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Abstract 

A high tolerance of Pseudomonas putida to toxic compounds and its ability to grow on 

a wide variety of substrates makes it a promising candidate for the industrial production 

of biofuels and biochemicals. Engineering this organism for improved performances 

and predicting metabolic responses upon genetic perturbations requires reliable 

descriptions of its metabolism in the form of stoichiometric and kinetic models. In this 

work, we developed large-scale kinetic models of P. putida to predict the metabolic 

phenotypes and design metabolic engineering interventions for the production of 

biochemicals. The developed kinetic models contain 775 reactions and 245 metabolites. 

We started by a gap-filling and thermodynamic curation of iJN1411, the genome-scale 

model of P. putida KT2440. We then applied the redGEM and lumpGEM algorithms 

to reduce the curated iJN1411 model systematically, and we created three core 

stoichiometric models of different complexity that describe the central carbon 

metabolism of P. putida. Using the medium complexity core model as a scaffold, we 

employed the ORACLE framework to generate populations of large-scale kinetic 

models for two studies. In the first study, the developed kinetic models successfully 

captured the experimentally observed metabolic responses to several single-gene 

knockouts of a wild-type strain of P. putida KT2440 growing on glucose. In the second 

study, we used the developed models to propose metabolic engineering interventions 

for improved robustness of this organism to the stress condition of increased ATP 

demand. Overall, we demonstrated the potential and predictive capabilities of 

developed kinetic models that allow for rational design and optimization of 

recombinant P. putida strains for improved production of biofuels and biochemicals. 

Keywords: Pseudomonas putida, large-scale and genome-scale kinetic models, 

nonlinearity, metabolism, thermodynamics, kinetic parameters, uncertainty  
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Abbreviations: ORACLE, Optimization and Risk Analysis of Complex Living Entities, 

TFA, Thermodynamics-based Flux Balance Analysis, GEM, GEnome-scale Model, MCA, 

Metabolic Control Analysis, iSCHRUNK, in Silico Approach to CHaracterization and 

Reduction of UNcertainty in the Kinetic Models of Genome-scale Metabolic Networks. 

1.Introduction 

Pseudomonas putida recently emerged as one of the most promising production hosts 

for a wide range of chemicals, due to its fast growth with a low nutrient [1] and cellular 

energy [2] demand, considerable metabolic versatility [3], ability to grow in wide range 

of chemicals [4, 5], suitability for genetic manipulations[6] and its robustness and high 

flexibility to adapt and counteract different stresses [7]. One of the main advantages of 

P. putida compared to heavily used industrial workhorses like E. coli is its superior 

tolerance to toxic compounds such as benzene, toluene, ethylbenzene, xylene and other 

hydrocarbons (e.g., n-hexane and cyclohexane) [8, 9]. For example, Ruhl at al. showed 

that some P. putida strains are able to grow in high concentrations of n-butanol [5] up 

to 6% (vol/vol), whereas the concentrations of 1.5 % (vol/vol) are already toxic for E. 

coli [8]. 

Recent efforts toward understanding and improving the behavior and systemic 

properties of P. putida metabolism resulted in several genome-scale reconstructions. 

The first reconstructed Genome-Scale Model (GEM) of P. putida, iJN746, was 

published in 2008 and it comprised 911 metabolites, 950 reactions, and 746 genes [10]. 

It was rapidly followed by the publication of iJP815 [11] and other reconstructions [12, 

13]. The inconsistencies among these models motivated Yuan et al. to build so-called 

pathway-consensus model PpuQY1140 [14]. The so far most complete GEM of P. 

Putida, iJN1411, was published in 2017 by Nogales et al. [15], and it contains 2057 
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metabolites, 2581 reactions, and 1411 genes. These models have been used for studying 

metabolic features of P. putida including the enhanced production of poly-

hydroxyalkanoates [16], reconciliation of key biological parameters for growth on 

glucose under carbon-limited conditions [17], and identification of essential genes for 

growth on minimal medium [18]. However, stoichiometric models cannot be used to 

describe the dynamic metabolic responses to changes in cellular and process parameters 

nor they can consider regulation at the enzyme and post-translational level [19]. We 

need kinetic metabolic models to address these requirements.  

Multiple small-scale kinetic models of P. putida metabolism used either of Monod, 

Haldane and Andrews kinetics for modeling the growth and changes in extracellular 

concentrations [20-29]. Bandyopadhyay et al. used a simple Monod model to study the 

effect of phenol degradation [22]. Wang and Loh modeled the co-metabolism of phenol 

and 4-chlorophenol in the presence of sodium glutamate [29], and their kinetic model 

accounted for cell growth, the toxicity of 4-chlorophenol, and cross-inhibitions among 

the three substrates. Other models were used for studying growth during benzene [20], 

toluene [20, 24-26, 28] and phenol biodegradation [20], growth and biosynthesis of 

medium-chain-length poly-(3-hydroxyalkanoates) [21] and dibenzothiophene 

desulfurization [23, 27].  

More recently, Sudarsan et al. developed a kinetic model of the b-ketoadipate pathway 

that contained mass balance equations for both extracellular and intracellular 

metabolites described by mechanistic rate expressions based on in vitro investigation 

of the participating enzymes [30]. Chavarria et al. modeled the dynamics of fructose 

uptake while taking into account the dynamics of gene expression, protein stability, 

enzymatic activity and the concentrations of intracellular and extracellular metabolites 

[31]. 
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All these kinetic models are of limited size and with ad hoc stoichiometry, which 

emphasizes a need for developing large-scale kinetic models capable of reliably 

identifying metabolic engineering targets for production of the desired chemicals [19]. 

However, construction of large-scale kinetic models remains a challenging task. Each 

reaction in a kinetic model requires a matching kinetic rate expression along with values 

of kinetic parameters, which are frequently unknown. Moreover, even if the values of 

kinetic parameters are available in the literature and databases, their reported values are 

often spanning several orders of magnitude. Additionally, partial experimental 

fluxomic and metabolomic data and estimation errors in related thermodynamic 

properties [19] hinder us from determining unique steady-state metabolic fluxes and 

metabolite concentrations. As a consequence, we are unable to find a unique model 

capable of describing the observed physiology. Instead, to overcome this issue, a 

population of kinetic models is constructed, and statistical methods are used to analyze 

and predict the metabolic responses in the system [19]. 

In this work, we first performed a thermodynamic curation and gap-filling of the 

iJN1411 GEM, and we then systematically reduced this model to derive three different-

complexity core models of P. putida central carbon metabolism. Next, we applied 

ORACLE [32-34], a computational framework based on Monte Carlo sampling, to 

construct large-scale kinetic metabolic models of P. putida that were used in two 

studies: (i) predicting metabolic responses of a wild-type P. putida strain to single-gene 

knockouts; and (ii) improving the responses of this organism to the stress conditions of 

increased ATP demand. Our results indicate that developed stoichiometric and kinetic 

models can successfully be used for the design of improved production strains of P. 

putida.  
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2. Results and discussion 

2.1 Thermodynamically curated genome-scale model of P. putida  

Integration of thermodynamics data. Methods that use thermodynamics data such as 

the thermodynamics-based flux analysis TFA [35-39] allow us to integrate the 

metabolomics data together with the fluxomics data, to eliminate in silico designed 

biosynthetic pathways not obeying the second law of thermodynamics [40, 41], to 

eliminate infeasible thermodynamic cycles [42-44], and to identify how far reactions 

operate from thermodynamic equilibrium [45, 46]. Despite the fact that usefulness of 

thermodynamics has been demonstrated in many applications, only a few reconstructed 

GEMs are curated for this important property [45, 47-50]. 

We used Group Contribution method (GCM) [51, 52] to assign the standard Gibbs free 

energy of formation to 62.3% metabolites and the standard Gibbs free energy of 

reaction to 59.3% reactions from the iJN1411 model. We calculated the standard Gibbs 

free energies for all metabolites and reactions participating in the pathways of central 

carbon metabolism (glycolysis, gluconeogenesis, pentose phosphate pathway, 

tricarboxylic acid (TCA) cycle). In contrast, we could estimate the standard Gibbs free 

energy of reaction for only 3.3% reactions in the poly-hydroxyalkanoates (PHA) 

metabolism because the majority of involved metabolites from these pathways have the 

structures with unknown residuals which precluded computation of the thermodynamic 

properties.  

Integration of physiology data and gap-filling. We integrated experimental 

measurements of glucose uptake and biomass yield on glucose [53] and metabolite 

concentrations [54] into the thermodynamically curated model iJN141. The performed 

TFA indicated that the model predicted ranges of ATP concentrations could not match 
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the values reported in the literature [54, 55]. A reason behind this mismatch could lie 

in the fact that the H+/ATP stoichiometry in the electron transport chain (ETC) of P. 

putida might be inaccurately determined in iJN1411 which would lead to large 

discrepancies in ATP yield on glucose [3, 56]. Here, we investigated another venue and 

hypothesized that iJN1411 is missing a critical reaction in the ATP-related metabolism. 

Therefore, to make model predictions consistent with the experimental observations, 

we performed gap-filling with the iJO1366 GEM of E. coli [57] (Methods). Our 

analysis indicated that one reaction, sulfate adenyltransferase (SADT2), is missing in 

the iJN1411. SADT2 plays a role in cysteine formation, and similarly to sulfate 

adenylyltransferase (SADT), which already exists in the iJN1411, it catalyzes the 

production of cysteine precursor adenosine 5’-phosphosulfate from ATP and SO4. The 

production of adenosine 5’-phosphosulfate catalyzed by SADT2 is coupled with GTP 

consumption, whereas this coupling is absent in SADT. Since the experimental 

evidence supports that GTP hydrolysis enhances the rate of adenosine 5’-

phosphosulfate formation [58], we included this reaction into iJN1411. The 

thermodynamically curated, gap-filled, model iJN1411 was consistent with the 

experimental values of both fluxomics and metabolomics data.  

2.2 Core reduced stoichiometric models of P. putida 

Reconstruction of core reduced models. Using as a basis the curated iJN1411, we 

employed the redGEM [60] and lumpGEM [61] algorithms to construct a family of 

three core  
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Figure 1. The core networks generated by the redGEM algorithm from iJN1411 genome-

scale model. The core network was built around reactions (grey) that belong to the six 

subsystems of central carbon metabolism (glycolysis and gluconeogenesis, pentose phosphate 

pathway, pyruvate metabolism, TCA cycle and oxidative phosphorylation). Reactions 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 6, 2019. ; https://doi.org/10.1101/569152doi: bioRxiv preprint 

https://doi.org/10.1101/569152
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

belonging to one-reaction step, two-reaction-step, and three-reaction-step connections between 

the six subsystems are marked in red, cyan and magenta, respectively. The stoichiometry of the 

reduced models and a complete list of reactions and metabolites are provided in Supplementary 

Files S1-S3. 

reduced stoichiometric models of P. putida of different complexity. The reduced 

models were constructed in two steps. First, the redGEM algorithm produced core 

networks focused around six central carbon subsystems of iJN1411 (glycolysis and 

gluconeogenesis, pentose phosphate pathway, pyruvate metabolism, TCA cycle and 

oxidative phosphorylation). Then, the lumpGEM algorithm was used to connect the 

metabolites of the core networks with 102 biomass building blocks (BBB) of the 

iJN1411 biomass reaction (Methods). 

The simplest out of three core models (subsequently referred to as D1) contained 828 

reactions and 286 metabolites distributed over cytosol, periplasm and the extracellular 

space (Table 1). For 583 out of 828 (70.4%) reactions and 234 out of 286 (81.8%) 

metabolites from D1 we could calculate the thermodynamic properties (Table 1). The 

medium complexity core model, D2, contained 704 reactions and 306 metabolites. Out 

of these, we could calculate the thermodynamic properties for 498 (70.8%) reactions 

and 253 (82.7%) metabolites. The D3 model had a total of 750 reactions and 336 

metabolites with calculated thermodynamic properties for 467 (62.3%) reactions and 

276 (82.1%) metabolites (Table 1). 

 

Table 1. Three reduced core models D1, D2 and D3 

 D1 D2 D3 

Reactions 828 704 750 

         Core 278 307 343 

         Lumped 550 397 407 
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% of reactions with estimated 

standard Gibbs free energy 
70.4 70.8 62.3 

Metabolites 286 306 336 

         Cytosolic 156 174 200 

         Periplasmic 70 71 74 

         Extracellular 60 61 62 

% of metabolites with estimated 

standard Gibbs free energy  
81.8 82.7 82.1 

 

We tested the systemic properties of D1, D2 and D3 against their genome-scale 

counterpart iJN1441, and we found that they were consistent with the GEM in terms of 

biomass yields, gene essentiality, and flux and concentration variability (Methods).  

 

Essentiality of genes encoding for EDA and EDD. Neither D2 nor the GEM could 

predict experimentally observed essentiality of genes from the Entner-Doudoroff (ED) 

pathway. ED pathway is essential for the growth of P. putida on glucose, which is 

experimentally confirmed by the absence of the growth in mutants lacking the key 

enzymes 2-dehydro-3-deoxy-phosphogluconate aldolase (EDA) and 6-

phosphogluconate dehydratase (EDD) [53, 62, 63]. In silico, these genes are not 

essential [18] because the model can replenish the pool of triose phosphates through 

pentose phosphate pathway.  
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Figure 2. The directionality of transketolase 2 (TKT2) impacts the in silico essentiality of 

two genes encoding EDD and EDA from the Entner-Doudoroff pathway. (a) if TKT2 

operates towards production of g3p, then due to the stoichiometric coupling transketolase 1 

(TKT1) and transaldolase (TALA) are unidirectional and EDD and EDA are not in silico 

essential. (b) if TKT2 operates towards consumption of g3p, EDD and EDA are in silico 

essential irrespectively of the directionalities of TKT1 and TALA.  

We analyzed how the directionalities of reactions from the pentose phosphate pathway 

impact the essentiality of EDA and EDD in D2. We found that the directionalities of 

three reactions that have glyceraldehyde 3-phosphate (g3p) as reactant (transaldolase, 

TALA, and two transketolases, TKT1 and TKT2) determine if EDD and EDA are in 

silico essential. When directionality of TKT2 was imposed towards production of g3p, 

TALA and TKT1 became exclusively unidirectional towards consumption of g3p and 

production of g3p, respectfully (Fig. 2a), and EDA and EDD were not essential. In 

contrast, when TKT2 operated towards consumption of g3p EDA and EDD were 

essential regardless the directionality of the other two reactions (Fig 2b). Therefore, to 

ensure the consistency of in silico and experimentally observed gene essentiality of 

EDD and EDA in the subsequent studies we imposed the directionality of TKT2 

towards consumption of g3p. 

a b
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2.3 Kinetic study of wild type P. putida physiology 

Model responses to six single-gene knockouts. The reduced D2 model was used as a 

scaffold for constructing a population of thermodynamically feasible kinetic models. 

We preconfigured this model for kinetic studies (Methods), and we performed TFA. 

We found that all reaction directionalities within the obtained thermodynamically 

feasible steady-state flux and metabolite concentration profile were in agreement with 

the pre-assigned directionalities from iJN1411[15] (Supplementary Table S1).  

In the process of the construction of kinetic models, we removed the mass balances for 

the extracellular metabolites from the stoichiometry because we consider the 

concentrations of extracellular metabolites as parameters. The mass balances for water 

and the corresponding transport reactions were also removed. We then assigned a 

kinetic mechanism to each of the enzyme catalyzed reactions in the model, and we 

integrated experimental values for 21 Michaelis constants (Km’s) that we found for the 

Pseudomonas genus in the Brenda database [64-67]. Next, we used ORACLE [32-34, 

68-71] to construct a population of 50’000 nonlinear kinetic models around the 

computed steady-state flux and concentration profile (Methods). The resulting structure 

of kinetic models consisted of 775 enzymatic reactions and 245 mass balances for 

metabolites distributed over cytosol and periplasm.  

As a test for evaluating predictive capabilities of the constructed models, we computed 

the flux control coefficients [72, 73] of glucose uptake and specific growth rate with 

respect to six enzymes (glucose dehydrogenase (GLCDpp), hexokinase (HEX1), 

gluconokinase (GNK), EDA, EDD, and phosphogluconate 2-dehydrogenase 

(PGLCNDH)), and compared them with the experimentally measured responses of the 

glucose uptake and specific growth rate to single-gene knockouts of these six enzymes 

[53]. 
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The computed control coefficients for the glucose uptake and specific growth rate were 

in a qualitative agreement with the data reported by del Castillo et al. [53] 

(Supplementary Table S2), i.e., a decrease in the enzyme activity of the six enzymes 

would lead to a decrease in both the glucose uptake and specific growth rate (Fig. 3a 

and 3b). Nevertheless, a closer inspection of the flux control coefficients of glucose 

uptake revealed that for four enzymes (GNK, EDD, EDA and PGLCNDH) the error 

bars were spread around zero values (Fig. 3a). This meant that there was a 

subpopulation of models with inconsistent predictions with some of the six knockouts. 

In fact, only 4 999 (~10%) out of 50 000 computed models were able to correctly predict 

responses to all 6 knockouts reported in del Castillo et al. [53] due to the large 

uncertainty in the assigned values of the kinetic parameters. This type of uncertainty 

remains one of the major difficulties that limit the predictive strength of kinetic models 

[19]. 
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Figure 3. Distribution of the control coefficients of glucose uptake (GLCtex) and specific 

growth rate (Growth) for the wild-type physiology of P. putida. The control coefficients of 

glucose uptake (a) and specific growth rate (b) were first computed using an unbiased sampling 

in ORACLE, and then further refined using the machine learning methodology iSCHRUNK 

(c) and (d). The green bars represent the mean values of the control coefficients, whereas the 

error bars correspond to the 25 and 75 percentiles of the distributions.  

 

Refinement of model responses to six single-gene knockouts. To eliminate the 

inconsistencies with the experimental data observed for some of the predicted 

responses, we employed a machine learning method iSCHRUNK [74] (Methods). The 

method allowed us to identify seven kinetic parameters and their ranges that ensure the 

consistency of model responses with the experimental observations, and interestingly, 

all parameters were related with the ED pathway (Table 2). 

 

Table 2. Parameter ranges inferred by the iSCHRUNK method. Abbreviations: 

2DHGLCNtex, ketogluconate transport via diffusion extracellular to periplasm, GAD2ktpp, 

gluconate 2 dehydrogenase periplasm, GLCDpp, glucose dehydrogenase ubiquinone 8 as 

acceptor periplasm, GLCNt2rpp, D-gluconate transport via proton symport reversible 

periplasm, GNK, gluconokinase, 2dhglcn, 2-dehydro-D-gluconate, 6pgc, 6-phospho-D-

gluconate, adp, ADP, glcn, D-gluconate, q8, ubiquinone-8.  

Parameter Range (mM) 

𝐾",$%&'()*$+,-./0123  6.83*10-5 – 2.34*10-3 

𝐾",$%&'()*
-4+$5166  6.83*10-5 – 0.133 

𝐾",78
-./+66  3.81*10-3 – 0.899 

𝐾",'()*
-./+66 0.01 – 5.76 

𝐾",'()*
-./01$966 6.54*10-4 – 9.49*10-4 

𝐾",:%6-0;  3.84*10-2 – 20 

𝐾",<6')-0;  4.26*10-5 – 8.37*10-2 
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We generated a novel population of kinetic models with ORACLE with constrained 

ranges of these seven parameters as defined by iSCHRUNK, and we computed the 

distributions of corresponding control coefficients for the glucose uptake and specific 

growth rate. Out of 50’000 models, 29’979 (~60%) models correctly predicted the 

changes in the glucose uptake rate to six single-gene knockouts [53] (Fig. 3c), while 

35’955 (~72%) models agreed with the experimental data for the specific growth rate 

(Fig. 3d). In total, 26’120 (~52%) models were consistent with both the experimental 

data for the glucose uptake and the specific growth rate.  

We discovered with iSCHRUNK that operating regimes of only a few enzymes 

determine metabolic responses to multiple single-gene knockouts. This emphasizes the 

significance of accurately determining the kinetic parameters of such important 

enzymes in order to obtain model responses consistent with the experimental 

observations. This also implies that we have to consider complex kinetic phenomena 

such as crowding when modeling kinetic properties of certain enzymes [75]. 

 

Assessment of estimated kinetic parameters. In the ORACLE framework, we 

employ the Monte Carlo sampling technique to compute the saturation states of 

enzymes. We then use these quantities to back-calculate the unknown values of 

Michaels constants (Km’s) [33, 34, 70]. To obtain an unbiased assessment of the 

accuracy of our estimates, we recomputed 50’000 models without imposing the 

experimentally available values of Km’s from the BRENDA database [64-67]. 

Comparison of our estimates against available values of Km’s from BRENDA showed 

that ORACLE could capture the ranges for 17 out of 21 Km’s (Fig. 4). Considering that 

in the estimation process we did not use any kinetic parameters values and that the 

underlying system is undetermined, this result is remarkable because it indicates that 
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ORACLE with integrated fluxomics and metabolomics data together with the physico-

chemical laws is capable to provide consistent estimates for a large number of kinetic 

parameters. This means that ORACLE estimates can be used as hypothetic values for 

studies where the unknown kinetic parameters are required. 

For the four remaining parameters such as Michaelis constant of L-Threonine in 

threonine aldolase or isocitrate in isocitrate lyase, ORACLEs underestimated 

experimental values up to one and half orders of magnitude (Fig. 4). The discrepancies 

between the estimated and measured values of these parameters can originate from 

different sources: (i) the Km values from BRENDA were measured on several different 

species from the Pseudomonas genus, whereas our Km values were estimated using a 

P. putida model and the experimental data were acquired on P. putida (fluxomics data) 

and P. taiwanensis (metabolomics data); and (ii) large uncertainty in available and 

partially available experimental data. In general, the more experimentally measured 

data are available for integration in the models by ORACLE, the better their predictive 

capability will be. 

 

Figure 4. Estimates of Michaelis constants, Km’s, predicted by ORACLE. Distribution of 

Km’s estimated with ORACLE (red boxplots) without imposing experimental values from 
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BRENDA (black dots). Whiskers represent minimal and maximal value predicted by 

ORACLE. Full names of reactions are provided in Supplementary Table S3 

2.4 Kinetic study of increased ATP demand in P. putida 

One of the main advantages of P. putida over E. coli is its capacity to adjust to different 

environmental challenges without showing a distinct phenotype [7]. Ebert and co-

workers investigated the impact of increased ATP hydrolysis on the P. putida 

metabolism by titration of 2,4-dinitrophenol (DNP), and they demonstrated that DNP 

concentrations below 300 mg/l did not impact the specific growth rate of P. putida [7]. 

In comparison, E. coli shows a significant reduction in the specific growth rate already 

at the concentrations of 138 mg/l [76]. Above the concentration of 300 mg/l, DNP 

caused a significant reduction of P. putida’s specific growth rate and increase of the 

glucose uptake (Figure 5a and b). At the concentration of 700 mg/l of DNP, glucose 

uptake reached the maximum of ~11 mmol/gDCW/h. For larger values of DNP 

concentration, both the glucose uptake and the specific growth rate declined.  

 

Modeling and TFA of increased ATP demand. We preconfigured the model for this 

study (Methods) and used it to simulate the impact of increased ATP demand on the P. 

putida metabolism by gradually increasing the minimally required flux through ATP 

hydrolysis in increments of 1 mmol/gDCW/h (Fig. 5). We set the upper bound of the 

specific growth rate to 0.73 1/h, as reported in Ebert et al. [7] for the DNP concentration 

of 0 mg/l. Based on the performed sensitivity analysis of model responses to upper 

constraints on the oxygen uptake rate and ATP synthase (Methods), we set the upper 

bounds on the oxygen uptake rate and ATP synthase to 40 mmol/gDCW/h and 70 

mmol/gDCW/h, respectively. The glucose uptake rate was left unconstrained.  
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In agreement with the experiments, the model predicted that the minimal glucose 

uptake of 7.51 mmol/gDCW/h is required to attain the specific growth rate of 0.73 1/h 

when the lower bound of the flux through ATP hydrolysis is set to 0 mmol/gDCW/h 

(Fig. 5c and 5d). Also consistent with the experiments, with the increase of the 

minimally required ATP hydrolysis flux, the required minimal glucose uptake was 

increasing (Fig. 5d) simultaneously with an increase of the ATP synthesis flux and 

minimal oxygen uptake (Fig. 5e and 5f), while the specific growth rate remained stable 

(Fig. 5c). For the ATP hydrolysis flux of 37 mmol/gDCW/h, the minimal glucose 

uptake was 9.56 mmol/gDCW/h and the slope of the minimal glucose and oxygen 

uptake became steeper (Fig. 5d and 5f). When the ATP hydrolysis flux reached 44 

mmol/gDCW/h, the oxygen uptake rate and ATP synthase flux simultaneously attained 

their upper bounds (Fig. 5e and 5f). The corresponding minimal glucose uptake was 

11.89 mmol/gDCW/h, which was consistent with Ebert et al. [7] (11.6 ± 1.2 

mmol/gDCW/h). After this point, the required minimal glucose uptake started to 

decline (Fig. 5d) together with a decline in the specific growth rate (Fig. 5c). For the 

ATP hydrolysis flux of 73 mmol/gDCW/h, the model predicted the specific growth rate 

of 0.25 1/h and the minimal glucose uptake rate of 8.54 mmol/gDCW/h, which was 

slightly more than what was reported in the Ebert et al. [7] (7.5 ± 0.8 mmol/gDCW/h). 
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Figure 5. Fermentation profile of P. putida metabolism under increased ATP demand. 

Experimentally measured specific growth rate (a) and glucose uptake rate (b) of P. putida as 

the ATP demand induced by titration of 2,4 dinitrophenol (DNP) increases. The profiles of 

specific growth rate (c), glucose uptake rate (d), flux through ATP synthase (e) and oxygen 

uptake rate (f) computed by TFA.  

The thermodynamically-curated core stoichiometric model described well the 

qualitative behavior of P.putida in the stress condition of increased ATP demand. 

However, the model failed to capture a decrease of the specific growth rate for DNP 

concentrations in the range of 300-700 mg/l (Fig. 5c). A possible explanation for this 

discrepancy is that the decrease of specific growth rate in this region might be due to 

kinetic effects that cannot be captured by stoichiometric models. It is also important to 
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observe that in Ebert et al. [7] the increased ATP demand was indirectly induced by 

tittering different levels of DNP, whereas we simulated that effect by increasing the 

ATP hydrolysis flux. Since P. putida does not necessarily respond to a linear increase 

in the DNP levels by linearly increasing the ATP hydrolysis, the exact correspondence 

of the data points in the graphs obtained through experiments and computational 

simulation was not expected. 

 

Improving the robustness of P. putida under stress conditions. We then undertook 

to devise a metabolic engineering strategy that will allow P. putida to maintain the 

specific growth rate for more severe stress conditions. To this end, we computed the 

steady-state metabolic flux and metabolite concentration vectors for the ATP 

hydrolysis flux of 44 mmol/gDCW/h. We then built a population of 50’000 kinetic 

models around the computed steady-state, and we computed the control coefficients for 

all fluxes and concentrations in the metabolic network.  

Analysis of the control coefficients for the specific growth rate revealed several 

strategies for maintaining high growth in the presence of stress agent 2,4-dinitrophenol 

which increases ATP demand (Fig. 6). The major positive control over the specific 

growth at this stress condition have the key enzymes from the Entner-Doudoroff 

pathway (EDA, EDD and GNK), e.g., the two-fold increase in activity of EDA would 

improve the specific growth by more than 50%. This control is tightly connected with 

the ability of ED pathway to generate additional NADPH, necessary to fuel proton-

motive-force-driven efflux pumps, the major mechanism of solvent tolerance in P. 

putida [77] or to reduce stress through antioxidant systems that utilize NADPH [78]. 

Similarly, our analysis suggests that an increase in the activity of GLCDpp that 

catalyzes the conversion of glucose to periplasmic gluconate would increase the 
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specific growth, i.e., the two-fold increase in GLCDpp activity would result in 

improved specific growth by ~40% (Fig. 7). Furthermore, reduced activity of aspartate 

transaminase (ASPTA) or succinate dehydrogenase (SUCDi) would also increase the 

specific growth.  

 
Figure 7. Control coefficients of the specific growth rate in the stress conditions. The 

green bars are the mean values of the control coefficients, whereas the errorbars correspond to 

the 25 and 75 percentiles of the distributions.  

3. Conclusions 

This study presents the first thermodynamically curated genome-scale model of P. 

putida. Thermodynamic curation makes the curated GEM iJN1411 amenable for 

integrating metabolomics data. The integration of thermodynamics data into models 

restricts the available flux and concentration spaces [35, 39] because thermodynamics 

determines the directionality in which reactions can operate [35, 37]. For example, Flux 
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Balance Analysis (FBA) performed on iJN1411 indicated that 108 reactions could 

operate in both forward and reverse direction (bi-directional reactions) while still being 

consistent with the integrated fluxomics data [53]. However, when additional 

metabolomics data [54] were integrated with TFA, 21 out of these 108 reactions could 

not operate in both directions due to thermodynamic constraints (Supplementary Table 

S4). The thermodynamically curated iJN1411 was further used to develop a family of 

three systematically reduced models of P. putida central carbon metabolism that lend 

themselves for a wide gamut of metabolic engineering studies. 

Current metabolomics measurement techniques do not allow for distinguishing 

concentrations of the same species in different compartments. Consequently, when 

integrating metabolomics data in constraint-based techniques that consider 

thermodynamics such as the energy balance analysis [80], the network-embedded 

thermodynamic analysis [81] and the thermodynamics-based flux analysis [35, 36, 38, 

39, 45], it is commonly assumed that the concentrations of a metabolite appearing in 

several compartments are identical and constrained within experimentally measured 

values. We proposed here a novel set of constraints within TFA that enable integration 

analysis of metabolomics data without imposing this restrictive assumption. In this 

formulation, we model concentrations of metabolites that exist in several compartments 

as separate entities, and, at the same time, we preserve the consistency of their values 

with experimentally measured values for the whole cell. This way, we ensure that the 

set of possible metabolic outcomes predicted by the model encompasses the actual 

cellular physiology. 

Finally, we derived here the kinetic models of P. putida‘s central carbon metabolism 

containing 775 reactions and 245 metabolites that comprise pathways from glycolysis 

and gluconeogenesis, pentose phosphate pathway, pyruvate metabolism, TCA cycle, 
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and oxidative phosphorylation. Considering their size, scope, and level of details, the 

derived models are the largest kinetic model of this organism available in the literature 

to this date. The potential applications of the developed kinetic models were illustrated 

in two studies of P. putida metabolism. 

Methods 

Integration of metabolomics data while considering cellular compartments.  

Here we propose a novel set of constraints that allow for concentrations of the same 

species across different compartments to be different while maintaining the consistency 

with the experimental measurements. 

For the concentration 𝐶> of a metabolite M measured in the range 𝐶> 	∈ 	 A𝐶>, 𝐶>B	we 

have: 

𝐶> =	DE
FE
= 	 ∑ DHII

∑ FHII
     (1) 

where 𝑁K is the number of moles of M and 𝑉K is the total volume of the cell. 𝑁MN	and 

𝑉MN  are the corresponding quantities in compartments i. Considering that ∑ 𝑉MNN = 𝑉K, 

i.e., ∑ FHI
FKN = ∑ 𝛼NN = 1, by dividing (1) with 𝑉K we obtain 

𝐶> =	
∑ QHI

REI
RHI
RHI

∑ RHI
REI

= ∑ SIMTII
∑ SII

    (2) 

where 𝐶>N  is the concentration of metabolite M in the compartment i and αV is the 

volume fraction of the compartment i with respect to the entire cell. Observe that αV 

and 𝐶>N are positive quantities.  

If we apply logarithm to (2), we have: 

log𝐶> = 	 log ∑ SIMTII
∑ SII

.	 	 	  (3) 
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Considering that log is a concave function, we can use Jensen’s inequality [82] where 

for a concave function 𝜑 and positive weights 𝛼N it holds that: 

𝜑 A∑ SI[II
∑ SII

B 	≥ 	 ∑ SI]([I)I
∑ SII

.	 	 	 (4) 

Therefore, by combining (3) and (4) we get: 

log𝐶> = 	 log ∑ SIMTII
∑ SII

	≥ 	∑ 𝛼N log𝐶>N .	 	 (5)	

Moreover, if we denote the physiological lower and upper bound on intracellular 

metabolite concentrations as LB = 1 µM and UB = 50 mM, respectively, then the upper 

bound on 𝐶>N, 𝐶>N, can be derived from the following expression: 

𝐶> =	𝛼N𝐶>N +	(1 − 𝛼N) ∗ 𝐿𝐵,   (6) 

hence 

𝐶>N = 	
MTe	(fgSI)∗hi

SI
.	 	 	 	 (7)	

To prevent the case 𝐶>N 	> 𝑈𝐵 for some values of 𝛼N, we put the upper bound on 𝐶>N	as 

follows: 

𝐶>N = 	𝑚𝑖𝑛 A
MTe	(fgSI)∗hi

SI
, 𝑈𝐵B.	 	  (8) 

Analogously for the lower bound on the concentration of the metabolite M in the 

compartment i , 𝐶>N, we have: 

𝐶>N = 	𝑚𝑎𝑥 A
MTe	(fgSI)∗qi

SI
, 𝐿𝐵B.		 	  (9) 

Therefore, instead of using i constraints on the compartment species of metabolite M 

in the form of log𝐶> ≤ log𝐶>N ≤ log 𝐶>, we propose to use i+2 constraints providing 

more flexibility and relaxing the assumption on equal concentrations of metabolite M 

in all compartments: 

log𝐶>N ≤ log𝐶>N ≤ log𝐶>N   (10) 
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together with (5) and 

log𝐶> ≤ log 𝐶> ≤ log𝐶>   (11) 

where 𝐶>N and 𝐶>N	are computed as in (8) and (9). 

The volume fractions of cytosol, 𝛼f, and periplasm, 𝛼$, were taken respectively as 0.88 

and 0.12 [83]. 

 

Gap-filling of thermodynamically curated iJN1411. We merged two genome-scale 

models, iJN1411 of P. putida and iJO1366 of E. coli into a composite model that was 

used for gap-filling of iJN1411. We removed duplicate reactions from the composite 

model along with phosphofructokinase (PFK) that is experimentally shown to be absent 

from P. putida metabolism [55]. Compared to iJN1411 the composite model had 

additional 1201 reactions originating from iJO1366. We imposed experimentally 

measured ranges of ATP concentrations, glucose uptake and the specific growth rate, 

and performed TFA while minimizing the number of reactions that can carry flux from 

the set of the added 1201 reactions. We found from the optimization that it is sufficient 

to add one out of 1201 reactions (sulfate adenyltransferase (SADT2)) from iJO1366 to 

iJN1411 to obtain consistency of iJN1411 TFA solutions with the experimental data. 

 

Systematic reduction of iJN1411. We used the redGEM [60] and lumpGEM [61] 

algorithms to deliver reduced models of three different sizes (referred in the results 

section as D1, D2 and D3). The first step in the redGEM algorithm is to select the 

metabolic subsystems of interest around which the reduced models are built. We 

selected the following six metabolic subsystems from iJN1411: glycolysis and 

gluconeogenesis, pentose phosphate pathway, pyruvate metabolism, TCA cycle, and 

oxidative phosphorylation. From the reactions belonging to these six subsystems, we 
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removed all cofactor pairs and small metabolites such as protons, phosphate groups, 

and inorganics. We then used a graph search algorithm to identify all one-reaction, two-

reaction, and three-reaction steps pairwise connections between six subsystems and 

formed the core metabolic networks of D1, D2 and D3 model, respectively. We next 

performed another graph search to find the connections of D1-D3 core networks with 

the extracellular space. With this step the core networks of D1, D2 and D3 models were 

finalized. 

We then used the lumpGEM [61] algorithm to connect the core networks of D1, D2 

and D3 with the building blocks of the iJN1411 biomass reaction. For each of 102 

iJN1411 biomass building blocks (BBBs), lumpGEM identified a set of alternative 

minimal subnetworks that were able to connect precursors belonging to the core 

network and the BBB. The size of minimal networks is denoted Smin [61]. For some 

studies it is of interest to identify subnetwork of higher sizes. Herein, we identified 

subnetworks of the size Smin+2. Finally, lumpGEM collapses the identified subnetworks 

into lumped reactions, which together with the core networks constitute the core 

reduced model. 

The D1 model consisted of: (i) the D1 core network formed by the reactions and 

metabolites from the six subsystems and the reactions that belonged to one-reaction-

step pairwise connections between these six subsystems [60] (Fig 1); and (ii) lumped 

reactions that connected the D1 core network with the BBBs. The D2 model contained: 

(i) the D2 core network containing the D1 core network and the reactions and 

metabolites that belonged to two-reaction-step pairwise connections between the six 

subsystems (Fig 1); and (ii) lumped reactions that connected the core network of D2 

and the BBBs. The reactions that belonged to the two-reaction-step pairwise 

connections between the subsystems were predominantly from the fatty-acid and 
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amino-acid metabolism (Supplementary File S2). The core network of the highest 

complexity model, D3, included also the reactions and metabolites from the three-

reaction-step pairwise connections between the six subsystems (Fig 1). The reactions 

included into the D3 core network were mostly from glyoxylate and dicarboxylate 

metabolism and folate biosynthesis (Supplementary File S3). 

 

Consistency checks of core reduced models. We performed a battery of tests to 

validate the consistency of the systemic properties of the core reduced models D1, D2 

and D3 with their GEM counterpart, iJN1411. Here we present and discuss results for 

D2, the results for D1 and D3 are provided in Supplementary File S4. 

We first performed FBA and TFA for the glucose uptake of 10 mmol/gDCW/hr, and 

we found the identical maximum specific growth rate of µ=0.94 h-1 for both D2 and 

iJN1411, meaning that D2 was able to capture well the physiology of the growth on 

glucose. 

We then carried out the comparison of essential genes between D2 and GEM. In silico 

gene deletion represents one of the most common analysis of metabolic networks, and 

it is used to assess the predictive potential of the model [10] or to identify main genetic 

targets for strain engineering [16, 84]. Out of 314 genes that D2 shared with GEM, we 

identified 47 as in silico essential. Out of these 47, 36 were essential in both D2 and 

GEM and 11 were essential in D2 only (Supplementary Table S5). These 11 genes were 

essential in D2 because this model was missing some of the alternative pathways from 

GEM. For example, aceF PP_0338 (encoding for acetyltransferase component of 

pyruvate dehydrogenase complex) and aceE PP_0339 (encoding for pyruvate 

dehydrogenase, E1 component) are essential in D2 because they encode for enzymes 

necessary for synthesizing acetyl-CoA from pyruvate, whereas GEM contains 
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additional alternative pathways for this synthesis. Interestingly, among the 11 genes is 

tpiA PP_4715 encoding for triose-phosphate isomerase, which is reported as essential 

in the literature [62]. 

We next performed thermodynamic-based variability analysis (TVA) on all common 

reactions and metabolites of D2 and GEM and compared their thermodynamically 

allowable ranges. We obtained consistent flux ranges for the majority of the reactions, 

and 131 reactions were less flexible in D2 than in GEM (Supplementary Figure S1). 

Most of these reactions were in the upper glycolysis such as GAD2ktpp (gluconate 2 

dehydrogenase periplasm), GLCDpp (glucose dehydrogenase), HEX 1 (hexokinase) 

and GNK (gluconokinase), and gluconeogenesis such as PGK (phosphoglycerate 

kinase), PGM (phosphoglycerate mutase) and ENO (enolase). Additional flexibility of 

these reactions in GEM comes from the pathways of starch and sucrose metabolism 

and cell envelope biosynthesis cellulose metabolism, which are absent in D2. The 

allowable ranges of concentrations of common metabolites of D2 and GEM were 

consistent. Similar result was reported for the case of E. coli where the discrepancy in 

concentration ranges was reported for only few metabolites [60]. 

 

Preconfiguring stoichiometric model for kinetic studies of wild-type physiology. 

We expanded the stoichiometric network of D2 by adding the reactions that model free 

diffusion to extracellular space of all intracellular metabolites that: (i) have less than 10 

carbon atoms and do not contain phosphate or CoA; and (ii) do not have an existing 

transport reaction in the model. This was done to model a possibility that small amounts 

of these metabolites were produced during fermentation but in insufficient quantities 

for experimental detection. The expanded model contained 768 reactions and 339 

metabolites across cytosol, periplasm, and extracellular space. 
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Based on the data provided in del Castillo et al. [53], we integrated into the model the 

experimentally measured rates of glucose uptake and biomass growth and we forced 

the secretion of D-gluconate and 2-dehydro-D-gluconate by putting a lower bound on 

their exchange reactions to 0.3 mmol/gDCW/hr. For the remaining carbon-based by-

products, we allowed only their basal secretion by constraining their transport rates to 

the extracellular space (10-6 - 10-3 mmol/gDCW/hr) following the common observation 

in the literature that P. putida can break the carbon down almost without any by-product 

formation [7]. Furthermore, we integrated 57 experimentally measured intracellular 

metabolite concentrations [54]. In the model, 12 out of the 57 measured metabolites 

appear in both cytosol and periplasm. The concentration values of these 12 metabolites 

were measured per cell and not per compartments, and as discussed previously, to 

integrate this information for each species in the two compartments only two additional 

constraints were added in TFA. Overall, these 57 measurements provided constraints 

for 69 metabolite concentrations in the model.  

We then imposed several additional assumptions: (i) TCA cycle was complete [7, 62]; 

(ii) two glutamate dehydrogenases (GLUDx and GLUDy) were operating towards 

production of L-glutamate; (iii) dihydrolipoamide S-succinyltransferase was generating 

NADH from NAD+ [85]; (iv) acetaldehyde dehydrogenase (ACALD) was producing 

acetaldehyde; (v) ribulose 5-phosphate 3-epimerase (RPE) was converting D-ribulose 

5-phosphate to D-xylulose 5-phosphate; (vi) adenylate kinase (ADK1) and nucleoside-

diphosphate kinase (NDPK1) were consuming ATP; and (viii) GTP-dependent 

adenylate kinase (ADK3) was consuming GTP. 

  

Preconfiguring stoichiometric model for kinetic studies of stress conditions. The 

stoichiometric model was reconfigured in the following way: (i) we constrained the 
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specific growth rate in the range 0.43 ± 0.2 1/h and the glucose uptake in the range 11.6 

± 1.2 mmol/gDCW/h. These values correspond to the concentration of 700 mg/liter of 

DNP in the experimental study or 44 mmol/gDCW/h in the simulation study (Figure 

5d); (ii) the directionalities of 26 reactions from the glycolysis, gluconeogenesis, PPP 

and TCA were constrained by putting lower and upper bounds from Ebert et al. [7] 

Interestingly, the reported directionality of TKT2 in this physiological condition was 

opposite than it was assumed in the study of wild-type physiology; (iii) two glutamate 

dehydrogenases were operating towards production of L-glutamate; (iv) 

dihydrolipoamide S-succinyltransferase was operating towards production of NADH 

from NAD+ [85]. 

We performed TFA with so configured stoichiometric model, and we found that six 

reactions (acetaldehyde dehydrogenase acetylating, adenylate kinase, adentylate kinase 

GTP, sodium proton antiporter, nucleoside diphosphate kinase ATP:GDP and 

phosphate transport via symport periplasm) could operate in both directions whilst still 

satisfying the integrated data. To fix the directionalities of these six reactions, we 

performed another TFA where we minimized the sum of the fluxes in the metabolic 

network under the constraint that at least 99% of the observed specific growth rate 

should be attained.  

 

Sensitivity analysis of metabolic responses to maximal rates in the oxygen uptake 

and ATP synthesis. Depending on physiological conditions, maximal rates of oxygen 

uptake and ATP synthase in P. putida can take a wide range of values. For instance, in 

optimally grown P. putida, oxygen uptake rate is about 15 mm/gDCW/h [10], while in 

the stress conditions it can go above 50 mm/gDCW/h [7]. To investigate the effects of 

the maximal rates on model predictions, we constrained upper bound on biomass 
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growth to 0.73 1/h and we performed multiple TFAs for different combinations of 

maximal allowed rates of oxygen uptake and ATP synthesis.  

We varied the allowed maximal oxygen uptake between 30 and 70 mm/gDCW/h (the 

range between 40 and 60 mm/gDCW/h was reported in [7]), and the allowed maximal 

flux through ATP synthase between 40 to 100 mm/gDCW/h. For each combination of 

oxygen uptake/ATP synthase maximal rates, we computed changes of minimal required 

glucose uptake with the respect to changes in flux through ATP hydrolysis (Figure 7).  

For the allowed maximal oxygen uptake of 30 mmol/gDCW/h, the peak of the minimal 

glucose uptake rate was at 10.22 mmol/gDCW/h, which is slightly under the value 

reported in Ebert et al. [7] (11.6 ± 1.2 mmol/gDCW/h) (Figure 7). For the allowed 

maximal oxygen uptake of 40 mmol/gDCW/h, the peak of the minimal glucose uptake 

rate was at 11.89 mmol/gDCW/h which was within the bounds reported in [7], whereas 

for the allowed maximal oxygen uptake of 50 mmol/gDCW/h, the peak of minimal 

glucose uptake rate was above the experimental values (13.56 mmol/gDCW/h). 

Consequently, we used the bound on allowed maximal oxygen uptake rate of 40 

mmol/gDCW/h for our kinetic studies.  

Interestingly, the constraint on the allowed maximal ATP synthase rate did not have an 

effect on the magnitude of the peak value of the minimal glucose uptake rate. Instead, 

it affected the position of the peak with the respect to the ATP hydrolysis flux (Fig. 7). 

The higher the ATP synthase rate, the higher ATP hydrolysis flux was required to attain 

the peak value of the minimal glucose uptake. For example, in the case of the allowed 

maximal oxygen uptake of 30 mmol/gDCW/h, the ATP hydrolysis flux of 9 and 19 

mmol/gDCW/h was required to attain the peak of the minimal glucose uptake of 10.22 

mmol/gDCW/h for the allowed maximal ATP synthase rates of 40 and 50 

mmol/gDCW/h, respectively. Based on these observations and comparison with the 
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experimental data, one can equally consider values of 50, 60 or 70 mmol/gDCW/h for 

the upper bound on ATP synthase since all three values describe qualitatively well the 

experimental data [7] (Fig. 5 and 7). We set the upper bound of ATP synthase to 70 

mmol/gDCW/h to keep the maximal flexibility in the model. 

 

Figure 7. Minimal glucose uptake rate as a function of ATP hydrolysis flux for different 

combinations of allowed maximal rates of the oxygen uptake and ATP synthesis. The 

sensitivity analysis indicates that models with the maximal oxygen uptake rate of 40 

mmol/gDCW/h and the ATP synthesis rate of 70 mmol/gDCW/h (red box) are providing the 

best qualitative agreement with the experimental data [7] while maintaining the model 

flexibility. 

0 20
6
8
10
12
14
16

0 20 40
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 20 40
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50 100
6
8
10
12
14
16

0 20 40
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50 100
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50 100
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50
6
8
10
12
14
16

0 50 100
6
8
10
12
14
16

Maximal allowed uptake of oxygen [mmol/gDCW/h]

M
axim

um
 allow

ed flux through atp synthase  [m
m

ol/gD
CW

/h]

 Flux through ATP hydrolysis [mmol/gDCW/h]

30 40 50 60 70

40

50

60

70

100

M
in

im
al

 g
lu

co
se

 u
pt

ak
e 

ra
te

 [m
m

ol
/g

D
CW

/h
]

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 6, 2019. ; https://doi.org/10.1101/569152doi: bioRxiv preprint 

https://doi.org/10.1101/569152
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

Acknowledgement 

M.T. was supported by the ERASYNBIO1-016 SynPath project funded through ERASynBio 

Initiative for the robust development of Synthetic Biology and the Swiss National Science 

Foundation grant 315230_163423. L.M. and V.H. were supported by the Ecole Polytechnique 

Fédérale de Lausanne (EPFL).  

  

Conflict of interest 

The authors declare no financial or commercial conflict of interest. 

Supporting information 
 

S1 File: D1 stoichiometric model  

S2 File: D2 stoichiometric model  

S3 File: D3 stoichiometric model  

S4 File: consistency tests for all three reduced models 

S1 Fig. Flux variability of D2 core carbon subsystems 

S1 Table: Steady state solution used in building kinetic model 

S2 Table: Data of 6 single-gene knockouts adapted from del Castillo et al.[53] 

S3 Table: Abbreviations for the Figure 4 

S4 Table: Differences in directionalities between FBA and TFA 

S5 Table: D2 vs GEM gene essentiality 

 

References 

1.	 Nikel	P:	A	Brief	Guide	to	Pseudomonas	putidaas	a	microbial	cell	factory.	
BioEssays	2012.	

2.	 Isken	S,	Derks	A,	Wolffs	PFG,	de	Bont	JAM:	Effect	of	organic	solvents	on	
the	yield	of	solvent-tolerant	Pseudomonas	putida	S12.	Applied	and	
Environmental	Microbiology	1999,	65:2631-2635.	

3.	 Rojo	F:	Carbon	catabolite	repression	in	Pseudomonas:	optimizing	
metabolic	versatility	and	interactions	with	the	environment.	Fems	
Microbiology	Reviews	2010,	34:658-684.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 6, 2019. ; https://doi.org/10.1101/569152doi: bioRxiv preprint 

https://doi.org/10.1101/569152
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

4.	 Inoue	A,	Yamamoto	M,	Horikoshi	K:	Pseudomonas-Putida	Which	Can	
Grow	in	the	Presence	of	Toluene.	Applied	and	Environmental	Microbiology	
1991,	57:1560-1562.	

5.	 Ruhl	J,	Schmid	A,	Blank	LM:	Selected	Pseudomonas	putida	Strains	Able	To	
Grow	in	the	Presence	of	High	Butanol	Concentrations.	Applied	and	
Environmental	Microbiology	2009,	75:4653-4656.	

6.	 Nikel	P:	Systems	and	Synthetic	Biology	Approaches	for	Metabolic	
Engineering	of	Pseudomonas	putida.	In	Microbial	Models:	From	
Environmental	to	Industrial	Sustainability.	2016	

7.	 Ebert	BE,	Kurth	F,	Grund	M,	Blank	LM,	Schmid	A:	Response	of	
Pseudomonas	putida	KT2440	to	Increased	NADH	and	ATP	Demand.	
Applied	and	Environmental	Microbiology	2011,	77:6597-6605.	

8.	 Mukhopadhyay	A:	Tolerance	engineering	in	bacteria	for	the	production	of	
advanced	biofuels	and	chemicals.	Trends	in	Microbiology	2015,	23:498-
508.	

9.	 Udaondo	Z,	Duque	E,	Fernandez	M,	Molina	L,	de	la	Torre	J,	Bernal	P,	Niqui	
JL,	Pini	C,	Roca	A,	Matilla	MA,	et	al:	Analysis	of	solvent	tolerance	in	
Pseudomonas	putida	DOT-T1E	based	on	its	genome	sequence	and	a	
collection	of	mutants.	Febs	Letters	2012,	586:2932-2938.	

10.	 Nogales	J,	Palsson	BØ,	Thiele	I:	A	genome-scale	metabolic	reconstruction	
of	Pseudomonas	putida	KT2440:	i	JN746	as	a	cell	factory.	BMC	Systems	
Biology	2008,	2:79.	

11.	 Puchałka	J,	Oberhardt	MA,	Godinho	M,	Bielecka	A,	Regenhardt	D,	Timmis	
KN,	Papin	JA,	Martins	dos	Santos	VAP:	Genome-Scale	Reconstruction	and	
Analysis	of	the	Pseudomonas	putida	KT2440	Metabolic	Network	
Facilitates	Applications	in	Biotechnology.	PLOS	Computational	Biology	
2008,	4:e1000210.	

12.	 Sohn	SB,	Kim	TY,	Park	JM,	Lee	SY:	In	silico	genome-scale	metabolic	
analysis	of	Pseudomonas	putida	KT2440	for	polyhydroxyalkanoate	
synthesis,	degradation	of	aromatics	and	anaerobic	survival.	Biotechnology	
Journal	2010,	5:739-750.	

13.	 Oberhardt	MA,	Puchałka	J,	Martins	dos	Santos	VAP,	Papin	JA:	
Reconciliation	of	Genome-Scale	Metabolic	Reconstructions	for	
Comparative	Systems	Analysis.	PLOS	Computational	Biology	2011,	
7:e1001116.	

14.	 Yuan	Q,	Huang	T,	Li	P,	Hao	T,	Li	F,	Ma	H,	Wang	Z,	Zhao	X,	Chen	T,	Goryanin	
I:	Pathway-Consensus	Approach	to	Metabolic	Network	Reconstruction	for	
Pseudomonas	putida	KT2440	by	Systematic	Comparison	of	Published	
Models.	PLOS	ONE	2017,	12:e0169437.	

15.	 Nogales	J,	Gudmundsson	S,	Duque	E,	Ramos	JL,	Palsson	BO:	Expanding	
The	Computable	Reactome	In	Pseudomonas	putida	Reveals	Metabolic	
Cycles	Providing	Robustness.	bioRxiv	2017.	

16.	 Poblete-Castro	I,	Binger	D,	Rodrigues	A,	Becker	J,	Martins	dos	Santos	VAP,	
Wittmann	C:	In-silico-driven	metabolic	engineering	of	Pseudomonas	
putida	for	enhanced	production	of	poly-hydroxyalkanoates.	Metabolic	
Engineering	2013,	15:113-123.	

17.	 van	Duuren	JB,	Puchałka	J,	Mars	AE,	Bücker	R,	Eggink	G,	Wittmann	C,	dos	
Santos	VAM:	Reconciling	in	vivo	and	in	silico	key	biological	parameters	of	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 6, 2019. ; https://doi.org/10.1101/569152doi: bioRxiv preprint 

https://doi.org/10.1101/569152
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

Pseudomonas	putidaKT2440	during	growth	on	glucose	under	carbon-
limited	condition.	BMC	Biotechnology	2013,	13:93.	

18.	 Molina-Henares	MA,	de	la	Torre	J,	Garcia-Salamanca	A,	Molina-Henares	
AJ,	Herrera	MC,	Ramos	JL,	Duque	E:	Identification	of	conditionally	
essential	genes	for	growth	of	Pseudomonas	putida	KT2440	on	minimal	
medium	through	the	screening	of	a	genome-wide	mutant	library.	
Environmental	Microbiology	2010,	12:1468-1485.	

19.	 Miskovic	L,	Tokic	M,	Fengos	G,	Hatzimanikatis	V:	Rites	of	passage:	
requirements	and	standards	for	building	kinetic	models	of	metabolic	
phenotypes.	Current	Opinion	in	Biotechnology	2015,	36:146-153.	

20.	 Abuhamed	T,	Bayraktar	E,	Mehmetoglu	T,	Mehmetoglu	U:	Kinetics	model	
for	growth	of	Pseudomonas	putida	F1	during	benzene,	toluene	and	
phenol	biodegradation.	Process	Biochemistry	2004,	39:983-988.	

21.	 Annuar	MSM,	Tan	IKP,	Ibrahim	S,	Ramachandran	KB:	A	kinetic	model	for	
growth	and	biosynthesis	of	medium-chain-length	poly-(3-
hydroxyalkanoates)	in	Pseudomonas	putida.	Brazilian	Journal	of	Chemical	
Engineering	2008,	25:217-228.	

22.	 Bandyopadhyay	K,	Das	D,	Maiti	BR:	Kinetics	of	phenol	degradation	using	
Pseudomonas	putida	MTCC	1194.	Bioprocess	Engineering	1998,	18:373-
377.	

23.	 Calzada	J,	Alcon	A,	Santos	VE,	Garcia-Ochoa	F:	Extended	kinetic	model	for	
DBT	desulfurization	using	Pseudomonas	Putida	CECT5279	in	resting	
cells.	Biochemical	Engineering	Journal	2012,	66:52-60.	

24.	 Choi	NC,	Choi	JW,	Kim	SB,	Kim	DJ:	Modeling	of	growth	kinetics	for	
Pseudomonas	putida	during	toluene	degradation.	Applied	Microbiology	
and	Biotechnology	2008,	81:135-141.	

25.	 Hasan	SA,	Jabeen	S:	Degradation	kinetics	and	pathway	of	phenol	by	
Pseudomonas	and	Bacillus	species.	Biotechnology	&	Biotechnological	
Equipment	2015,	29:45-53.	

26.	 Kumar	A,	Kumar	S,	Kumar	S:	Biodegradation	kinetics	of	phenol	and	
catechol	using	Pseudomonas	putida	MTCC	1194.	Biochemical	Engineering	
Journal	2005,	22:151-159.	

27.	 Martin	AB,	Alcon	A,	Santos	VE,	Garcia-Ochoa	F:	Production	of	a	biocatalyst	
of	Pseudomonas	putida	CECT5279	for	dibenzothiophene	(DBT)	
biodesulfurization	for	different	media	compositions.	Energy	&	Fuels	2004,	
18:851-857.	

28.	 Seker	S,	Beyenal	H,	Salih	B,	Tanyolac	A:	Multi-substrate	growth	kinetics	of	
Pseudomonas	putida	for	phenol	removal.	Applied	Microbiology	and	
Biotechnology	1997,	47:610-614.	

29.	 Wang	SJ,	Loh	KC:	Biotransformation	kinetics	of	Pseudomonas	putida	for	
cometabolism	of	phenol	and	4-chlorophenol	in	the	presence	of	sodium	
glutamate.	Biodegradation	2001,	12:189-199.	

30.	 Sudarsan	S,	Blank	LM,	Dietrich	A,	Vielhauer	O,	Takors	R,	Schmid	A,	Reuss	
M:	Dynamics	of	benzoate	metabolism	in	Pseudomonas	putida	KT2440.	
Metabolic	Engineering	Communications	2016,	3:97-110.	

31.	 Chavarria	M,	Goni-Moreno	A,	de	Lorenzo	V,	Nikel	PI:	A	Metabolic	Widget	
Adjusts	the	Phosphoenolpyruvate-Dependent	Fructose	Influx	in	
Pseudomonas	putida.	Msystems	2016,	1.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 6, 2019. ; https://doi.org/10.1101/569152doi: bioRxiv preprint 

https://doi.org/10.1101/569152
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

32.	 Miskovic	L,	Hatzimanikatis	V:	Production	of	biofuels	and	biochemicals:	in	
need	of	an	ORACLE.	Trends	in	Biotechnology	2010,	28:391-397.	

33.	 Mišković	L,	Hatzimanikatis	V:	Modeling	of	uncertainties	in	biochemical	
reactions.	Biotechnology	and	Bioengineering	2011,	108:413-423.	

34.	 Wang	L,	Birol	I,	Hatzimanikatis	V:	Metabolic	Control	Analysis	under	
Uncertainty:	Framework	Development	and	Case	Studies.	Biophysical	
Journal	2004,	87:3750-3763.	

35.	 Ataman	M,	Hatzimanikatis	V:	Heading	in	the	right	direction:	
thermodynamics-based	network	analysis	and	pathway	engineering.	Curr	
Opin	Biotechnol	2015,	36:176-182.	

36.	 Henry	CS,	Broadbelt	LJ,	Hatzimanikatis	V:	Thermodynamics-based	
metabolic	flux	analysis.	Biophysical	Journal	2007,	92:1792-1805.	

37.	 Henry	CS,	Jankowski	MD,	Broadbelt	LJ,	Hatzimanikatis	V:	Genome-scale	
thermodynamic	analysis	of	Escherichia	coli	metabolism.	Biophysical	
Journal	2006,	90:1453-1461.	

38.	 Soh	KC,	Hatzimanikatis	V:	Network	thermodynamics	in	the	post-genomic	
era.	Curr	Opin	Microbiol	2010,	13:350-357.	

39.	 Soh	KS,	Hatzimanikatis	V:	Constraining	the	flux	space	using	
thermodynamics	and	integration	of	metabolomics	data.	Methods	in	
Molecular	Biology	2014,	1191:49-63.	

40.	 Tokic	M,	Hadadi	N,	Ataman	M,	Neves	DS,	Ebert	BE,	Blank	LM,	Miskovic	L,	
Hatzimanikatis	V:	Discovery	and	Evaluation	of	Biosynthetic	Pathways	for	
the	Production	of	Five	Methyl	Ethyl	Ketone	Precursors.	bioRxiv	2018.	

41.	 Asplund-Samuelsson	J,	Janasch	M,	Hudson	EP:	Thermodynamic	analysis	of	
computed	pathways	integrated	into	the	metabolic	networks	of	E.	coli	and	
Synechocystis	reveals	contrasting	expansion	potential.	Metabolic	
Engineering	2018,	45:223-236.	

42.	 De	Martino	D,	Capuani	F,	Mori	M,	De	Martino	A,	Marinari	E:	Counting	and	
Correcting	Thermodynamically	Infeasible	Flux	Cycles	in	Genome-Scale	
Metabolic	Networks.	Metabolites	2013,	3:946-966.	

43.	 Desouki	AA,	Jarre	F,	Gelius-Dietrich	G,	Lercher	MJ:	CycleFreeFlux:	efficient	
removal	of	thermodynamically	infeasible	loops	from	flux	distributions.	
Bioinformatics	2015,	31:2159-2165.	

44.	 Schellenberger	J,	Lewis	NE,	Palsson	BO:	Elimination	of	
Thermodynamically	Infeasible	Loops	in	Steady-State	Metabolic	Models.	
Biophysical	Journal	2011,	100:544-553.	

45.	 Soh	KC,	Miskovic	L,	Hatzimanikatis	V:	From	network	models	to	network	
responses:	integration	of	thermodynamic	and	kinetic	properties	of	yeast	
genome-scale	metabolic	networks.	Fems	Yeast	Research	2012,	12:129-
143.	

46.	 Birkenmeier	M,	Mack	M,	Roder	T:	A	coupled	thermodynamic	and	
metabolic	control	analysis	methodology	and	its	evaluation	on	glycerol	
biosynthesis	in	Saccharomyces	cerevisiae	(vol	37,	pg	307,	2015).	
Biotechnology	Letters	2015,	37:317-326.	

47.	 Feist	AM,	Henry	CS,	Reed	JL,	Krummenacker	M,	Joyce	AR,	Karp	PD,	
Broadbelt	LJ,	Hatzimanikatis	V,	Palsson	BO:	A	genome-scale	metabolic	
reconstruction	for	Escherichia	coli	K-12	MG1655	that	accounts	for	1260	
ORFs	and	thermodynamic	information.	Molecular	Systems	Biology	2007,	3.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 6, 2019. ; https://doi.org/10.1101/569152doi: bioRxiv preprint 

https://doi.org/10.1101/569152
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

48.	 Hamilton	JJ,	Dwivedi	V,	Reed	JL:	Quantitative	Assessment	of	
Thermodynamic	Constraints	on	the	Solution	Space	of	Genome-Scale	
Metabolic	Models.	Biophysical	Journal	2013,	105:512-522.	

49.	 Martiez	VS,	Quek	LE,	Nielsen	LK:	Network	Thermodynamic	Curation	of	
Human	and	Yeast	Genome-Scale	Metabolic	Models.	Biophysical	Journal	
2014,	107:493-503.	

50.	 Chiappino-Pepe	A,	Tymoshenko	S,	Ataman	M,	Soldati-Favre	D,	
Hatzimanikatis	V:	Bioenergetics-based	modeling	of	Plasmodium	
falciparum	metabolism	reveals	its	essential	genes,	nutritional	
requirements,	and	thermodynamic	bottlenecks.	Plos	Computational	
Biology	2017,	13.	

51.	 Jankowski	MD,	Henry	CS,	Broadbelt	LJ,	Hatzimanikatis	V:	Group	
contribution	method	for	thermodynamic	analysis	of	complex	metabolic	
networks.	Biophysical	Journal	2008,	95:1487-1499.	

52.	 Mavrovouniotis	ML:	Estimation	of	Standard	Gibbs	Energy	Changes	of	
Biotransformations.	Journal	of	Biological	Chemistry	1991,	266:14440-
14445.	

53.	 del	Castillo	T,	Ramos	JL,	Rodríguez-Herva	JJ,	Fuhrer	T,	Sauer	U,	Duque	E:	
Convergent	Peripheral	Pathways	Catalyze	Initial	Glucose	Catabolism	in	
Pseudomonas	putida:	Genomic	and	Flux	Analysis.	Journal	of	Bacteriology	
2007,	189:5142-5152.	

54.	 Wordofa	GG,	Kristensen	M,	Schrübbers	L,	McCloskey	D,	Forster	J,	
Schneider	K:	Quantifying	the	metabolome	of	Pseudomonas	taiwanensis	
VLB120:	Evaluation	of	hot	and	cold	combined	quenching/extraction	
approaches.	Analytical	Chemistry	2017.	

55.	 Chavarría	M,	Nikel	PI,	Pérez-Pantoja	D,	de	Lorenzo	V:	The	Entner–
Doudoroff	pathway	empowers	Pseudomonas	putida	KT2440	with	a	high	
tolerance	to	oxidative	stress.	Environmental	Microbiology	2013,	15:1772-
1785.	

56.	 Blank	LM,	Ebert	BE,	Buehler	K,	Bühler	B:	Redox	Biocatalysis	and	
Metabolism:	Molecular	Mechanisms	and	Metabolic	Network	Analysis.	
Antioxidants	&	Redox	Signaling	2010,	13:349-394.	

57.	 Orth	JD,	Conrad	TM,	Na	J,	Lerman	JA,	Nam	H,	Feist	AM,	Palsson	BO:	A	
comprehensive	genome-scale	reconstruction	of	Escherichia	coli	
metabolism-2011.	Molecular	Systems	Biology	2011,	7.	

58.	 Neuwald	AF,	Krishnan	BR,	Brikun	I,	Kulakauskas	S,	Suziedelis	K,	
Tomcsanyi	T,	Leyh	TS,	Berg	DE:	Cysq,	a	Gene	Needed	for	Cysteine	
Synthesis	in	Escherichia-Coli	K-12	Only	during	Aerobic	Growth.	Journal	of	
Bacteriology	1992,	174:415-425.	

59.	 Bennett	BD,	Kimball	EH,	Gao	M,	Osterhout	R,	Van	Dien	SJ,	Rabinowitz	JD:	
Absolute	metabolite	concentrations	and	implied	enzyme	active	site	
occupancy	in	Escherichia	coli.	Nature	Chemical	Biology	2009,	5:593-599.	

60.	 Ataman	M,	Hernandez	Gardiol	DF,	Fengos	G,	Hatzimanikatis	V:	redGEM:	
Systematic	reduction	and	analysis	of	genome-scale	metabolic	
reconstructions	for	development	of	consistent	core	metabolic	models.	
PLOS	Computational	Biology	2017,	13:e1005444.	

61.	 Ataman	M,	Hatzimanikatis	V:	lumpGEM:	Systematic	generation	of	
subnetworks	and	elementally	balanced	lumped	reactions	for	the	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 6, 2019. ; https://doi.org/10.1101/569152doi: bioRxiv preprint 

https://doi.org/10.1101/569152
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

biosynthesis	of	target	metabolites.	PLOS	Computational	Biology	2017,	
13:e1005513.	

62.	 Nikel	PI,	Chavarria	M,	Fuhrer	T,	Sauer	U,	de	Lorenzo	V:	Pseudomonas	
putida	KT2440	Metabolizes	Glucose	Through	a	Cycle	Formed	by	Enzymes	
of	the	Entner-Doudoroff,	Embden-Meyerhof-Parnas,	and	Pentose	
Phosphate	Pathways.	Journal	of	Biological	Chemistry	
2015:jbc.M115.687749-jbc.M687115.687749.	

63.	 Vicente	M,	Canovas	JL:	Glucolysis	in	Pseudomonas-Putida	-	Physiological	
Role	of	Alternative	Routes	from	Analysis	of	Defective	Mutants.	Journal	of	
Bacteriology	1973,	116:908-914.	

64.	 Placzek	S,	Schomburg	I,	Chang	A,	Jeske	L,	Ulbrich	M,	Tillack	J,	Schomburg	
D:	BRENDA	in	2017:	new	perspectives	and	new	tools	in	BRENDA.	Nucleic	
Acids	Research	2017,	45:D380-D388.	

65.	 Schomburg	I,	Chang	A,	Hofmann	O,	Ebeling	C,	Ehrentreich	F,	Schomburg	
D:	BRENDA:	a	resource	for	enzyme	data	and	metabolic	information.	
Trends	in	Biochemical	Sciences	2002,	27:54-56.	

66.	 Schomburg	I,	Chang	A,	Placzek	S,	Söhngen	C,	Rother	M,	Lang	M,	Munaretto	
C,	Ulas	S,	Stelzer	M,	Grote	A,	et	al:	BRENDA	in	2013:	integrated	reactions,	
kinetic	data,	enzyme	function	data,	improved	disease	classification:	new	
options	and	contents	in	BRENDA.	Nucleic	Acids	Research	2013,	41:D764-
D772.	

67.	 Schomburg	I,	Chang	A,	Schomburg	D:	BRENDA,	enzyme	data	and	
metabolic	information.	Nucleic	Acids	Research	2002,	30:47-49.	

68.	 Chakrabarti	A,	Miskovic	L,	Soh	KC,	Hatzimanikatis	V:	Towards	kinetic	
modeling	of	genome-scale	metabolic	networks	without	sacrificing	
stoichiometric,	thermodynamic	and	physiological	constraints.	
Biotechnology	Journal	2013,	8:1043-1057.	

69.	 Miskovic	L,	Alff-Tuomala	S,	Soh	KC,	Barth	D,	Salusjärvi	L,	Pitkänen	J-P,	
Ruohonen	L,	Penttilä	M,	Hatzimanikatis	V:	A	design–build–test	cycle	using	
modeling	and	experiments	reveals	interdependencies	between	upper	
glycolysis	and	xylose	uptake	in	recombinant	S.	cerevisiae	and	improves	
predictive	capabilities	of	large-scale	kinetic	models.	Biotechnology	for	
Biofuels	2017,	10:166.	

70.	 Wang	L,	Hatzimanikatis	V:	Metabolic	engineering	under	uncertainty—II:	
Analysis	of	yeast	metabolism.	Metabolic	Engineering	2006,	8:142-159.	

71.	 Andreozzi	S,	Chakrabarti	A,	Soh	KC,	Burgard	A,	Yang	TH,	Van	Dien	S,	
Miskovic	L,	Hatzimanikatis	V:	Identification	of	metabolic	engineering	
targets	for	the	enhancement	of	1,4-butanediol	production	in	recombinant	
E.	coli	using	large-scale	kinetic	models.	Metabolic	Engineering	2016,	
35:148-159.	

72.	 Hatzimanikatis	V,	Bailey	JE:	MCA	has	more	to	say.	Journal	of	Theoretical	
Biology	1996,	182:233-242.	

73.	 Kacser	H,	Burns	JA,	Fell	DA:	The	Control	of	Flux.	Biochemical	Society	
Transactions	1995,	23:341-366.	

74.	 Andreozzi	S,	Miskovic	L,	Hatzimanikatis	V:	iSCHRUNK	-	In	Silico	Approach	
to	Characterization	and	Reduction	of	Uncertainty	in	the	Kinetic	Models	of	
Genome-scale	Metabolic	Networks.	Metabolic	Engineering	2016,	33:158-
168.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 6, 2019. ; https://doi.org/10.1101/569152doi: bioRxiv preprint 

https://doi.org/10.1101/569152
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

75.	 Weilandt	DR,	Hatzimanikatis	V:	Particle-based	simulation	reveals	
macromolecular	crowding	effects	on	the	Michaelis-Menten	mechanism.	
bioRxiv	2018,	429316.	

76.	 Gage	DJ,	Neidhardt	FC:	Adaptation	of	Escherichia-Coli	to	the	Uncoupler	of	
Oxidative-Phosphorylation	2,4-Dinitrophenol.	Journal	of	Bacteriology	
1993,	175:7105-7108.	

77.	 Blank	LM,	Ionidis	G,	Ebert	BE,	Buhler	B,	Schmid	A:	Metabolic	response	of	
Pseudomonas	putida	during	redox	biocatalysis	in	the	presence	of	a	
second	octanol	phase.	Febs	Journal	2008,	275:5173-5190.	

78.	 Christodoulou	D,	Link	H,	Fuhrer	T,	Kochanowski	K,	Gerosa	L,	Sauer	U:	
Reserve	Flux	Capacity	in	the	Pentose	Phosphate	Pathway	Enables	
Escherichia	coli's	Rapid	Response	to	Oxidative	Stress.	Cell	Systems	2018,	
6:569-578.e567.	

79.	 Hameri	T,	Fengos	G,	Ataman	M,	Miskovic	L,	Hatzimanikatis	V:	Kinetic	
models	of	metabolism	that	consider	alternative	steady-state	solutions	of	
intracellular	fluxes	and	concentrations.	Metabolic	Engineering	2019,	
52:29-41.	

80.	 Beard	DA,	Liang	SC,	Qian	H:	Energy	balance	for	analysis	of	complex	
metabolic	networks.	Biophysical	Journal	2002,	83:79-86.	

81.	 Kummel	A,	Panke	S,	Heinemann	M:	Putative	regulatory	sites	unraveled	by	
network-embedded	thermodynamic	analysis	of	metabolome	data.	
Molecular	Systems	Biology	2006,	2.	

82.	 Jensen	JLWV:	Sur	les	fonctions	convexes	et	les	inegalites	entre	les	valeurs	
moyennes.	Acta	Math	1906,	30:175-193.	

83.	 Milo	R,	Jorgensen	P,	Moran	U,	Weber	G,	Springer	M:	BioNumbers-the	
database	of	key	numbers	in	molecular	and	cell	biology.	Nucleic	Acids	
Research	2010,	38:D750-D753.	

84.	 Asadollahi	MA,	Maury	J,	Patil	KR,	Schalk	M,	Clark	A,	Nielsen	J:	Enhancing	
sesquiterpene	production	in	Saccharomyces	cerevisiae	through	in	silico	
driven	metabolic	engineering.	Metabolic	Engineering	2009,	11:328-334.	

85.	 Ambrus	A,	Torocsik	B,	Tretter	L,	Ozohanics	O,	Adam-Vizi	V:	Stimulation	of	
reactive	oxygen	species	generation	by	disease-causing	mutations	of	
lipoamide	dehydrogenase.	Human	Molecular	Genetics	2011,	20:2984-
2995.	

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 6, 2019. ; https://doi.org/10.1101/569152doi: bioRxiv preprint 

https://doi.org/10.1101/569152
http://creativecommons.org/licenses/by-nc-nd/4.0/

