderates this association, as there was no significant interaction between these variables. Due 307 
to our sample size, we cannot rule out that this study may have been underpowered to detect this 308 
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relationship. However, as shown in Figures 1B & C (Supplemental Table 3), in terms of the 309 
functional composition of the microbiome, there were significant interactions between parent-310 
reported parent-child dysfunction and two metrics of socioeconomic risk: income-to-needs ratio 311 
and family turmoil. Therefore, we found supportive evidence that the dysfunctionality of the 312 
parent-child relationship moderates the nature of the relationship between both economic and 313 
social forms of adversity and the functional potential of the gut microbiome of a child. This 314 
underscores the potential for caregivers to mitigate the impact of socioeconomic risk exposure on 315 
the developing gut microbiome. One mechanism by which socioeconomic risk may influence the 316 
microbiome is by exposing the child to different environmental microbes. For example, for 317 
modernized urban populations, there is evidence that greater socioeconomic status affords people 318 
the ability to travel away from human-dominated environments and gain exposure to microbe 319 
associated with the natural environment. Such differences in microbial exposure in early 320 
development associate with different profiles of immune function (33). Furthermore, adverse 321 
postnatal environments that are often comorbid with socioeconomic risk, such as frequent 322 
antibiotic use or toxin exposure, associate with altered microbial composition and intestinal 323 
permeability (34, 35). Future work should build upon these findings to test if the microbiome 324 
may serve as a mechanism by which economic and social adversity (socioeconomic risk) 325 
influences behavioral dysregulation. 326 

When we tested whether the relationship between the gut microbiome and behavioral 327 
dysregulation depended on the parent-child relationship, our analyses only found significant 328 
interactions for the functional potential of the microbiome (Fig. 2A & B; Supplemental Table 5). 329 
In this case, the nature of the relationships between the functional microbiome and two 330 
behavioral dysregulation -- depressive problems and inhibitory control -- were modified by the 331 
quality of the parent-child relationship. This is consistent with prior literature that indicates 332 
behavioral dysregulation in childhood spans internalizing and externalizing dimensions (36). 333 
Again, the lack of any significant behavioral dysregulation for the taxonomic microbiome may 334 
indicate either that this study is underpowered at the taxonomic level or that these relationships 335 
are more dependent on the metabolic capabilities of the whole microbiome rather than attributes 336 
associated with specific taxa. In either case, it suggests that intervening to improve the parent-337 
child relationship may influence the functional potential of the microbiome more strongly than 338 
its taxonomic composition. One proposed way that humans mothers may help regulate the gut-339 
brain-microbiota axis is through skin-to-skin contact, particularly with high-risk infants (i.e., 340 
preterm; [31]. Future work should seek to tease apart the mechanisms by which parenting 341 
behaviors may influence the microbiome in later periods of development. 342 

In addition to assessing the relationship between the selected covariates and the 343 
microbiome as a whole, we sought to understand such relationships at a finer scale of resolution. 344 
Therefore, we conducted pairwise comparisons between covariate scores and the abundances of 345 
each taxon and KO to determine whether there were specific relationships between 346 
socioeconomic risk or behavioral dysregulation and specific taxa or functions found to be 347 
important in previous studies (Figs. 3 & 4, Supplemental Tables 6 & 7). The taxon that 348 
associated with the greatest number of socioeconomic risk and behavioral dysregulation 349 
covariates was Bacteroides fragilis. Interestingly, B. fragilis associated with reduced levels of 350 
aggression, anxiety, emotional reactivity, externalizing behavior, impulsivity, and an increase in 351 
inhibitory control (i.e., better mental health). It was also associated with lower reported incidents 352 
of family turmoil. B. fragilis has been shown, in mice, to modulate the mammalian immune 353 
system and protect against pathogen-induced inflammation, specifically through the production 354 
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of polysaccharide A (30, 37). B. thetaiotaomicron has also been shown to have anti-355 
inflammatory effects in the mammalian intestine, and it too associates with decreases in 356 
externalizing behavior, as well as the overall score for negative behavioral dysregulation (38). 357 
Recent psychological research has provided strong evidence for a relationship between chronic 358 
intestinal inflammation and depression/anxiety (39, 40). The inflammation-depression 359 
relationship, therefore, is a likely mechanism linking decreases in negative behaviors and the 360 
abundance of these anti-inflammatory Bacteroides species. 361 

Of the taxa that significantly associated with significant socioeconomic risk or behavioral 362 
dysregulation, three taxa belong to species containing known butyrate producers. The production 363 
of butyrate from plant-derived polysaccharides by the gut microbiome is understood to be an 364 
important mechanism through which high-fiber diets promote beneficial health effects. There 365 
are, however, only certain taxa that have the ability to produce butyrate (41). Surprisingly, two of 366 
the butyrate-producing species in our samples, Coprococcus comes and Eubacterium rectale, 367 
positively associated with elevated anxious-depression and reduced inhibitory control, 368 
respectively. This observation defies our expectation given that prior work points to butyrate’s 369 
important role in maintaining gut health and behavior dysregulation (42). It is possible that these 370 
taxa carry other functions that overwhelm the effects of their butyrate production on symptoms 371 
of behavioral dysregulation, or that overall butyrate production is reduced even though the 372 
relative abundances of these two taxa are high in certain microbiomes, or that butyrate 373 
production links to adverse behaviors under some contexts. On the other hand, the third butyrate-374 
producing taxon in our samples, Roseburia inulinivorans, associated with a decrease in 375 
depressive problems and internalizing behavior. This is consistent with prior literature that 376 
suggests that increases in butyrate production improve overall mental health (42). Future work 377 
should seek to disentangle butryate’s specific role in mediating behavioral dysregulation and 378 
how its production by different taxa or in conjunction with different diets impacts this role.  379 

In addition to the significant associations between the selected covariates and specific 380 
taxa, our analyses also linked these covariates to specific microbiome functions at the module 381 
and KO levels (Fig. 4; Supplemental Table 7). In particular, we found significant associations 382 
between a number of covariates and pathways involved in the bacterial Type VI secretion system 383 
(T6SS). Research into the psychology of depression has unveiled a possible link between 384 
depression/anxiety and chronic low-grade inflammation in the gut, suggesting a role for the 385 
microbiome in contributing to such disorders (39, 40). One possible mechanism for generating 386 
inflammation is dysbiosis caused by invading pathogens. For example, both Vibrio and 387 
Salmonella species can use the T6SS to attack commensal bacterial species and establish in the 388 
vertebrate gut (43, 44). Furthermore, T6SS have been shown to directly generate intestinal 389 
inflammation in a mouse model (45). We found that the abundances of three KOs assigned to a 390 
T6SS module, as well as a few KOs with possible T6SS homology, significantly associated with 391 
the increase in scores for aggression, anxiety, anxious-depression, depression, internalizing 392 
behavior, and number of turmoil-related life events. To determine if T6SS-associated KOs 393 
correlated with the abundances of any known T6SS-carrying taxa, we ran a similar CPGLM 394 
regression analysis as before (Supplemental Figure 1). We compared the abundances of all taxa 395 
and the five T6SS-assigned KOs. We found a number of taxa belonging to genera that we would 396 
expect, from prior investigations of their genomes, to carry T6SS such as Bacteroides, 397 
Parabacteroides, and Escherichia (46, 47). However, we also found significant associations with 398 
taxa assigned to genera with no documented cases, to our knowledge, of T6SS production, such 399 
as Collinsella and Alistipes. Future studies will be needed to elucidate whether type VI secretion 400 
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systems have direct or indirect effects on the gut-brain axis and which taxa in the gut carry these 401 
systems. 402 

In addition to T6SS, other mechanisms of inter-microbial competition also significantly 403 
associated with behavioral dysregulation. These associations included KOs assigned to 404 
functional groups involved in the synthesis of putative lipopeptide antibiotics (e.g. fengycin–an 405 
anti-fungal–and arthrofactin). These antibiotic-assigned KOs associated with the same set of 406 
behavioral dysregulation as the T6SS KOs, with the addition of emotional reactivity, decreased 407 
inhibitory control, and externalizing rather than internalizing behavior. Synthesis of lipopeptide 408 
antibiotics also significantly associated with adversity, such as family separation and poverty. 409 
The increase in these putative functions may indicate an increase in inter-microbial antagonism. 410 
This could possibly be due to invasion by pathogens, which could lead to intestinal inflammation 411 
that underlies their relationship with behaviors such as depression and anxiety. 412 

Intriguingly, we also found relationships between both socioeconomic risk and 413 
behavioral dysregulation and microbial functional groups that have been implicated in modifying 414 
behaviors or cognitive function. For example, we discovered associations between these 415 
covariates and various KOs and modules associated with metabolism of monoamines that are 416 
often used as, or are common precursors to, neurotransmitters and neurohormones. We also 417 
found 8 covariates (7 behavioral, 1 socioeconomic risk) positively associated with modules 418 
involved in biosynthesis of melatonin from metabolism of tryptophan. Tryptophan is an essential 419 
amino acid, meaning it must be derived from the diet, and therefore the concentrations of 420 
available tryptophan can feasibly be altered by microbial metabolism (48). Indeed, many studies 421 
have found a relationship between symptoms of depression and anxiety and the availability of 422 
peripheral tryptophan (39, 49, 50). As a specific example, it has been shown that germ-free mice 423 
have greater plasma concentrations of tryptophan (49, 51), greater concentrations of 424 
hippocampal serotonin levels, and a lower kynurenine to tryptophan ratio (a common marker of 425 
tryptophan degradation; (49). Furthermore, germ-free mice were shown to have reduced levels of 426 
anxiety, as compared to conventional mice. Their anxiety, along with their kynurenine to 427 
tryptophan ratio, normalized after colonization with a conventional microbiome, presumably due 428 
to the introduction of taxa capable of metabolizing tryptophan and making it unavailable to the 429 
host (49). We found that the abundances of two KOs associated with degradation of tryptophan 430 
correlate with increases in behaviors including aggression, anxiety, anxious-depression, and 431 
impulsivity, as well as increases in exposure to adverse life events involving family separation, 432 
illness, and poverty. Moreover, we observed a KO involved in tryptophan biosynthesis that 433 
correlated with a decrease in life events related to family illness or injury.  434 

Additionally, we detected significant associations between covariates and the metabolism 435 
of other notable monoamines such as glutamate (52–54), leucine (53, 55), and glutamine (56). 436 
Glutamate is the most abundant excitatory neurotransmitter in the vertebrate central nervous 437 
system as well as the most abundant amino acid in their diets (57). While dietary glutamate has 438 
not been linked to any neuropathology, the excitatory effects of glutamate have been linked to 439 
neurodegenerative disorders such as motor neuron disease (MND) or amyotrophic lateral 440 
sclerosis (ALS), Huntington’s disease, Parkinson’s disease and Alzheimer’s disease (57). 441 
Another monoamine, leucine can relatively easily pass through the blood brain barrier, where 442 
astrocytes convert it into glutamate (58, 59). Glutamine is also a precursor to glutamate, but is 443 
also directly involved in the maintenance of a healthy gut and its response to injury (60). 444 
Therefore, it is possible that the effect of the microbiome on the abundance of these monoamines 445 
may play a role in influencing the gut-brain axis. 446 
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 Notably, these findings provide the foundation for future studies to replicate with larger 447 
samples and to assess longitudinal changes to better tease apart causal relationships. 448 
Additionally, this study offers a fundamental step toward translating animal models to sensitive 449 
periods of human development, and it provides a proof of concept to determine if the 450 
microbiome is linked to behavioral dysregulation and socioeconomic risk. Importantly, diet 451 
could be an important factor that confounds the relationships between the gut microbiome and 452 
socioeconomic risk or parent behavior. Properly interrogating the role of diet would require 453 
meticulously monitored diets, which was beyond the scope of the current study. Future work 454 
should build upon these findings to specifically interrogate the impacts of diet. If diet proved to 455 
be a mechanism driving these relationships, it could provide a targeted direction to include 456 
within psychosocial intervention designs. 457 
 458 
CONCLUSION 459 
 460 

We tested associations between socioeconomic risk, child behavioral dysregulation, and 461 
the microbiome in terms of both taxonomic and functional composition in a cross-sectional 462 
sample 4-7 years old. In doing so, we discovered that not only are there significant associations 463 
between metrics of socioeconomic risk and behavioral dysregulation with the microbiome, but 464 
that the quality of caregiver behavior statistically moderated these relationships. Furthermore, we 465 
uncovered associations between individual taxa (e.g., B. fragilis) and functional groups (e.g. 466 
monoamine metabolism) within the microbiome and metrics of socioeconomic risk and 467 
behavioral dysregulation. These taxa and functional groups potentially, if replicated, represent 468 
mechanisms through which the microbiome associates with socioeconomic risk and behavioral 469 
dysregulation and possibly even targets for future intervention studies to investigate to improve 470 
children’s mental health outcomes.  471 

The results of this study suggest that, when examining the trajectory of child 472 
psychological development, we need to consider biology, physiology, psychosocial environment, 473 
and the microbiome. All of these can have mutual effects, indicating that the way in which one 474 
factor impacts the psychological development of a child may change depending on the nature of 475 
one or more of the other relationships. Future studies, utilizing both human and animal models, 476 
should seek to tease apart specific behavioral links with the microbiome and extend this design 477 
to a wider range of behavioral symptomatology and socioeconomic risk. 478 
 479 
MATERIALS AND METHODS 480 
 481 
Sample Collection 482 
 483 

Parents were instructed to collect a small stool sample from their child using a clean 484 
plastic collection device and OMNIgene-Gut collection tube (DNA Genotek, Ottawa, ON, 485 
Canada). Collection tubes were packaged and mailed at ambient temperature to the University of 486 
Oregon (Eugene, OR), where they transferred to -80°C upon receipt. See Supplemental Methods 487 
for greater detail, including measures of diet and health. 488 
 489 
Questionnaires 490 
 491 

Socioeconomic Risk were indexed using metrics of socioeconomic status and the Life 492 
Events Checklist (LEC; (61)). The Life Events Checklist was used to provide an index adverse 493 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/568717doi: bioRxiv preprint 

https://doi.org/10.1101/568717
http://creativecommons.org/licenses/by-nd/4.0/


home environment exposure. This provides a total score, and subscales to identify specific 494 
components of adverse life events. Subscales included poverty, turmoil, family illness, 495 
neighborhood violence, family separation, and an overall total score. Household poverty was 496 
indexed by incomes-need-ratio. See Supplemental Methods for range, mean and SD of subscales. 497 
 498 

Behavioral dysregulation were indexed using two previously validated parent-report 499 
measures: the Child Behavior Questionnaire (CBQ; (62)) and the Child Behavior Checklist 500 
(CBCL; (63)). Given childhood is a period in which behavioral dysregulation symptoms shares 501 
common risk factors and less differentiation across both internalizing and externalizing 502 
dimensions of disorders than typically discussed in adult samples, we included both internalizing 503 
(e.g., depression, anxiety) and externalizing (e.g., inhibitory control, aggression) symptoms in 504 
our analyses. Subscales of interested included anxiety problems, depression, emotional 505 
reactivity, anxious depressed, internalizing total, aggressive behavior, externalizing total, overall 506 
total score, and inhibitory control. See Supplemental Methods for range, mean and SD of 507 
subscales. 508 
 509 

Caregiver Behavior was indexed via parent-report Parenting Stress Index (PSI; (64)) 510 
Interpersonal Mindfulness in Parenting (IEM-P; (65)), and the Five Factor Mindfulness 511 
Questionnaire (FFMQ; (66)). These questionnaires provided a range of perceived parental stress 512 
and wellbeing, both in general and within the parent-child relationship. See Supplemental 513 
Methods for range, mean and SD of subscales. 514 
 515 
DNA extraction and sequencing 516 
 517 

DNA was extracted from 250 µl aliquots of the OMNIgene-Gut samples using the MoBio 518 
PowerLyzer PowerSoil kit (Qiagen, Hilden, Germany) with the following protocol 519 
modifications: following the addition of solution C1, a 1-minute bead-beating step was 520 
performed on a Mini-BeadBeater-96 (BioSpec Products, Bartlesville, OK, USA), followed by a 521 
10-minute incubation at 65°C; in the final step DNA was eluted in two stages for a combined 522 
total of 100 µl. 523 
 524 
Metagenomic analyses 525 
 526 

Raw metagenome sequences were prepared for analysis using the shotcleaner workflow 527 
(67), which follows the Human Microbiome Project Consortium data processing guidelines (68). 528 
All raw sequences can be accessed through the NCBI at BioProject PRJNA496479, and the code 529 
for all analyses can be accessed at https://github.com/kstagaman/flannery_stagaman_analysis. 530 
. Briefly, low quality sequences are trimmed or removed, sequences matching to the human 531 
genome are discarded, and identical sequences are collapsed into a single read. As additional 532 
quality control, we removed 3 of 40 fecal samples due to poor sequencing coverage (coverage 533 
range of removed samples: 19,013 to 23,743; coverage range of remaining samples: 3,499,106 to 534 
15,776,004). These high-quality sequences were then run through shotmap (67) to quantify 535 
KEGG Orthology (KO) group relative abundance and metaphlan2 to quantify taxon relative 536 
abundance (69). All resulting data and the sample metadata (Supplemental Table 1) were 537 
analyzed in R (70). 538 
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We applied a data reduction technique to minimize the number of covariates considered 539 
in our subsequent analyses. This process is important to reduce the potential for model 540 
overfitting given the large number of covariates relative to the number of samples measured in 541 
our study. Using the ordinate function from the phyloseq package (71), we generated a PCoA 542 
ordination based on the Bray-Curtis dissimilarities for both the functional (KO) and taxonomic 543 
communities (Supplemental Figure 2). Briefly, we applied the envfit function (72) to Bray-Curtis 544 
dissimilarity-based PCoAs of microbiome taxonomy (species level) or functional capacity and 545 
identified covariates that explained a significant amount of variation across individuals 546 
(Supplemental Figures 3 & 4). Despite being analyzed independently, an identical set of 10 547 
significant covariates best explained the taxonomic and functional variation among individuals. 548 
This finding is unsurprising given the strong correlation between taxonomic and functional beta-549 
diversity (Procrustes r =~ 0.84, p < 0.0001; Supplemental Table 8). The significant covariates 550 
used in our successive analyses are defined in Table 1. See Supplemental Methods for additional 551 
details. 552 

We utilized a constrained correspondence analysis (CCA; cca function; (72)) to 553 
determine the variance in microbiome composition (functional and taxonomic) that covariates 554 
within the socioeconomic risk, child behavioral dysregulation, and caregiver behavior categories 555 
explained. The CCA method is useful in this case because it allows us to first account for the 556 
variance in microbiome composition explained by demographic and gut-related covariates, 557 
which might otherwise confound our analysis, before assessing the variance explained by the 558 
covariates of interest for this study. We assessed the significance of associations between the 559 
selected covariates and the microbiome using a permutational ANOVA (PERMANOVA) 560 
analysis (anova.cca function; (72)) on the resulting CCA ordination. 561 

To determine if the envfit-selected caregiver behavior covariate Parent-Child Dysfunction 562 
interacted with either the socioeconomic risk or child behavioral dysregulation covariates, we 563 
first built a CCA models (one for socioeconomic risk, one for child behavioral dysregulation) 564 
with all possible covariate interactions. However, this builds large models that reduce our chance 565 
of finding real, significant association due to the number of terms. Therefore, before running a 566 
PERMANOVA test, we subjected each CCA object to model selection based on the Akaike 567 
Information Criterion (AIC) by stepwise addition or subtraction of terms (ordistep function; 568 
(72)). The model selected by this method was then analyzed using PERMANOVA to determine 569 
if there were significant associations between covariate interactions and the microbiome. All of 570 
these computational methods are available as supplemental data.  571 

The above methods analyze the relationships between the covariates of interest and the 572 
overall composition of the microbiome (in terms of taxonomy and functional potential), but they 573 
may miss important relationships between covariates and individual taxa or microbial functions. 574 
To determine if such relationships exist in this data set we conducted pairwise regressions 575 
between the abundance of each taxa or KO and each socioeconomic risk and child behavioral 576 
dysregulation covariate. We included in each regression model the same demographic and gut-577 
related terms to account for their variance as well. The regression method used was a compound 578 
Poisson generalized linear model (CPGLM; (73)), which uses a distribution that has a point mass 579 
over zero, allowing it to better handle the sparseness of functional and taxonomic community 580 
data (74). After all pairwise regressions, we adjusted the p-values using the False Discovery Rate 581 
(FDR) with a cutoff of q = 0.05. We then removed any pairs where the taxon or KO was absent 582 
from half of the samples or more and presented the results in Supplemental Tables 6 and 7. 583 
 584 
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TABLES AND FIGURES 774 
 775 
Table 1. The set of covariates selected by envfit analysis for both taxonomic- and functional-
based microbiome composition. All metrics are reported via questionnaire by the parent. PSI, 
Parenting Stress Index; LEC, Life Events Checklist; CBQ, Children's Behavior Questionnaire; 
CBCL Child Behavior Checklist 
Covariate 
Category Covariate Description 

Parental Stress 
PSI Parent-
Child 
Dysfunction 

Severity of dysfunctional interactions between parent and 
child 

Socioeconomi
c Risk 

LEC Poverty 
Related Events  

Number of self-reported stressful life events associated to 
poverty 

LEC Turmoil 
Number of self-reported stressful life events associated 
with family turmoil 

LEC Total Total number of self-reported stressful life events 
Income to 
Needs 

Ratio of yearly household income to federal income needs 
per number of people supported by that income 

Child 
Behavioral 
Symptoms 

CBQ 
Impulsivity Speed of response initiation 

CBQ Inhibitory 
Control 

The capacity to plan and to suppress inappropriate 
approach responses under instructions or in novel or 
uncertain situations 

CBCL 
Depressive 
Problems 

A subscale of the CBCL containing items associated with 
depression 

Demography Child 
Race/Ethnicity Parent report of child's racial and ethnic background 

Gut-related 
History 

Geographic 
Locations Lived in a different state or country >3 months  

 776 
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 778 
Figure	1	779 

Figure 1. Constrained correspondence analysis (CCA) ordinations for taxonomic and functional 780 
composition of the microbiome and socioeconomic risk and caregiver behavior covariates. Only 781 
covariates that have significant main effects or are part of a significant interaction are depicted in 782 
each ordination. Significance was assessed by PERMANOVA (α = 0.05), see Supp. Tables 2 & 3 783 
for statistical results. (A) Ordination of taxonomic (species-level) composition. Each point 784 
represents a sample in ordination space and is colored by LEC Turmoil Event score. (B) 785 
Ordination of functional (KO-level) composition. Each point represents a sample and consists of 786 
two parts: the color of the outer circle corresponds to the sample’s LEC Turmoil Event score; the 787 
inner circle is shaded from white to black indicating the sample’s Parent-Child Dysfunction 788 
score. (C) Ordination of functional (KO-level) composition, sample locations are identical to 789 
panel B. In this panel the outer circle of the point is colored according of the sample’s Income to 790 
Needs score. The inner circle is shaded identically to panel B. 791 
 792 
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 793 
Figure	2	794 

Figure 2. CCA ordinations for functional composition of the microbiome, behavioral 795 
dysregulation, and caregiver behavior covariates. Only covariates that have significant main 796 
effects or are part of a significant interaction are depicted in each ordination. Significance was 797 
assessed by PERMANOVA (α = 0.05), see Supp. Tables 4 & 5 for statistical results. (A) 798 
Ordination of functional (KO-level) composition. Each point represents a sample and consists of 799 
two parts: the color of the outer circle corresponds to the sample’s Depressive Problems score; 800 
the inner circle is shaded from white to black indicating the sample’s Parent-Child Dysfunction 801 
score. (B) Ordination of functional (KO-level) composition, sample locations are identical to 802 
panel A. In this panel the outer circle of the point is colored according of the sample’s Inhibitory 803 
Control score. The inner circle is shaded identically to panel A. 804 
 805 
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 806 
Figure	3	807 

Figure 3. A network representing statistically significant pairwise associations, according to 808 
generalized linear models, between individual taxa and behavioral dysregulation or 809 
socioeconomic risk covariates. The left column shows individual behavioral dysregulation. The 810 
central column shows individual taxa identified to the species level. The right column shows 811 
individual socioeconomic risk covariates. Lines are only drawn between a covariate and a taxon 812 
if there is a significant relationship. The color of the line represents whether the association 813 
between the covariate and taxon is negative (blue) or positive (red). The width and intensity of 814 
the line color represents the slope of the regression line that describes the association (steeper 815 
regression lines are wider and brighter). 816 
 817 
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 818 
Figure	4	819 
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Figure 4. A network representing statistically significant pairwise associations, according to 820 
generalized linear models, between individual KOs (grouped into modules) and behavioral 821 
dysregulation or socioeconomic risk covariates. The left column shows individual behavioral 822 
dysregulation. The central column shows functional groups assigned at the KEGG module level. 823 
The right column shows individual socioeconomic risk covariates. Lines are only drawn between 824 
a covariate and a module if there is a significant relationship. The color of the line represents 825 
whether the association between the covariate and module is negative (blue) or positive (red). 826 
The width and intensity of the line color represents the slope of the regression line that describes 827 
the association (steeper regression lines are wider and brighter). 828 
 829 
 830 
 831 

 832 
Figure	5	833 

Figure 5. This figure illustrates the results of our hypothesis testing using ordination-based 834 
analyses. White solid arrows indicate relationships supported by evidence from prior 835 
psychological research. The black arrows represent relationship between the covariate categories 836 
and composition (taxonomic or functional) of the gut microbiome, as determined by our 837 
ordination- and PERMANOVA-based analysis (see Supp. Tables 2-5). Straight arrows represent 838 
significant main effects between the microbiome and a covariate category (e.g. between 839 
Socioeconomic Risk and taxonomic composition of the microbiome). Arrows that curve through 840 
Caregiver Behavior indicate that there is a significant interaction between Caregiver Behavior 841 
and the other covariate category (e.g. our analysis revealed two significant interactions between 842 
Socioeconomic Risk and Caregiver Behavior in their association with the functional composition 843 
of the microbiome). 844 
 845 
  846 
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SUPPLEMENTAL TABLES AND FIGURES 847 
 848 

 849 
Supplemental	Figure	1	850 

Supplemental Figure 1. Each panel (A-P) is a scatter plot of the relative abundance of a single 851 
KO (x-axis, log-transformed) and the relative abundance of an individual taxon (y-axis, log 852 
transformed). The blue lines represent the CPGLM regression line as fit to the data. Filled circles 853 
represent taxon abundances that were greater than zero before log transformation, and open 854 
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circles represent taxon abundances that were zero before log transformation. The table on the left 855 
details the KO-taxon pair used in each panel, and the table on the right gives the descriptive 856 
name of each KO identification number. 857 
 858 
 859 

 860 
Supplemental	Figure	2	861 

 862 
Supplemental Figure 2. Principal Coordinate Analysis ordinations for the metagenomic data. The 863 
top two panels were created using the KO-annotated sequences for the read1 (left) and read2 864 
(right) data. The bottom two panels were created using the taxon-annotated sequences for the 865 
read1 (left) and read2 (right) data. The percentages in brackets along each axis represent the total 866 
variance explained by that axis. All distances were measured using the Bray-Curtis dissimilarity. 867 
 868 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/568717doi: bioRxiv preprint 

https://doi.org/10.1101/568717
http://creativecommons.org/licenses/by-nd/4.0/


 869 
Supplemental	Figure	3	870 
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Supplemental Figure 3. The results of the envfit analysis for each category of covariates (each 871 
row of panels corresponds to an analysis within a single category) on the taxonomy-based PCoA 872 
ordinations. The panels on the left show the first and second axes of each ordination and the 873 
panels on the right show the third and fourth axes of each ordination. 874 
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 875 
Supplemental	Figure	4	876 
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Supplemental Figure 4. The results of the envfit analysis for each category of covariates (each 877 
row of panels corresponds to an analysis within a single category) on the functional group-based 878 
PCoA ordinations. The panels on the left show the first and second axes of each ordination and 879 
the panels on the right show the third and fourth axes of each ordination.  880 
 881 
 882 
Supplemental Table 1 is a dataset provided as a separate file. 883 
 884 
Supplemental	Table	2.	Results	of	PERMANOVA	analysis	on	AIC-selected	covariates	
within	Socioeconomic	Risk	and	Caregiver	Behavior	(including	interactions)	and	their	
relationship	with	the	taxonomic-based	composition	of	the	microbiome.	

		 Df	 ChiSquare	 F	 Pr(>F)	 	

LEC	Turmoil	 1	 0.216	 1.611	 0.009	 *	

LEC	Poverty	Related	Events	 1	 0.136	 1.01	 0.458	 	

Parent-Child	Dysfunction	 1	 0.131	 0.973	 0.495	 	

LEC	Turmoil:Parent-Child	Dysfunction	 1	 0.177	 1.319	 0.126	 	
LEC	Poverty	Related	Events	:Parent-Child	

Dysfunction	 1	 0.186	 1.386	 0.073	 	

Residual	 21	 2.822	 	   
 885 
Supplemental	Table	3.	Results	of	PERMANOVA	analysis	on	AIC-selected	covariates	
within	Socioeconomic	Risk	and	Caregiver	Behavior	(including	interactions)	and	their	
relationship	with	the	functional	group-based	composition	of	the	microbiome.	

		 Df	 ChiSquare	 F	 Pr(>F)	 		

LEC	Poverty	Related	Events	 1	 0.003	 1.222	 0.226	 	

LEC	Turmoil	 1	 0.004	 1.433	 0.139	 	

Income	to	Needs	 1	 0.004	 1.483	 0.113	 	

Parent-Child	Dysfunction	 1	 0.005	 1.763	 0.069	 	
LEC	Poverty	Related	Events	:Parent-Child	

Dysfunction	 1	 0.004	 1.574	 0.108	 	

LEC	Turmoil:Parent-Child	Dysfunction	 1	 0.007	 2.506	 0.01	 *	

Income	to	Needs:Parent-Child	Dysfunction	 1	 0.005	 1.859	 0.041	 *	

Residual	 19	 0.054	 	   
 886 
Supplemental	Table	4.	Results	of	PERMANOVA	analysis	on	
AIC-selected	covariates	within	Behavioral	dysregulation	and	
Caregiver	Behavior	(including	interactions)	and	their	
relationship	with	the	taxonomic-based	composition	of	the	
microbiome.	

		 Df	 ChiSquare	 F	 Pr(>F)	 		
CBCL	Depressive	

Problems	 1	 0.206	 1.485	 0.071	 	
Parent-Child	
Dysfunction	 1	 0.135	 0.973	 0.489	 	

Residual	 24	 3.328	 	   
 887 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/568717doi: bioRxiv preprint 

https://doi.org/10.1101/568717
http://creativecommons.org/licenses/by-nd/4.0/


 888 
 889 
 890 
 891 
 892 
Supplemental	Table	5.	Results	of	PERMANOVA	analysis	on	AIC-selected	covariates	
within	Behavioral	dysregulation	and	Caregiver	Behavior	(including	interactions)	and	
their	relationship	with	the	functional	group-based	composition	of	the	microbiome.	

		 Df	 ChiSquare	 F	 Pr(>F)	 		

CBQ	Impulsivity	 1	 0.005	 1.717	 0.064	 	

CBQ	Inhibitory	Control	 1	 0.004	 1.589	 0.085	 	

CBCL	Depressive	Problems	 1	 0.006	 2.035	 0.035	 *	

Parent-Child	Dysfunction	 1	 0.004	 1.459	 0.136	 	

CBQ	Impulsivity:Parent-Child	Dysfunction	 1	 0.003	 1.039	 0.373	 	
CBQ	Inhibitory	Control:Parent-Child	

Dysfunction	 1	 0.006	 2.198	 0.041	 *	
CBCL	Depressive	Problems:Parent-Child	

Dysfunction	 1	 0.007	 2.687	 0.007	 *	

Residual	 19	 0.053	 	   
 893 
Supplemental Table 6 is a dataset provided as a separate file. 894 
 895 
Supplemental Table 7 is a dataset provided as a separate file. 896 
 897 
Supplemental	Table	8.	R-squared	values	
and	p-values	from	Procrustes	analyses	
comparing	the	ordinations	based	on	
taxonomic	or	functional	group	
composition,	and	between	read1	and	
read2	sequencing	data.	

Read	
comp.	 Type	comp.	 R2	 p-value	

1	vs.	2	
KOs	vs.	KOs	 0.9997	 1.00E-04	

Taxa	vs.	Taxa	 0.9973	 1.00E-04	

1	vs.	1	
KOs	vs.	Taxa	

0.8375	 1.00E-04	

2	vs.	2	 0.8364	 1.00E-04	
 898 
SUPPLEMENTAL METHODS 899 
 900 
Sample Collection 901 
 902 
A subsample of families from a larger study conducted in the Stress Neurobiology and 903 
Prevention laboratory were asked to participate in a follow-up study to collect a child gut 904 
microbial sample via at home stool collection. Parents were instructed to wait to collect sample 905 
at least 2-4 weeks following antibiotic use or illness; no current stool irregularities, no 906 
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anticipated stressors, and during a week with a typical diet. Recruitment was pre-determined to 907 
be complete once we reached 40 completed samples. Forty-five families consented to be in the 908 
study; five families did not complete the stool sample; one sample was determined to be lost in 909 
the mail, one child remained within the window of recent antibiotic use and illness through the 910 
duration of the study, one child changed their mind about participating, and two families 911 
continued to express interest in completing the sample but did not return a sample. Two 912 
experimenters went to the family’s home. Parents provided consented and children provided 913 
assent. A visual depiction of the study (coloring book) was used to ensure child understood the 914 
study. During the home visit, parents filled out questionnaires and parents were instructed to 915 
collect a stool sample from their child a week after the visit using Genotek OmiGene kits (DNA 916 
Genotek, Ottawa, ON, Canada). This procedure allowed families to mail the sample in after 917 
collection without sample degradation. This was important to reach a broad range of 918 
socioeconomic backgrounds and to eliminate variability in post-collection procedures across the 919 
sample. The experimenter provided a collection demonstration with a toilet seat and playdough 920 
for parent to collect the sample from their child a week after the visit. In the week prior to 921 
collection, parents were asked to fill out a daily diary of basic food categories the child ate at 922 
breakfast, lunch, and dinner. Notably, parent’s knowledge of child’s daily diet was variable 923 
depending on child’s enrollment in subsidized lunch at school and mother’s work schedule. 924 
Families were compensated for their time at the home visit and again after receiving the stool 925 
sample.  926 
 927 
Important Runtime Parameters 928 
 929 
shotcleaner.pl 930 

Output format [-of]: fastq 931 
Bowtie database name [-n]: all_GRCh38.p7 932 

 933 
shotmap.pl 934 
 Shotmap database [-d]: KEGG_021515_1M 935 
 Class score [--class-score]: 34 936 
 [--ags-method]: none 937 
 938 
Analysis in R 939 
 940 
Data processing 941 
 942 

Functional and taxonomic community tables were built using relative abundances and 943 
associated with the sample metadata using the package phyloseq. All participants’ (mothers and 944 
children) ages were calculated in days from their date of birth to the date of the second session, 945 
when stool samples were collected. 946 

We had both the forward and reverse reads for each sequence. We conducted a Procrustes 947 
analysis on PCoA ordinations based on the Bray-Curtis dissimilarities to determine if there was a 948 
significant correlation between the two read sets for both the functional and taxonomic reads. For 949 
both functional and taxonomic reads, the correlation coefficients between the forward and 950 
reverse read based ordinations was greater than 0.99 and statistically significant (p = 0.0001). 951 
We therefore continued with the remainder of the analyses using only the forward reads. 952 
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 953 
Covariate reduction 954 
 955 

Within each covariate category (ESA, child behavior, parenting, demography, and gut-956 
related history), we used the envfit function from the vegan package to determine which 957 
covariates (e.g., ESA covariates include LEC Poverty Related Events and LEC Turmoil; child 958 
behavior covariates include CBQ Impusivity and CBQ Inhibitory Control) explained a 959 
significant proportion of microbiome diversity along any of the first four PCoA axes (same 960 
PCoA ordination generated in the Data Processing section above; Supplemental Figures 3 & 4).  961 
 962 
 The code used to conduct all analyses can be found at 963 
https://github.com/kstagaman/flannery_stagaman_analysis. 964 
 965 
 All metagenome data can be found at 966 
https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA496479 967 
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA496479 968 
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