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Abstract: The need for tools to cost-effectively identify adaptive variation within ecologically and 13 
economically important plant species is mounting as the detrimental effects of climate change 14 
become increasingly apparent. For crop and wild populations alike, mismatches between adaptive 15 
variation and climatic optima will reduce health, growth, survival, reproduction, and continued 16 
establishment. The ease with which land managers can quantify the relative importance of different 17 
climate factors or the spatial scale of local adaptation to climate will have direct implications for 18 
the potential of mitigating or resolving such risks. Using seed collected from 281 provenances of 19 
lodgepole pine (Pinus contorta) from across western Canada, we compare genomic data to 20 
phenotypic and climatic data to assess their effectiveness in characterizing the climatic drivers and 21 
spatial scale of local adaptation in this species. We find that genomic and climate data are nearly 22 
equivalent for describing local adaptation in seedling traits. We also find strong agreement between 23 
the climate variables associated with genomic variation and with 20-year heights from a long-term 24 
provenance trial, suggesting that genomic data may be a viable option for identifying climatic 25 
drivers of local adaptation where phenotypic data are unavailable. Genetic clines associated with 26 
cold injury occur at broad spatial scales, suggesting that standing variation of adaptive alleles for 27 
this and similar species does not require management at scales finer than are indicated by 28 
phenotypic data. This study demonstrates that genomic data are most useful when paired with 29 
phenotypic data, but can also fill some of the traditional roles of phenotypic data in management 30 
of species for which phenotypic trials are not feasible.  31 
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1 Introduction 32 

The impact of climate change is undeniable and particularly evident in forests of western North 33 

America. Evidence of tree injury and mortality from droughts, floods, wildfires, disease, and insect 34 

outbreaks is mounting rapidly (van Mantgem et al. 2009; Allen et al. 2010; Anderegg et al. 2015; 35 

McDowell & Allen 2015; Reyer et al. 2015; Buotte et al. 2018). There is also mounting evidence 36 

that changes in climate are disrupting local adaptation in plants (Mcgraw et al. 2015; Wilczek et 37 

al. 2019), with impacts to productivity of commercial tree species (Rehfeldt et al. 1999; Leites et 38 

al. 2012) and conservation of vulnerable species (Parmesan 2006). In response, forest managers 39 

are seeking guidance on which source populations to use for planting, as the long-practiced ‘local 40 

is best’ strategy no longer matches trees with the climates to which they are adapted (Aitken and 41 

Bemmels 2016). There is also a need to characterize the spatial scale and genetic structure of local 42 

adaptation to understand the capacity of populations to adapt to climate change without human 43 

intervention (McKenney et al. 2007; Kawecki 2008; Aitken et al. 2008; Kremer et al. 2012). For 44 

centuries, local adaptation has been quantified and managed using phenotypic data from long-term 45 

provenance trials and short-term common gardens (Langlet 1971; Leimu and Fischer 2008; 46 

Hereford 2009). In the past two decades, detailed climate data has been used to extend phenotypic 47 

inferences of local adaptation across managed landscapes (Sork et al. 2013; Wadgymar et al. 2017) 48 

and to project mismatches between adaptive variation and future climates (e.g., Exposito-Alonso 49 

et al. 2018). Genomic data is now emerging as a third source of insight into local adaptation for 50 

non-model species. While the genomic basis of local adaptation has been extensively studied (Li 51 

et al. 2017; Sork 2018), applications of genomic data to mitigate effects of climate change are in 52 

their infancy (Shafer et al. 2015).  These applications can be advanced by understanding the ways 53 
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in which genomic data complements and overlaps with phenotypic and climatic data in 54 

characterizing local adaptation.  55 

For most tree populations, the capacity to track suitable climates via migration and 56 

establishment will be outpaced by the rate of climate change (Davis and Shaw 2001; McLachlan 57 

et al. 2005; Gray & Hamann 2013), with implications to the health and productivity of both wild 58 

forests and those planted for wood or carbon sequestration. Assisted gene flow (AGF), the 59 

“intentional translocation of individuals within a species range to facilitate adaptation to anticipated 60 

local conditions” (Aitken and Whitlock 2013), is a strategy for mitigating these deleterious effects 61 

of mismatches between genotypes and climate. For instance, warmer-adapted provenances are 62 

faster growing, although less cold hardy, for many temperate and boreal species (Aitken and 63 

Bemmels 2016; Wang et al. 2010). If genotypes are moved into suitable climates, but not so far 64 

that they suffer from cold injury or other types of maladaptation, this faster growth rate is expected 65 

to translate to higher survival, better health, and greater productivity (e.g., Wadgymar et al. 2015). 66 

When the motivation for planting is conservation, AGF could bolster the demographics of rare 67 

species or accelerate stand development for habitat and other ecosystem services. Maintaining or 68 

enhancing genetic diversity is key, as the goal of assisted gene flow in conservation settings is to 69 

establish self-sustaining populations capable of natural regeneration, establishment, and further 70 

adaptation to new conditions (Aitken and Whitlock 2013; Lunt et al. 2013; Kelly and Phillips 2015; 71 

Aitken and Bemmels 2016). 72 

The argument for AGF with forest trees is particularly strong, due to 1) the long history of 73 

study and understanding of local adaptation to climate in many widespread species (Langlet 1971; 74 

Morgenstern 1996); 2) the lack of strong population structure and isolation that might lead to 75 

outbreeding depression (Howe et al. 2003; Neale & Savolainen 2004; Mitton & Williams 2006; 76 
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Savolainen et al. 2007); 3) the long generation times of forest trees and corresponding high rate of 77 

climate change per generation (McLachlan et al. 2005; Petit and Hampe 2006; Aitken et al. 2008; 78 

Alberto et al. 2013); and 4) the infrastructure and operational practices that already exist for 79 

collecting or producing seeds, growing seedlings, and reforesting harvested or otherwise disturbed 80 

areas (Aitken and Bemmels 2016). Effective AGF strategies require an understanding of the nature 81 

of local adaptation to climate, particularly the major climatic drivers of local adaptation and how 82 

strongly populations are differentiated along these climatic gradients. 83 

Forest scientists have traditionally used provenance trials—in situ field-based common garden 84 

experiments that usually involve partial reciprocal transplants—to understand links between 85 

phenotypes under divergent selection and the environments driving those differences (see 86 

discussion in Lind et al. 2018). Such designs have been the major source of knowledge of local 87 

adaptation trees for over two centuries, where differentiation among populations is usually 88 

attributed to the source environment of individuals (Langlet 1971; Morgenstern 1996). In 89 

provenance trials, phenotypic data is often limited to survival and growth rather than component 90 

traits directly related to climate, such as tolerance of cold, drought, insects, or diseases. Multi-site 91 

provenance trials can therefore provide excellent information on local adaptation, but they are 92 

limited by the decades-long time frame needed to obtain meaningful data and by the restricted 93 

geographic and climatic scopes of such trials for many species (Kawecki and Ebert 2004; Aitken 94 

et al. 2008; de Villemereuil et al 2015). Moreover, provenance trials are not feasible for some 95 

species due to a lack of available sites, sufficient resources, ethical reasons, or the difficulty of 96 

obtaining seed from many populations, particularly for endangered species or species with seed 97 

that cannot be stored (Morgenstern 1996; Blanquart et al. 2013; de Villemereuil et al. 2015; 98 

Flanagan et al. 2018). 99 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2019. ; https://doi.org/10.1101/568725doi: bioRxiv preprint 

https://doi.org/10.1101/568725
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evaluating genomic data for assisted gene flow 

 5 

Single or multi-environment seedling common gardens provide some advantages over 100 

traditional provenance trials. While single common gardens can be used to test for differentiation 101 

among genetic groups and to develop transfer functions (Matyas 1994; O’Neill et al. 2008), 102 

multiple common gardens can be used to test for environmental forces driving this differentiation, 103 

and need not necessarily be within source environments of populations under study. Such 104 

experiments allow for detailed phenotyping of climate-related traits at the vulnerable seedling stage 105 

that have important fitness consequences for the populations under consideration (e.g., phenology, 106 

cold- or drought-hardiness, growth, and allocation of biomass; see refs in Cornelius 1994, Howe et 107 

al. 2003, Savolainen et al. 2007; Alberto et al. 2013, and Lind et al. 2018). However, juvenile 108 

phenotypes may not reflect fitness-related traits at later life stages (e.g., reproduction) and such 109 

experimental environments are often artificial (Kawecki and Ebert 2004).  110 

Due to the prevalence of the transplant designs mentioned above, phenotypic inferences of 111 

local adaptation and their applications to seed transfer of forest trees have been traditionally 112 

characterized in geographic terms. For example, seed transfer limits for wild-sourced seedlings in 113 

British Columbia were until recently defined as a maximum latitude, longitude, and elevation that 114 

seedling stock could be transferred from their provenance to the planting site (Ying and Yanchuk 115 

2006). The advent of high-resolution gridded climate data over the past two decades (e.g., PRISM, 116 

Daly et al. 2002) has allowed more precise inferences of the spatial distribution of local adaptation 117 

(Wang et al. 2010) and has facilitated the transition from geography-based to climate-based seed 118 

transfer (O’Neill et al. 2017). When integrated with climate change projections (e.g., ClimateNA, 119 

Wang et al. 2016; and WorldClim, Fick and Hijmans 2017), climate data provide the essential basis 120 

for AGF and address some of the shortcomings of geographically-based (“local is best”) seed 121 

zones. While generic approaches to climate variable selection may provide a first approximation 122 
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for AGF (e.g., niche modeling), information tailored to species-specific patterns relating adaptive 123 

phenotypic variation to climate will better tailor AGF strategies (e.g., as in O’Neill et al. 2017), as 124 

climatic factors limiting a species’ niche may not be those driving differentiation among 125 

populations.  126 

In situations where phenotypic data is unavailable, genomic data could potentially be a useful 127 

alternative to phenotypic data for inferring the climatic drivers of local adaptation. Population 128 

genomic approaches for detecting adaptive variation have become feasible within the last decade 129 

(Neale & Savolainen 2004; Sork et al. 2013; Prunier et al. 2015; Lind et al. 2018). Next generation 130 

sequencing methods now allow for the genotyping of large numbers of variants (e.g., single 131 

nucleotide polymorphisms, SNPs) in non-model species for elucidating aspects of the species 132 

biology that can inform management and conservation decisions (Lotterhos et al. 2018; Mähler et 133 

al. 2017; Flanagan et al. 2018; Parchman et al. 2018; Rellstab et al. 2018). Genotype-environment 134 

association (GEA) approaches can identify both the environmental drivers of local adaptation and 135 

loci underlying locally adaptive traits (Schoville 2012; De Mita et al. 2013; Rellstab et al. 2015). 136 

Likewise, genotype-phenotype association (GPA) studies can identify loci associated with climate-137 

related phenotypes (Neale & Savolainen 2004; Prunier et al. 2015; Holliday et al. 2017). These 138 

methods can be combined to identify suites of potentially locally adapted loci (e.g., Yeaman et al. 139 

2016; references in Lind et al. 2018). Despite the extensive literature on the genomic basis of local 140 

adaptation, however, we are not aware of any operational uses of genomic data to guide seed 141 

transfer or AGF.   142 

Genomic data have many potential roles in guiding AGF as an alternative or a supplement to 143 

phenotypic and climatic data. Given the unavoidable costs and lag time of provenance trials and 144 

common garden experiments, the prospect of characterizing local adaptation using genomics rather 145 
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than phenotypes is appealing. Genomic approaches could bring down the cost and response time 146 

of managing AGF for commercially important tree species, and also provide the opportunity for 147 

comprehensive (or strategic) genetic conservation of many species that lack resources for 148 

phenotypic trials. In addition to being a potential alternative to phenotypes, genomic data can 149 

provide unique insights into local adaptation that are not available from phenotypic or climatic data 150 

alone. For example, rangewide phenotypic clines can potentially mask more localized allelic clines 151 

that underlie adaptive traits (see Box 1). Similarly, the spatial structure of standing variation in 152 

adaptive alleles—an important consideration for AGF and in situ genetic conservation—can only 153 

be inferred from genomic data.  154 

The objective of this study is to evaluate genomic data, relative to phenotypic and climatic 155 

data, as a basis for assisted gene flow and genetic conservation of locally-adapted conifers. We 156 

address three research questions using phenotypic and genomic data from 281 provenances of 157 

Pinus contorta Dougl. ex Loud from across western Canada. Firstly, what is the relative value of 158 

genomic data vs. climatic and geographic data in explaining locally adaptive phenotypic 159 

variation?  We address this by comparing the proportion of variance in four seedling traits that can 160 

be explained by geographic, climatic, and several types of genomic data including a full SNP array, 161 

a large set of neutral markers, and loci inferred from both genotype-phenotype associations and 162 

genotype-environment associations. Secondly, can genomic data identify the climatic drivers of 163 

local adaptation? We use phenotypic data from both a short-term common garden study and a 164 

long-term provenance trial to contrast the predicted importance of various climatic drivers of 165 

phenotypic differentiation to that predicted from genomic data (GEA loci). Thirdly, we examine 166 

information that is uniquely available from genomic data—the genetic clines underlying 167 

phenotypic clines—to address the question: what is the spatial scale of local adaptation to climate? 168 
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These assessments identify the contributions that genomic data can make to assisted gene flow and 169 

genetic conservation in a changing climate.  170 

BOX 1—The structure of allelic variation underlying phenotypic clines in adaptive traits 171 

For widespread tree species that 172 
experience both strong diversifying 173 
selection and high gene flow, climatic 174 
gradients often drive clinal variation in 175 
phenotypes (Endler 1977; Alberto et al. 176 
2013). However, the number and geographic 177 
distribution of adaptive loci underlying 178 
these patterns is, for the most part, unknown.  179 

There are two ways for genetic clines to 180 
produce a rangewide cline in an additive 181 
polygenic trait (Figure 1). The first is to have 182 
concordant clines in the underlying loci, 183 
representing a gradual rangewide shift in 184 
allelic frequency across all underlying loci 185 
(Figure 1B) that therefore matches the range 186 
-wide phenotypic cline (Figure 1A). Altern-187 
atively, a phenotypic cline can result from 188 
multiple distinct, localized genetic clines, 189 
each providing variation sequentially over 190 
short sections of the environmental gradient 191 
(Barton 1999; see also Box 3 in Savolainen 192 
et al. 2007), as depicted in Figure 1C.  193 

The degree to which local adaptation is 194 
structured as localized, sequential genetic 195 
clines has implications for AGF, as this may 196 
reduce the amount of standing adaptive 197 
variation and thus adaptive potential. 198 
Ultimately, the spatial scale of adaptation is 199 
a function of gene flow, selection, and drift. 200 
In species with long-isolated populations 201 
and little gene flow, such structure could 202 
also risk lower compatibility between native 203 
and transplanted individuals, but outbreeding depression is unlikely in widespread, abundant, 204 
wind-pollinated trees (Aitken and Whitlock 2013). If adaptive variation is distributed as concordant 205 
range-wide genetic clines, loci underlying an adaptive trait will be polymorphic throughout most 206 
of the species range, except perhaps at the range margins, or in otherwise isolated or small 207 
populations. In this case, standing variation should exist for adaptive loci that could enable in situ 208 
adaptation to climatic change, as long as locally novel climatic conditions exist elsewhere in the 209 
species range and are not isolated from gene flow. Localized clines, in contrast, imply that standing 210 
variation in a subset of adaptive alleles is limited to only a portion of the species’ range. 211 

Figure 1: Illustration of rangewide vs. sequential, localized 
genetic clines (B-C) underlying a continuous phenotypic 
cline (A) along an environmental gradient (After Barton 
1999). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2019. ; https://doi.org/10.1101/568725doi: bioRxiv preprint 

https://doi.org/10.1101/568725
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evaluating genomic data for assisted gene flow 

 9 

2 Methods 212 

2.1 Phenotypic data 213 

2.1.1 Seedling common garden experiment 214 

The primary phenotypic data in this study originate from a raised bed common garden of 1,594 215 

lodgepole pine seedlings at Totem Field at the University of British Columbia in Vancouver, BC.  216 

Design, establishment, and measurement of the common garden, summarized here, are described 217 

in detail by MacLachlan et al. (2017). Briefly, seedlots originated from 281 provenances 218 

representing lodgepole pine’s climatic range within British Columbia and Alberta (Figure 2E). 219 

Seedlots were predominantly selected from the range of the Rocky Mountain subspecies (P. 220 

contorta Dougl. ex Loud. ssp. latifolia [Engelm.] Critchfield), but also include the coastal 221 

subspecies (P. contorta Dougl. ex Loud. ssp. contorta) and the region of hybridization with jack 222 

pine (Pinus banksiana Lamb.) in northern Alberta.  223 

Our study utilizes phenotypic data from four traits: growth initiation, growth cessation, autumn 224 

cold injury, and shoot mass (methods in MacLachlan et al. 2017). We removed experimental effects 225 

from phenotypic values by reporting phenotypes as z-standardized residuals of a linear mixed 226 

effects model, implemented with ASreml-R (Butler 2009), in which experimental block and 227 

location within block are random effects: 228 

 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐵𝐵𝑗𝑗 + 𝐿𝐿(𝐵𝐵)𝑗𝑗𝑗𝑗 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 (1) 229 

where 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 is the phenotypic observation of a trait made on individual i grown in the jth block (𝐵𝐵), 230 

at the kth seedling location (L) nested within block (𝐿𝐿(𝐵𝐵)𝑗𝑗𝑗𝑗), 𝜇𝜇 is the experimental mean, and 𝑒𝑒 is 231 

the residual error of individual 𝑖𝑖.  232 
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2.1.2 Illingworth provenance trial 233 

We analyzed 20-year heights from the Illingworth lodgepole pine provenance trial to 234 

corroborate the inferences from the Vancouver seedling common garden with longer-term data 235 

from sites more typical for this species. This trial, established in 1974 by the BC Ministry of Forests 236 

(Illingworth 1978; Wang et al. 2010), tested a rangewide (New Mexico to Yukon) collection of 237 

140 provenances at 60 sites in interior British Columbia. We assessed the strength of the univariate 238 

relationships between 20-year height and 19 climate variables for three contrasting trial sites: one 239 

each from southern (PETI), central (NILK) and northern (WATS) British Columbia (Supp. Info 240 

Figure S1). An adjusted R2 was estimated for the quadratic relationship between provenance 241 

climate and the average 20-year heights of the provenances at each test site. This relationship was 242 

estimated for each of the 19 standard climate variables (Table 1) used in this study.  Reported 243 

results are the mean R2 over the three sites.  244 

2.2 Climate data 245 

Climate normals 1961-1990 period for each provenance in the seedling common garden were 246 

obtained from ClimateNA (Wang et al. 2016), using the latitude, longitude, and elevation of each 247 

seedlot. The 19 bioclimatic variables used in this study (Table 1) are the same as used in previous 248 

analyses of genomic datasets from the AdapTree Project, selected a priori based on relevance to 249 

the species biology and environmental variation across provenances (Yeaman et al. 2016a; 250 

MacLachlan et al. 2017; Lotterhos et al. 2018). In addition to these 19 analysis variables, we use 251 

autumn mean daily minimum temperature (Tmin_at) as the environmental gradient for plotting 252 

phenotypic and genetic clines. We selected Tmin_at due to its biological relevance to autumn cold 253 

injury, growth cessation, and shoot mass.  254 
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2.3 Genomic data 255 

2.3.1 SNP table 256 

DNA was extracted from tissue of spring needles using a Macherey-Nagel Nucleospin 96 Plant 257 

II Core™ kit, automated on an Eppendorf EpMotion 5075™ liquid handling platform. Samples 258 

were genotyped by Neogen GeneSeek (Lincoln, Nebraska) using the AdapTree lodgepole pine 259 

Affymetrix Axiom 50K lodgepole pine SNP array. SNP discovery for this array was based on the 260 

lodgepole pine sequence capture dataset described by Yeaman et al. (2016) and Suren et al. (2016). 261 

It included probes for the exons of 24,388 genes, as well as intergenic regions, with intron-exon 262 

boundaries identified by mapping the lodgepole pine transcriptome to the loblolly pine (Pinus 263 

taeda L.) v1.01 draft genome (Neale et al. 2014, Zimin et al. 2014). SNPs were selected for 264 

inclusion based on preliminary GEA analyses as well as GPA using phenotypes for seedling traits 265 

(Yeaman et al. 2016), differentially-expressed genes (Yeaman et al. 2014), candidate genes for 266 

Environmental Variable (unit) Abbreviation 
Mean annual temperature (°C) MAT 
Mean warmest month temperature (°C) MWMT 
Mean coldest month temperature (°C) MCMT 
Continentality (MWMT  minus MCMT) (°C) TD 
Mean annual precipitation (mm) MAP 
May to September precipitation (mm) MSP 
Annual heat-moisture index (MAT+10)/(MAP/1000)) (°C/𝜇𝜇m) AHM 
Summer heat-moisture index ((MWMT)/(MSP/1000)) (°C/𝜇𝜇m) SHM 
Degree-days below 0°C, chilling degree-days DD_0 
Degree-days above 5°C, growing degree-days DD_5 
Number of frost-free days (days) NFFD 
Frost-free period (days) FFP 
The day of the year on which FFP begins (Julian date) bFFP 
The day of the year on which FFP ends (Julian date) eFFP 
Precipitation as snow between August and July (mm)  PAS 
Extreme minimum temperature over 30 years (°C) EMT 
Extreme maximum temperature over 30 years (°C) EXT 
Hargreaves reference evaporation (mm) Eref 
Hargreaves climatic moisture deficit (mm) CMD 

TABLE 1  The set of 
19 bioclimatic variables 
used in this study 
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climate adaptation from other conifers, mappable SNPs for a linkage map, and a set of non-coding 267 

loci to control for neutral population structure.  Genotypes from the SNP table were filtered to 268 

retain 36,384 SNPs with a minor allele frequency ≥ 0.01. Of these filtered loci, 4,750 selectively 269 

neutral SNPs (those intergenic SNPs that had no significant genotype-phenotype or genotype-270 

environment associations in the analyses of Yeaman et al. 2016) were selected for population 271 

structure correction in association analyses. Excluding this “neutral set”, the final candidate 272 

adaptive SNP table used in associations contained 31,634 SNPs. We genotyped 1,594 seedlings 273 

from the Vancouver outdoor common garden and an additional 1,906 seedlings from the same 281 274 

provenances grown in a separate growth chamber experiment (Liepe et al. 2016), for a total median 275 

sample size of 11 seedlings (range seven to 24) for each provenance  (Figure S2).  276 

2.3.2 Genotype-Phenotype Association (GPA)  277 

We implemented GPA using the phenotypic residual values (from Eq. 1) for each of the four 278 

traits measured at the Vancouver common garden using the linear regression-based mlma function 279 

in GCTA (Yang et al. 2011). We corrected for population structure using the grm option of mlma 280 

with the 4,750 putatively neutral SNPs described in §2.3.1. We limited marker data to one SNP per 281 

contig to reduce redundancies due to physical linkage, which reduced the number of available SNPs 282 

from 31,634 to ~19,600 SNPs. SNPs in the bottom 1% of GPA 𝑝𝑝-values for each trait were 283 

identified as candidate SNPs (𝑛𝑛 = 196 SNPs per trait).  For each candidate SNP, the allele that 284 

increased the value of a phenotype – called the positive effect allele (PEA) – was identified from 285 

the regression slope in the GCTA mlma output.  286 

2.3.3 Genotype-Environment Associations (GEA) 287 

We used bayenv2 (Coop et al. 2010; Günther & Coop 2013) to identify loci with evidence 288 

for responses to environmental selection. The neutral covariance matrix for this analysis was 289 
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estimated using the set of 4750 neutral loci for 100,000 iterations. For each centered and 290 

standardized environmental variable (Table 1), we ran bayenv2 in test mode for one million 291 

iterations across three independent chains for the 31,634 loci that did not overlap with the neutral 292 

set, using the covariance matrix to correct for neutral population structure. To reduce the marker 293 

set to one SNP per contig (~19,600 SNPs), we retained loci that had the greatest evidence for 294 

environmental response from each contig (average rank across absolute rho and Bayes factor [BF] 295 

across the three chains; i.e., six values). To ensure we isolated only loci with the strongest evidence 296 

for environmental influence, we re-ranked these ~19,000 loci and retained only those that met two 297 

criteria for a given environmental association: 1) the locus was in the top 300 ranked loci for BF 298 

for each of the three chains, and 2) was also in the top 300 ranked loci for absolute value of rho for 299 

each of the three chains. In addition to using these GEA loci towards our objectives, we report the 300 

number of loci identified using these criteria, as well as the overlap between GPA and GEA. 301 

2.4 Analyses 302 

We present three analyses that correspond to the three research questions posed in the final 303 

paragraph of the Introduction.  304 

2.4.1 Phenotypic variation explained by geographical, climatic, and genomic data.  305 

One way of assessing the relative value of geographic, climatic and genomic data for guiding 306 

assisted gene flow and other climate adaptation strategies is to measure the degree to which they 307 

can be used to statistically explain locally adaptive phenotypic variation. The dimensionality of the 308 

information in each data source is expected to differ: for example, genome-wide data may be 309 

distributed over many more modes of variation than the three dimensions (latitude, longitude, 310 

elevation) required to fully describe geographic location. These data sources can compared on 311 

equal terms by extracting their principal components (PCs) and assessing the cumulative 312 
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explanatory content of increasing numbers of PCs as predictor variables. Explanatory content in 313 

this case is measured as proportion of variance explained (R2) by a multivariate regression of 314 

phenotypic values (the response variable) against the PCs of the geographical, climatic, or genomic 315 

data (the predictor variables). We used multiple linear regression for this purpose, and report the 316 

mean R2 of a 5-fold cross-validation implemented with the cv.lm function of the DAAG package 317 

in R (R Core Team 2017). For comparison, we also performed this analysis with Random Forest 318 

regression, a regression tree ensemble learning algorithm that provides cross-validated modeling 319 

of non-linear relationships and variable interactions (Breiman 2001).  For this analysis, we selected 320 

a subset of climate-associated GPA loci with R2>0.2 in multiple linear regressions on the 19 climate 321 

variables specified in Table 1.  322 

2.4.2 Climatic drivers of local adaptation 323 

We examine the congruence of genomic vs. phenotypic data in guiding climatic variable 324 

selection by contrasting the proportion of variance of individual climate variables that is explained 325 

by climate-associated genomic loci, seedling common garden phenotypes, and long-term 326 

provenance trial phenotypes.  For each data source, we conducted one regression for each of the 327 

19 climate variables (Table 1), in which the response (dependent) variable is the provenance 328 

climates for a single climate variable.  The predictor (independent) variables for the genomic 329 

regressions are the first four principal components of the minor allele frequencies for the top-300 330 

GEA loci associated with the climate variable of interest (see §2.3.3 for GEA methods).  The 331 

predictor variables for the seedling common garden regressions are the provenance means of the 332 

standardized phenotypes for the four traits (see §2.1.1). The predictor variables for the long-term 333 

provenance trial are the 20-year heights measured at three sites of the Illingworth trial (see §2.1.2). 334 

Note that the Illingworth data sample a different set of provenances than the genomic and seedling 335 
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common garden data, and thus are essentially independent of these two other data sources. As in 336 

the previous analysis (§2.4.1), we used multiple linear regression and report the mean R2 of a five-337 

fold cross-validation for each regression.  338 

2.4.3 Spatial scale of local adaptation to climate 339 

To characterize the genetic clines associated with the seedling traits measured in the common 340 

garden, GPA loci were clustered using a Euclidean k-means algorithm (kmeans{stats}; R Core 341 

Team 2017). To cluster SNPs, we transposed the provenance-mean positive-effect allele frequency 342 

data so that SNPs occupied the row (observations) position and provenances occupied the column 343 

(variable) position. Clusters, then, are SNPs that have similar allele frequencies across 344 

provenances. Similarity in this configuration is distinct from correlation: SNPs with large 345 

differences in aggregate allele frequency will be put in separate clusters, even if they are very 346 

highly correlated. Hence this clustering approach is distinct from standard LD clustering 347 

approaches based on allele frequency covariance. We use the cluster mean positive-effect allele 348 

frequency for each provenance to visually summarize the clusters. Averaging reduces variance, 349 

however, which distorts genetic clines. To restore the variance of the cluster mean positive effect 350 

allele (PEA) frequency, we multiplied the cluster-mean PEA frequency for each provenance by the 351 

mean standard deviation of the SNPs in the cluster.  352 

To investigate levels of standing variation, we calculated expected heterozygosity (He) for 353 

each PEA in each provenance. The cluster-mean He for each provenance is the mean He for each 354 

SNP within the cluster. We report standing variation as proportional polymorphism for each 355 

provenance: the proportion of SNPs within a cluster with He > 0.  356 
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3 Results 357 

3.1 Phenotypic clines 358 

Provenance-mean phenotypes for all four traits measured in the Vancouver common garden 359 

exhibit moderate to strong clines relative to study area temperature gradients where the timing of 360 

growth cessation and fall cold injury show the strongest relationships with many climate variables, 361 

such as autumn mean daily minimum temperature (Figure 2). In general, trees from colder 362 

provenances initiated growth slightly earlier, ceased growth earlier, achieved less total growth, and 363 

exhibited less cold injury. Autumn cold injury in particular has a very strong relationship (r = 0.83) 364 

to autumn temperature. Within-provenance variation among individuals is generally uncorrelated 365 

among the four traits (Figure S3). However, within-provenance variation of shoot mass is 366 

positively correlated to growth cessation day (𝑟𝑟=0.59) and weakly but significantly negatively 367 

correlated to growth initiation day (𝑟𝑟 = -0.18, 𝑝𝑝 = 2E -12). This result may be due to the benign 368 

FIGURE 2 Phenotypic clines of four traits in lodgepole pine seedlings grown in a common garden. A total of 1,594 
seedlings from 281 provenances across British Columbia and Alberta, Canada (grey and black circles) were 
phenotyped for growth initiation (A), growth cessation (B), and three-year shoot mass (D). A subset of 922 seedlings 
from 105 provenances (black circles) were tested for autumn cold injury (C). Phenotypic clines (A-D) are plotted on 
an environmental gradient of autumn mean daily minimum temperature, mapped in (E). 
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maritime climate of the common garden; seedlings with a longer growth period are not penalized 369 

by environmental constraints such as growing season frosts. Correlations of among-provenance 370 

variation in growth cessation, fall cold injury, and shoot mass are moderate to strong. Growth 371 

initiation is poorly correlated with the other traits.  372 

3.2 Phenotypic variation explained by geographical, climatic, and genomic data 373 

The absolute and relative explanatory content of geographical, climatic, and genomic data 374 

differs among traits (Figure 3). Differences in the explained phenotypic variation among traits 375 

generally exceed the differences among the three types of data (geographic, climatic and genomic) 376 

within traits, and mirror the strength of the phenotypic clines in Figure 2. Nevertheless, there are 377 

important differences in the relative explanatory content of geographic, climatic, and genomic data 378 

among traits. In general, geographic variables (yellow diamonds) are as predictive of seedling 379 

phenotypes as climatic variables (gray circles, Figure 3), consistent with strong local adaptation to 380 

geographically-based climate in this species. The exception is growth initiation, where geographic 381 

variables are more explanatory than climate. The GPA SNPs (solid black line, Figure 3) are more 382 

explanatory than climate and geography in growth initiation and shoot mass but not growth 383 

cessation, where they are equivalent, and cold injury, where they are slightly inferior.   384 

The relative explanatory power of different types of genomic data is consistent among traits 385 

(Figure 3), and provides several insights. First, GPA SNPs (solid black line) consistently have the 386 

highest explanatory power. Since the GPA SNPs are a subset of the full array (solid gray line), the 387 

difference between GPA and full SNP array indicates the value of extracting the relevant genetic 388 

information. Second, the climate-associated GPA SNPs (black-dashed line, Figure 3) generally 389 

explain less phenotypic variation than the full set of GPA SNPs. In the case of growth initiation, 390 

however, climate-associated GPA SNPs explain more phenotypic variation than climate variables. 391 
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Third, the GEAs identified using bayenv2 (Supplemental Table S1) consistently have low 392 

explanatory power to predict phenotypic variation, but higher and more stable explanatory power 393 

than the neutral set and the full SNP array. There is a fairly high overlap of GEA with GPA loci, 394 

FIGURE 3 Common garden phenotypic variance explained (PVE) for four traits by cumulative principal components 
of geography (diamonds), climate (circles), and several subsets of genomic data from a SNP array (lines). Each point 
is the cross-validated R2 of a multiple linear regression of provenance-mean phenotype against the specified number 
of principal components of the predictor data. GEA SNPs (thin black line) are the pooled top-300 SNPs based on 
Bayes factor from each of the 19 climate variables. GPA SNPs (thick black line) are the top 1% of coding-region 
SNPs (maximum of one SNP per contig) based on the p-value of a population-structure-corrected linear association 
of allele frequencies to seedling phenotypes. Climate-associated GPA SNPs (black dashed line) are GPA SNPs with 
a linear association to climate (see §2.4.1). The neutral set is shown as a grey dashed line.  
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with an average of 53% of GEA SNPs from various environmental variables found within 1000 bp 395 

of GPA loci (range 0% for NFFD to 81% for EXT; sd = 20.6%), and a total of 35% of GPA SNPs 396 

found within 1000bp of the GEA loci found across environmental variables (Supplemental Table 397 

S1). This is another line of evidence of the strong role of climate in driving phenotypic variation 398 

among provenances.  399 

The neutral set and full SNP array both have explanatory relationships with phenotypes, but 400 

these are not as strong as relationships with geographic, climatic, and filtered genomic data (Figure 401 

3). An equivalent analysis to Figure 3 using Random Forest regression instead of linear regression 402 

demonstrates that both the neutral set and full SNP array contain almost as much non-linear 403 

explanatory information as the climatic and geographic variables (Figure S4). Further, some 404 

subsets of the neutral set exhibit linear relationships to phenotype that are as strong and stable as 405 

the relationships of GEA loci to phenotype (Figure S5).  406 

Traits differ substantially in the dimensionality of their associated genomic information, i.e., 407 

the number of PCs at which further gains in explanatory information are not achieved.  Explainable 408 

variation in growth initiation, growth cessation, and autumn cold injury are almost completely 409 

described by the first two PCs (Figure 3). In contrast, five PCs are required to describe the 410 

explainable variation in shoot mass. The dimensionality of explanatory information in the different 411 

traits speaks to the complexity of genetic controls on the trait. 412 

3.3 Climatic drivers of local adaptation 413 

The GEA loci show general congruence with both the short-term (3-yr) common garden 414 

experiment (Figure 4A) and a longer-term (20-yr) provenance trial (Figure 4B). Across both 415 

phenotypic traits and the genomic GEA data, there is agreement that local adaptation is strongly 416 

associated with winter temperature variables: mean temperature of the coldest month (MCMT), 417 
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degree-days below 0oC (DD_0), winter-summer temperature contrast (TD), and extreme minimum 418 

temperature (EMT; variables in upper right of Figure 4A and 4B). Note that mean annual 419 

temperature can be considered primarily a winter variable in this study area because spatial 420 

variation in mean temperature along the latitudinal gradient is much stronger in winter than in other 421 

seasons. In the Vancouver common garden (Figure 4A), this congruence between genotypic and 422 

phenotypic relationships to climate variables is broken by summer temperature variables (Eref, 423 

EXT, DD5, and MWMT), which have moderate associations with phenotypes (x-axis) but low 424 

associations with genotypes (y-axis). In the provenance trial (Figure 4B), the congruence is broken 425 

by summer precipitation variables (MSP and CMD), which have low associations with phenotype 426 

but moderate associations with genotype. The same pattern of these relationships is produced using 427 

either the full SNP array or the neutral SNPs in place of the GEA SNPs (Figures S6 and S7, 428 

FIGURE 4 Climatic variable selection based on phenotypic vs genomic data. Variance explained is the cross-
validated R2 of a multiple linear regression of each climate variable (response variable) against the phenotypic or 
genomic predictor variable set. Genomic data (predictor variables for the y-axis analyses) are four principal 
components of the minor allele frequencies for the top-300 GEA SNPs identified by bayenv2 for each climate 
variable. Phenotypic data (predictor variables for the x-axis analyses) for panel A are provenance-mean phenotypes 
for the four common-garden traits presented in Figure 2. Phenotypic predictor data for panel B are 20-year heights of 
the Illingworth lodgepole pine provenance trial. Climate variable acronyms are described in Table 1. 
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respectively).  429 

3.4 Spatial scale of local adaptation to climate 430 

All four common garden traits exhibit linear phenotypic clines over many of the climatic 431 

gradients of the study area, where the strongest of these clines is autumn cold injury relative to 432 

autumn temperature (Figure 2C; 𝑟𝑟 = 0.83). To detect whether genetic clines for cold injury loci 433 

along environmental gradients are rangewide or localized, we examined the 𝑛𝑛 = 80-locus subset of 434 

the 196 cold injury GPA candidates that are also moderately associated with the 19 climate 435 

variables (Random Forest pseudo-𝑅𝑅2 > 0.31; Figure S8). We clustered these 80 loci into six clusters 436 

based on their absolute PEA frequencies across provenances (Figure S9). The within-cluster mean 437 

PEA frequencies of these six clusters have distinct clines (Figure 5) relative to the gradient in 438 

autumn temperature across the study area (Figure 2). Clusters 2, 4, and 5 show no clinal variation 439 

FIGURE 5 Genetic clines associated with autumn cold injury. (A-F) the 80 climate-associated GWAS SNPs for 
autumn cold injury are clustered based on similarities in positive effect allele (PEA) frequencies across provenances 
(n=281). Each point is the mean of the PEA frequencies across clustered SNPs for one provenance, with a correction 
applied to restore the variance of the PEA frequencies following averaging. The colored bands in each plot, 
superimposed in panel G, are locally-weighted 0.5-standard deviation prediction intervals. Recall that the y-axes are 
reflecting the frequency of PEAs that are associated with increased cold injury 
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across provenance temperatures below -3oC, but have a clinal increase in PEA frequency across 440 

higher temperatures (Figure 5). Cluster 6 has essentially the opposite pattern, in that it shows clinal 441 

variation almost exclusively below the -3oC autumn temperature threshold. The adaptive variation 442 

in cluster 6 is of particular interest, in the context of standing variation, because it is localized to a 443 

high degree relative to the other clusters. Cluster 1 has an inverse pattern to cluster 6 relative to 444 

provenance climate, and primarily reflects variation associated with the coastal ssp. contorta, 445 

which occur at Tmin_at >2oC. Cluster 3 exhibits increased variation in the interior of BC, which 446 

appears to be reversed in the warmer climates of the coast.   447 

To contrast the extent of rangewide vs localized clines, the geographic patterns of allele 448 

frequencies in clusters 4 and 6 are shown in Figure 6. Cluster 4 represents the dominant rangewide 449 

genetic cline over the study area, and is largely parallel with clusters 2 and 5. Cluster 6 is the 450 

complementary cline to cluster 4 as it reflects adaptive variation for cold hardiness in boreal 451 

provenances. Cluster 4 has a strong cline with respect to the joint thermal gradient of latitude and 452 

elevation (Figure 6C). Putatively adaptive alleles of cluster 6 are predominantly found in the Boreal 453 

climates of Northern Alberta, Northeastern BC, and the eastern foothills of the Rocky Mountains 454 

(Figure 6F). Unlike cluster 4, cluster 6 does not have a pronounced elevational cline at low latitudes 455 

(Figure 6D). With the exception of two coastal provenances, all provenances have standing 456 

variation in some of the adaptive alleles in each cluster, though several provenances west of the 457 

Rocky Mountains (i.e., in British Columbia) have no standing variation in at least half of the cluster 458 

6 loci (Figure S10).  459 

4 Discussion 460 

This study uses a large sample of locally adapted P. contorta provenances from across western 461 

Canada to evaluate genomic data, relative to phenotypic and climatic data, as a basis for assisted 462 
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463 

 
FIGURE 6 Contrasting geographic patterns of standing variation in rangewide and localized genetic clines 
associated with autumn cold injury. A rangewide cline (Cluster 4, left column) and a localized cline (Cluster 6, 
right column) relative to the autumn temperature gradient (Tmin_at) in the sampled provenances (A and B, 
respectively) as previously shown in Figure 4D & 4F. These clines are also compared across latitude and elevation 
(C,D), and latitude and longitude (E,F). Populations are colored with respect to PEA frequency (alleles that are 
associated with an increase in autumn cold injury). 
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gene flow and genetic conservation. In the introduction, we posed three research questions related 464 

to this objective. The first was: what is the relative value of genomic data vs. climatic and 465 

geographic data in explaining variation in locally adapted traits? All data types identified the 466 

importance of adaptation to seasonally low temperatures driving population differentiation across 467 

western Canada. On average, the best predictors of seedling traits were the GPA SNPs, both the 468 

full set and the subset that was also associated with climate (Figure 3). For cold injury and growth 469 

cessation, the climate variables had similar predictive power to the GPA SNPs. For all traits, the 470 

neutral and GEA SNPs explained far less variation than climate, GPA SNPs or even geographic 471 

coordinates. This suggests that loci associated with climate-relevant traits within populations are 472 

both effective for revealing adaptive differences among populations, as well as elements of genetic 473 

architecture underlying adaptive responses that can be useful guiding management or conservation 474 

decisions. 475 

The second question was: can genomic data identify the climatic drivers of local adaptation? 476 

Genotype-environment associations and a long-term provenance trial had strong agreement on the 477 

climatic drivers of local adaptation, namely winter temperature-related variables (Figure 4). These 478 

dominant drivers also held for short-term common garden seedling traits, though the overall 479 

relationship to the GEA result was weaker. This suggests that genomic data can be a viable option 480 

for identifying the key climatic controls on productivity and lifetime fitness, and may even be more 481 

reliable for this purpose than seedling traits in some contexts (Figure S11).  482 

The third question was: what is the spatial scale of local adaptation in climatically adaptive 483 

traits? We found that some of the genetic clines associated with the observed phenotypic cline in 484 

cold injury are constrained to the extremes of the study area (Figure 5). However, we did not find 485 

compelling evidence for highly localized genetic clines at scales that would constrain local seed 486 
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transfer to scales finer than those indicated by phenotypic data or necessitate geographically small 487 

genetic conservation units (Figures 5 and 6).  488 

4.1 Phenotypic variation explained by geographical, climatic, and genomic data.  489 

The predictive power of climate variables, geography, and genotypes varied greatly among 490 

seedling traits. It is widely recognized that cold hardiness shows strong population differentiation 491 

in most temperate and boreal species (Howe et al. 2003; Alberto et al. 2013; Aitken and Bemmels 492 

2016), and we found strong population differentiation for cold injury, as well as high predictability 493 

of cold injury from climatic, geographic, and GPA SNP data (PVE > 0.6). However, the remaining 494 

traits were not strongly predicted with any of the given data (PVE < 0.5, Figure 3). Variability in 495 

the predictive ability among traits for a given data source, or among data sources for a given trait 496 

may be due to several factors, including (discussed in Lind et al. 2018): 1) how well each phenotype 497 

is correlated with lifetime fitness; 2) the degree to which the trait is polygenic; 3) the mode of gene 498 

action underlying the genetic architecture of the trait (e.g., additive, epistatic/GxE, or pleiotropic); 499 

4) the primary source of genetic variation in a trait (i.e., protein coding or regulatory regions); 5) 500 

the degree to which selection has structured variation within the species (i.e., the joint effects of 501 

selective forces and demographic dynamics); or 6) shortcomings of methodologies (e.g., correcting 502 

for population structure that could remove adaptive signals that covary with demography).  503 

While this study focussed on relatively few seedling traits, there are undoubtedly many 504 

other traits at various life history stages that have population differences associated with local 505 

climate (e.g., biotic and abiotic responses, reproduction, and tree form). Our GPAs specifically 506 

identify SNPs associated with our focal seedling traits, and so it is not surprising that the GPA 507 

SNPs from individual seedling traits were better predictors of a given trait than the GEA SNPs 508 

(Figure 3). Even so, the GPA SNPs were consistently the best set of markers for explaining 509 
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variation in phenotypes, and second only to climate for growth cessation and cold injury (Figure 510 

3), emphasizing the added value of these candidate loci. Climate also consistently explained 511 

phenotypic variation well, relative to genomic data, for traits other than growth initiation. 512 

Geographic coordinates (latitude, longitude, and elevation) predicted all seedling traits quite well, 513 

explaining the success found in the vast body of older genecological literature in forest trees that 514 

used geographic variables as a proxy for climate before spatial climatic data became widely 515 

available. 516 

In line with expectations of polygenic architectures for most of the traits, the entire SNP 517 

array (~31K SNPs) was able to predict some of the variation in these traits. Neutral SNPs from 518 

non-coding regions of the genome were also able to explain a substantial portion of phenotypic 519 

variation in all traits except shoot mass (Figure 3), and were equivalent to all other data sources as 520 

a predictor set for Random Forest regressions (Figure S4). The predictive power of neutral SNPs 521 

emphasizes the potential to confound neutral population structure with adaptive variation, or to 522 

overcorrect for population structure and as a result, overlook adaptive markers, particularly for 523 

species whose demographic history is aligned with environmental gradients. In this case, the post-524 

glacial expansion of lodgepole pine likely matches the strong latitudinal gradient of winter 525 

temperatures. Since the analyses identifying GEA and GPA SNPs both adjusted for population 526 

structure, we may have eliminated some loci involved in local adaptation from consideration 527 

through this adjustment. 528 

4.2 Climatic drivers of local adaptation 529 

To design an assisted gene flow strategy that matches populations with suitable sites based 530 

on current and near-future climates, it is important to understand the climatic factors that have 531 

driven local adaptation. Once the key climatic factors for local adaptation are identified, a climate 532 
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distance metric can be constructed to match seed sources with sites (e.g., Climate-Based Seed 533 

Transfer, O’Neill 2017, and Seedlot Selection Tool, https://seedlotselectiontool.org/sst/). Our GEA 534 

results for individual climate variables ranked the variable importance similarly to those identified 535 

based on growth in a 20-year field provenance trial and, to a lesser extent, to our seedling common 536 

garden phenotypes. Both sets of phenotypic data identified winter temperature variables including 537 

mean coldest month temperature, degree days below 0o, and extreme minimum temperature as 538 

important drivers of local adaptation. Other studies of these provenances (e.g., Liepe et al. 2016) 539 

and other populations of lodgepole pine in western Canada (e.g., Rweyongeza et al. 2007; Wang 540 

et al. 2010; McLane et al. 2011) corroborate these climatic variables as strong historic drivers of 541 

adaptation and differentiation, and at relatively broad spatial scales (Liepe et al. 2016). 542 

Nevertheless, the result that our set of neutral markers produced nearly equivalent climate variable 543 

rankings to the GEA set (Figure 4 vs. Figure S7) indicates that the substitution of genomic for 544 

phenotypic data needs to be approached with some caution.   545 

Future pressures from drought are expected to become increasingly relevant for lodgepole 546 

populations as climate change progresses throughout the next century (Monserud et al. 2006, 2008; 547 

McLane et al. 2011). GEA-climate relationships were stronger than field phenotype-climate 548 

relationships for summer precipitation-related variables such as mean summer precipitation and 549 

cumulative moisture deficit (Figure 4). This suggest that water availability might result in 550 

diversifying selection across populations. A previous study with these populations found no 551 

significant population variation for drought-related seedling traits including stable carbon isotope 552 

ratios and biomass allocation to roots (Liepe et al. 2016); however, it did not include populations 553 

from drier provenances in the southern portion of the species range, and these may show stronger 554 

drought adaptation. Interestingly, the seedling common garden phenotypes in this study from the 555 
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mild, maritime Vancouver climate had stronger associations with summer heat-related variables 556 

than the genomic data (Figure 4a).  557 

None of the phenotypes we analyzed represent lifetime fitness. Nonetheless, the 558 

concordance of climatic drivers of seedling phenotypes, 20-year growth in the field, and genomic 559 

data are encouraging (Figure 4). The closest proxy to fitness among the seedling traits we analyzed 560 

may be seedling shoot mass, as a measure of growth during the common garden experiment. Trees 561 

that achieve larger sizes within the available frost-free period for growth will generally have higher 562 

fecundity as they have larger crowns with more sites for pollen and seed cone production. Forest 563 

managers are also ultimately interested in tree size for wood production, and trees with good 564 

juvenile growth are likely to grow well in a restoration context. We found weaker population 565 

differentiation for shoot mass than for the other seedling traits. Tree size is the product of many 566 

other component traits affecting seedling health and vigour, including phenology (which we 567 

analyzed directly as growth initiation and cessation), abiotic stress tolerance (including cold 568 

injury), resistance to insects and diseases, resource acquisition and allocation, physiological 569 

processes, cell density, etc. It is likely that loci underlying variation in growth have pleiotropic 570 

effects, and that they respond to selection through trade-offs in the various fitness consequences of 571 

component traits contributing to growth. 572 

Which of these data sources – seedling phenotypes, field phenotypes, or genotypes – should 573 

be considered the standard against which the others are compared? One could argue that field-574 

based growth over two decades better reflects meaningful provenance differences expressed in 575 

typical habitat. On the other hand, the precision phenotyping of seedlings for phenology and cold 576 

hardiness is difficult or impossible in long-term field trials, and these traits should be strongly 577 

linked with climate for boreal, sub-boreal, and montane species. Finally, it may be that the GEA-578 
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climate patterns provide the best indication of long-term selection as they may reflect periodic, 579 

episodic extreme climatic events causing injury and mortality that are not observed even over long 580 

field experiments. In any event, given the extensive overlap in top climate variables among these 581 

methods, we suggest that GEA approaches can rapidly provide information on climatic drivers of 582 

local adaptation for the design of assisted gene flow strategies when phenotypic data are not 583 

available. However, the potential for population structure to confound GEA approaches remains 584 

an important consideration.  585 

4.3 Spatial scale of local adaptation to climate 586 

We evaluated variation at adaptive loci against a model of localized versus rangewide genetic 587 

clines (Figure 1, sensu Barton 1999) along climatic temperature gradients (Figure 2). We found 588 

evidence of both localized and broad-scale genetic clines for clusters of SNPs associated with 589 

autumn cold injury (Figure 5 and Figure S8). Overall, the genetic clines associated with autumn 590 

cold injury do not exhibit the strongly sequential, localized clines envisioned by Barton (1999) and 591 

Savolainen et al. (2007), nor are all genetic clines coincident across the range of environments, but 592 

rather fit a model intermediate to the hypothetical scenarios illustrated in Figure 1B and 1C. Our 593 

study sampled provenances over only half of the species’ latitudinal range. It may be that sequential 594 

localized genetic clines would be more evident if our study included the full species range. While 595 

some clines for the major adaptive clusters we identified are largely variable across the range, there 596 

is a group of six SNPs that all show clines in the boreal region of the study area, but not in warmer 597 

areas (cluster 6 in Figure 5). These clines complement those of several other clusters for SNPs that 598 

are relatively invariant in the boreal portion of the range but vary in warmer regions (clusters 1, 2, 599 

and 4 in Figure 5). For instance, cluster 6 alleles conferring cold hardiness (the alternate PEA allele) 600 

have reduced standing variation in warmer provenances west of the Rocky Mountains, and follow 601 
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both elevational and latitudinal patterns of temperature clines (Figures 5 and 6). Failure to detect 602 

polymorphisms for these SNPs in these provenances may be an artefact of small sample sizes 603 

(6<𝑛𝑛<13) in a majority of the studied provenances (Figure S2). Nevertheless, these results indicate 604 

reduced genetic diversity for boreal-associated alleles of cluster 6. The absence of these alleles may 605 

be a limiting factor in seed transfer from sub-boreal to boreal climates, or across the Rocky 606 

Mountains. This localization may be indicative of alleles conferring additional cold hardiness in 607 

the coldest areas of the sampled range that may have trade-offs in the warmer areas (e.g., via 608 

pleiotropy or GxE such as conditional neutrality). Even so, the alleles in cluster 6 were not 609 

associated with the other phenotypes in our study (while all other clusters had associations to at 610 

least three phenotypes). Future investigation may be warranted, as the lack of pleiotropy inferred 611 

from associations to multiple phenotypes in cluster 6 may be a function of the cluster’s sample 612 

size, of linkage to unsampled antagonistic (regulatory) sites, conditional neutrality underlying gene 613 

action (or other GxE), of unmeasured phenotypes important to adaptation, or of other statistical 614 

and methodological shortcomings.  615 

While our results suggest that localized genetic clines (Figure 5), and provenances 616 

associated with low genetic diversity in adaptive alleles (Figures 6 and S8), are evident in lodgepole 617 

pine, we did not find compelling evidence for localized genetic clines at scales that would constrain 618 

local seed transfer more narrowly than previous estimates of adaptive scales based on phenotypes 619 

(cf. Figure 4 in Liepe et al. 2016; Wang et al. 2010; Ukrainetz et al. 2018) or current seed transfer 620 

policy would suggest (Ying and Yanchuk 2006; O’Neill et al. 2017), nor at scales that would 621 

necessitate highly localized spatial genetic conservation units. At present, British Columbia’s 622 

genetic conservation program for forest trees uses British Columbia’s 16 Biogeoclimatic 623 

Ecological Classification (BEC) zones to assess adequacy of both in situ (Hamann et al. 2004; 624 
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Chourmouzis et al. 2009) and ex situ (Krakowski et al. 2009) genetic conservation for all 50 of 625 

BC’s native tree species. If other species show patterns of distribution of adaptive diversity similar 626 

to lodgepole pine, continued management of conservation populations within these ecological 627 

zones should be sufficient (Liepe et al. 2016). 628 

Climate-based local adaptation has long been observed for many plant species (Leimu and 629 

Fisher 2008; Hereford 2009) including conifers (Langlet 1971; Savolainen et al. 2007; Boshier et 630 

al. 2015; Lind et al. 2018), the scale of which is determined by the interplay between migration, 631 

selection, and drift (discussed in Lenormand 2002, Tigano & Friesen 2016). Historically, the spatial 632 

scales over which local adaptation occurs has been inferred from both short- and long-term 633 

transplant experiments (Langlet 1971; Morgenstern 1996). Only recently has the technology been 634 

available to study the spatial distribution of adaptive variation at loci across the genome. This new 635 

source of insight into local adaptation comes at a time when climate change creates an imperative 636 

for mitigating inevitable risks of productivity loss and threats to natural populations across forestry, 637 

agricultural, and natural systems. The common sources of data used towards such purposes, such 638 

as field provenance trials, seedling common gardens, scale-free spatial climatic data, and genomic 639 

studies, however, come with varied logistical limitations and are not always feasible or appropriate 640 

in every situation (Blanquardt et al. 2013; Sork et al. 2013; Gibson et al. 2016; Hoban et al. 2016; 641 

Flanagan et al. 2018). The large number of phenotyped and genotyped provenances in this study 642 

allow us to quantify and compare detailed spatial and climatic patterns of adaptive variation, and 643 

to assess their utility for planning assisted gene flow, the need for in situ and ex situ genetic 644 

conservation, and the potential for populations to adapt to new climates without intervention. While 645 

our data are for lodgepole pine, we hope these results will inform and accelerate climate adaptation 646 

efforts with other widespread species.  647 
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Table S1. Overlap between genotype-environment associations (GEA) from bayenv2 and genotype-phenotype associations (GPA). The GEAs column 977 
indicates the number of environmentally associated loci that met our filtering criteria (locus in top 300 ranks for Bayes factor across all three chains, and also in 978 
top 300 ranks for rho across all three chains, after filtering for one SNP per contig). Numbers in phenotypic columns indicate the overlap of GEAs with GPA hits 979 
(i.e., the same position in each association), with the number in the parenthesis being the additional number of unique GPA hits that were within 1000bp of a GEA 980 
hit. Unique GPA Hits is the unique number of loci across these phenotypic columns for a given environmental variable, with parenthetical values indicating the 981 
additional number of unique GPA hits within 1000bp of a GEA. The last row indicates the unique number of SNPs from a given column. Environmental 982 
abbreviations as in Table 1 of main text. 983 

Environmental  
Variable GEAs Budbreak Budset Cold injury Shootmass Unique GPA Hits 

AHM 202 15 (5) 41 (23) 4 (2) 1 (1) 52 (26) 
CMD 238 32 (12) 67 (33) 36 (12) 25 (8) 86 (36) 
DD5 192 46 (26) 32 (11) 48 (14) 39 (9) 82 (32) 
DD_0 142 36 (21) 35 (21) 37 (15) 32 (10) 63 (32) 
EMT 129 49 (17) 30 (12) 42 (12) 32 (9) 69 (26) 
EXT 26 12 (4) 14 (6) 15 (4) 15 (3) 15 (6) 
Eref 234 37 (9) 69 (29) 42 (14) 30 (9) 93 (35) 
FFP 193 65 (17) 31 (7) 50 (9) 39 (8) 95 (23) 
MAP 117 19 (11) 31 (23) 7 (5) 2 (3) 43 (29) 
MAT 186 59 (30) 40 (25) 44 (16) 35 (10) 93 (47) 
MCMT 188 49 (22) 29 (14) 41 (14) 30 (9) 70 (30) 
MSP 202 23 (10) 52 (32) 16 (9) 10 (9) 64 (35) 
MWMT 141 21 (8) 35 (12) 41 (12) 39 (8) 56 (18) 
NFFD 2 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
PAS 112 0 (1) 3 (3) 4 (1) 3 (1) 9 (4) 
SHM 233 30 (10) 65 (32) 33 (11) 22 (9) 85 (35) 
TD 161 10 (9) 9 (13) 15 (10) 7 (7) 19 (17) 
bFFP 167 52 (22) 26 (9) 43 (13) 37 (10) 79 (30) 
eFFP 174 64 (18) 29 (8) 45 (11) 35 (10) 90 (26) 

unique loci 901 105 (44) 102 (63) 77 (34) 49 (24) 212 (105) 
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 985 
Figure S1: Source provenances and selected trial sites for the Illingworth lodgepole pine provenance trial.  986 
 987 

 988 
Figure S2: Sample size of common garden phenotyping and genotyping. SNP array Genotyping was conducted on 989 
phenotyped common garden seedlings and an additional sample of seedlings grown in a growth chamber.   990 
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 991 
Figure S3: Among- and within-provenance relationships between the four traits. Among-provenance variation is 992 
the variation of provenance-mean phenotypic values. Within- provenance variation is the variation of individual 993 
seedling phenotypes that have had their provenance-mean phenotypic value subtracted.  994 

 995 
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 996 
Figure S4:  Equivalent analysis for Figure 3, using Random Forest regression instead of linear regression.  Each 997 
point is the pseudo-R2 of a Random Forest regression of provenance-mean phenotype against the specified number of 998 
principal components of the predictor data. GEA SNPs (thin black line) are the pooled top-300 SNPs based on Bayes 999 
factor from each of the 19 climate variables. GPA SNPs (thick black line) are the top 1% of coding-region SNPs 1000 
(maximum of one SNP per contig) based on the p-value of a population-structure-corrected linear association of allele 1001 
frequencies to seedling phenotypes. Climate-associated GPA SNPs (black dashed line) are GPA SNPs with further 1002 
support for strong association to climate (see methods). The neutral set is shown as a grey dashed line 1003 

 1004 
  1005 
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 1006 
Figure S5: Explanatory power of small subsets of neutral SNPs.  Each point is the cross-validated 𝑹𝑹𝟐𝟐 of a multiple 1007 
linear regression of provenance-mean phenotype against the specified number of principal components of minor allele 1008 
frequency in an n=196 subset of neutral SNPs. Each grey line is a different subset, selected sequentially from the 1009 
neutral set. The black line is the equivalent analysis for the full neutral set.   1010 
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 1011 
Figure S6:  Climatic variable selection based on phenotypic vs genomic data, equivalent to Figure 4 except using 1012 
the full SNP array instead of GEA SNPs. Variance explained is the cross-validated 𝑹𝑹𝟐𝟐 of a multiple linear regression 1013 
of each climate variable (response variable) against the phenotypic or genomic predictor variable set. Genomic data 1014 
(predictor variables for the y-axis analyses) are four principal components of the minor allele frequencies for the full 1015 
SNP array (n=31634 SNPs). Phenotypic data (predictor variables for the x-axis analyses) for panel A are provenance-1016 
mean phenotypes for the four common-garden traits presented in Figure 2. Phenotypic predictor data for panel B are 1017 
20-year heights of the Illingworth lodgepole pine provenance trial. Climate variable acronyms are described in Table 1018 
1. 1019 

 1020 
Figure S7:  As in Figure S6 above, but using the neutral set (n=4750 SNPs) instead of the full SNP array.  1021 
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 1022 
Figure S8: Relationship of GPA-selected loci to climate.  The y axis is the pseudo-𝑹𝑹𝟐𝟐 of a random forest regression 1023 
of population-mean PEA frequency (response variable) to the 19 bioclimate predictor variables. PEAs are arranged in 1024 
order of increasing GPA 𝒑𝒑-value (decreasing significance), with a random sample of neutral SNPs shown for 1025 
comparison.  1026 
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 1027 
Figure S9: Genetic clines of climate-associated (pseudo-𝑹𝑹𝟐𝟐 > 0.32) GPA loci for autumn cold injury. Loci are 1028 
clustered by PEA frequency across provenances. The x axis is autumn mean daily minimum temperature; the y axis is 1029 
population-mean PEA frequency.  1030 
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 1031 
Figure S10: proportional polymorphism, by cluster, for each provenance: The percentage of the SNPs in each cluster 1032 
that have standing variation in both alleles, i.e., 𝑯𝑯𝐞𝐞 > 0.  1033 
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 1034 
Figure S11: Climatic variable selection based on seedling common garden phenotypes vs. long-term provenance 1035 
trial heights. Variance explained is the cross-validated 𝑹𝑹𝟐𝟐 of a multiple linear regression of each climate variable 1036 
(response variable) against the phenotypic predictor variable set. Phenotypic predictor data for the x-axis are 20-year 1037 
heights of the Illingworth lodgepole pine provenance trial. Predictor variables for the y-axis are provenance-mean 1038 
phenotypes for the four common-garden traits presented in Figure 2. Climate variable acronyms are described in Table 1039 
1. 1040 

  1041 
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 1043 
Figure S12: Biogeoclimatic zones (British Columbia) and natural regions (Alberta) of each sampled provenance.  1044 
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 1045 
Figure S13: Phenotypic clines of four traits in lodgepole pine seedlings grown in the Vancouver common garden, 1046 
colour themed by biogeoclimatic zone (British Columbia) and natural region (Alberta). See Figure S12 for map and 1047 
color schemes.  1048 
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1050 
Figure S14. First six principal components of 𝒛𝒛-standardized provenance-mean minor allele 1051 
frequencies in the full SNP array (excluding the neutral set), plotted against autumn 1052 
temperature. Provenances are colour themed by biogeoclimatic zone (British Columbia) and 1053 
natural region (Alberta). See Figure S12 for map and color scheme. 1054 
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 1055 
Figure S15. First six principal components of 𝒛𝒛-standardized provenance-mean minor allele frequencies in the 1056 
neutral set, plotted against autumn temperature. Provenances are colour themed by biogeoclimatic zone (British 1057 
Columbia) and natural region (Alberta). See Figure S12 for map and color scheme. 1058 
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 1059 
Figure S16. First six principal components of z-standardized provenance-mean positive-effect allele frequencies 1060 
in the pooled GWAS loci for all four common garden traits, plotted against autumn temperature. Provenances are 1061 
colour themed by biogeoclimatic zone (British Columbia) and natural region (Alberta). See Figure S12 for map and 1062 
color scheme. 1063 
 1064 
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