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ABSTRACT 

Root crown phenotyping measures the top portion of crop root systems and can be used for 

marker-assisted breeding, genetic mapping, and understanding how roots influence soil resource 

acquisition. Several imaging protocols and image analysis programs exist, but they are not 

optimized for high-throughput, repeatable, and robust root crown phenotyping. The RhizoVision 

Crown platform integrates an imaging unit, image capture software, and image analysis software 

that are optimized for reliable extraction of measurements from large numbers of root crowns. 

The hardware platform utilizes a back light and a monochrome machine vision camera to capture 

root crown silhouettes. RhizoVision Imager and RhizoVision Analyzer are free, open-source 

software that streamline image acquisition and image analysis with intuitive graphical user 

interfaces. RhizoVision Analyzer was physically calibrated using copper wire and extensively 

validated with 10,464 ground-truth simulated images of dicot and monocot root systems. The 

entire platform was further validated by phenotyping 6,256 root crowns from field-grown wheat 

and soybean populations, and linear discriminant analysis accurately classified the root crowns 

using the multivariate measurements. Overall, the integrated RhizoVision Crown platform 
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facilitates state-of-the-art phenotyping of crop root crowns, and sets a standard for which open 

plant phenotyping platforms broadly can be benchmarked. 

INTRODUCTION 

Roots serve as the interface between the plant and the complex soil environment with a key 

function to extract water and nutrients from soils (Lynch, 1995; Meister et al., 2014). Root 

system architecture (RSA) refers to the shape and spatial arrangement of root systems within the 

soil, which plays an important role in plant fitness, crop performance, and agricultural 

productivity (Lynch, 1995; York et al., 2013; Rogers and Benfey, 2015). RSA is shaped by the 

interactions between genetic and environmental components, and it influences the total volume 

of soil that roots can explore (Rogers and Benfey, 2015). Many root phenes, or elemental units of 

phenotype (Serebrovsky, 1925; Lynch, 2011; Pieruschka and Poorter, 2012; York et al., 2013), 

shape the final root system architecture, including the number, length, growth angle, elongation 

rate, diameter, and branching of axial and lateral roots (Bishopp and Lynch, 2015). 

Understanding the contribution of RSA phenes to crop performance is of key importance in food 

security and for breeding of more productive and resilient varieties in a changing environment. 

As roots are hidden underground and require considerable effort to characterize, their research 

lags behind that of the aboveground parts of the plant (Eshel and Beeckman, 2013), and the 

genetic and functional basis of RSA remains obscured (Topp et al., 2016). Phenotyping is a 

major bottleneck in research and a lack of efficient methods for collecting root phenotypic data is 

limiting progress in using RSA to increase crop productivity (Das et al., 2015; Kuijken et al., 

2015). In recent years there has been a shift to image-based phenotyping for enabling relatively 

high-throughput and accurate measurements of roots. Many of the platforms use 2D imaging 

with cameras, and involve the use of seedlings on agar plates, germination paper or fabric cloth 
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in bins (Kuijken et al., 2015). Despite the usefulness of controlling environmental parameters for 

characterization of root phenotypes, where possible plants should be grown in field conditions as 

crop growth and development may better represent the agricultural systems in which they are 

ultimately grown. 

Weaver and colleagues (Weaver, 1925; Weaver and Bruner, 1926) pioneered methods for 

excavating, drawing and photographing root systems, and they have been widely used for over 

half a century (Böhm, 2012). These classical methods were since modified (Stoeckeler and 

Kluender, 1938) with the use of water  to remove soil particles from the root systems on a large 

scale, and using high pressure air to penetrate soil pores while leaving roots intact (Kosola et al., 

2007). Hydropneumatic root elutriation is a different development by Smucker et al. (1982) to 

provide a rapid and reproducible approach for separating roots from soils of field soil cores with 

minimal damage. Traditional excavation methods are most suited for trees and shrubs as the root 

system of wooden species are generally stronger and more resistant to breaking than the fibrous 

roots of grasses or annual crops (Böhm, 2012). Other field root phenotyping methods include 

minirhizotrons and soil coring which both require a large amount of physical labor and time for 

setting up (Johnson et al., 2001; Böhm, 2012; Wasson et al., 2016). More recently non-

destructive root phenotyping methods such as ground penetrating radar and electrical resistance 

tomography are showing promise, however both techniques are indirect methods for root length 

and do not provide RSA (Garré et al., 2013; Liu et al., 2018). 

Over the past 10 years, root crown phenotyping (York, 2018) has emerged as one of the more 

common field-based root phenotyping methods, and is characterized by excavation of the top 

portion of the root system, removal of soil, and measurements, all by whatever means. The 

definition of root crown in this research is extended from the earlier use of the site where the root 
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system transitions to the shoot (Beentje, 2010). Root crown phenes such as nodal root number 

(York et al., 2013; Gao and Lynch, 2016; Slack et al., 2018) and growth angle (Wasson et al., 

2012; Trachsel et al., 2013; York et al., 2015; Slack et al., 2018) have been widely reported to 

correlate with crop above-ground biomass or grain yield performance. The work of Grift et al. 

(2011) may be the earliest published example of root crown phenotyping in a high-throughput 

capacity. Root crown phenotyping was widely popularized as “shovelomics” in the work of 

Trachsel et al. (2011) using visual scoring. While the term “shovelomics” is popular, the extent 

of its definition are not clear and debate exists whether it only refers to methods based on root 

crown washing and visual scoring in maize or to other protocols. Therefore, “root crown 

phenotyping” is proposed as less ambiguous and broadly applicable, as defined above. Root 

crown phenotyping has been used to enhance the understanding soil resource acquisition by roots 

of soybean, legume, cowpea, corn and wheat (Trachsel et al., 2010; Colombi et al., 2015; York et 

al., 2015; York and Lynch, 2015; Burridge et al., 2016; Maccaferri et al., 2016; York et al., 

2018).  

In order to standardize measurements and increase throughput, image-based phenotyping of 

crop root crowns has become the standard procedure. The unique steps of image-based 

phenotyping are acquiring the image and analyzing the image, which are of equal importance 

with regards to creating a reproducible and reliable protocol. The first example of image-based 

root crown phenotyping used a custom imaging booth with vision cameras controlled by MatLab 

and image analysis in MatLab that provided two measures, fractal dimension and top root angle 

(Grift et al., 2011). The Digital Imaging of Root Traits (DIRT) platform included 

recommendations for imaging using a DSLR consumer camera that attempted to relax the 

requirements and focuses on a free cloud-based image analysis pipeline, though a Linux 
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installation is possible (Bucksch et al., 2014; Das et al., 2015). The Root Estimator for 

Shovelomics Traits  (REST) platform included an imaging ‘tent,’ DSLR consumer camera 

controlled using the manufacturer’s software, and a MatLab executable requiring the free 

MatLab runtime for image analysis (Colombi et al., 2015). The Multi-Perspective Imaging 

Platform (M-PIP) includes five point-and-shoot cameras along a 90 ° arc in an imaging box, 

command line camera control software for Linux, and MatLab scripts for image analysis 

(Seethepalli et al., 2018). The cloud-based platform of DIRT requires uploading potentially 

thousands of root images, which is time consuming, and then downloading the data, and the less-

controlled imaging-protocol leads to segmentation failures. The REST platform provides 

controlled imaging conditions, though not with optimal ergonomics, and the MatLab 

implementation doesn’t include root length. M-PIP requires knowledge of Linux, difficult 

segmentation of roots form the background using color information, and access to MatLab 

software. While all these platforms have advanced the field of root crown phenotyping, none are 

completely optimized for imaging, image analysis, and data processing. 

The aim of this study was to develop a phenotyping platform for both high throughput image 

acquisition and image analysis of root crowns from the field. The imaging hardware is 

ergonomic for the user, reproducible in any lab, and affordable. The imaging software is the first 

of its kind optimized for plant phenotyping and usability. The image analysis software is 

extremely fast, reliable, fully automated, and has a 100% success rate when used with images 

from the hardware platform. Together, these developments represent an elegant solution for root 

crown phenotyping, and serve as a benchmark for other plant phenotyping systems. 
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RESULTS 

An integrated hardware and software platform for accelerated phenotyping and knowledge 

generation 

The RhizoVision Crown hardware and software platform represents a state-of-the-art 

phenotyping solution in root biology, and more broadly a useful benchmark for other 

phenotyping platforms. The primary focus has been on optimizing the stages of sample loading, 

recording sample identification, image acquisition, image analysis, and data analysis. A second 

consideration has been assuring the platform could be used by as many researchers as possible 

by developing open hardware that can be built by most organizations and free software that is 

ready-to-run on the widely available Windows operating system with little technical knowledge.  

In order to ensure reproducible imaging of crop root crowns that would allow 100% success 

rates during image analysis, a backlit solution was chosen. An LED flat panel is mounted behind 

where the root crown is placed and a monochromatic machine vision camera faces the light panel 

and is focused on the root crown. Root crowns are loaded by attaching to a clip that is affixed to 

a board. This board fits into an indentation on top of the instrument as to ensure root crowns are 

loaded into consistent positions and a handle allows the board to be lifted up for replacing the 

root crown (Fig. 1A). This setup ensures that all images acquired have a white background, with 

the captured root crown silhouette being primarily black and dark grey (greyscale). 

The camera attaches via USB to a laptop computer, and this single cable provides both power 

and data transfer (Fig. 1C). The RhizoVision Imager software (Fig. 1B) connects to the camera 

and provides a live view, allows modifying camera settings, saves setting profiles, and acquires 

images (Seethepalli and York, 2019). Sample identifications (file names) can be typed in for 

single shots, or a barcode reader can be used for greater throughput and accurate tracking of 
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sample identity. The barcode setting allows image acquisition to be triggered after a barcode 

label is scanned and saves the resulting image with the encoded identification. After image 

acquisition, the root crown is replaced and the process repeated, with throughputs achievable of 

at least 6 root crowns per minute if previously excavated and cleaned. The dependencies of the 

Imager software are use of Basler machine vision cameras and installation of the freely available 

Pylon runtime from the camera manufacturer. All RhizoVision software described are open-

source, designed for Windows 10, and do not require installation (just download and run the 

executable). 

Once images are acquired, a separate software named RhizoVision Analyzer (Fig. 2A) is used 

for batch image analysis (Seethepalli and York, 2019). The user simply provides the directory 

containing the images, an output directory for generated data, and a greyscale thresholding level 

for segmenting roots from the background before pressing “Start”. Additional options include 

saving segmented images and feature images that overlay the features on the segmented image 

for use in publications and presentations. For the numerical output, pixel units can be converted 

to physical units if the user supplies the pixels per millimeter. Finally, the diameter ranges for 

fine, medium, and coarse roots can be defined by the user. The output directory includes a data 

file with a column for the sample names followed by the 27 extracted measurement columns, and 

a separate metadata file that stores the user-defined options. The Analyzer software has no 

additional dependencies to run. 

The hardware platform optimizes image acquisition of root crowns to increase throughput and 

ensure successful image processing. A high level of image quality is achieved with 

approximately $1,200 USD of hardware that can be assembled by most laboratories, including 

the aluminum profiles, plastic panels, LED panel, camera, and lens but excluding a laptop 
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computer. The RhizoVision software are free, open-source, and can be used independently of the 

imaging box assembly. The Imager software coupled with the imaging box assembly however 

provides unparalleled ease-of-use in producing reproducible high quality root images that is the 

first of its kind optimized for plant phenotyping. The Analyzer software can process each image 

in a fraction of a second on consumer laptop computers and the data output is in a format ready 

for data analysis pipelines. This integrated platform has transformative potential for root biology 

and serves as a benchmark for other integrated hardware and software platforms (Lee et al., 

2018). 

Physical calibration 

In order to ensure that the correct physical units were generated by the RhizoVision Analyzer 

software, copper wires of known diameters ranging from 0.2 – 2.57 mm were scanned with a 

flatbed scanner at 600 DPI and the correct pixels per mm conversion was supplied to Analyzer. 

Regression of the computed diameters versus caliper-measured diameters showed nearly exact 

correspondence (y = 0 + 1 x, R2 = 0.99, p < .01) which indicates the physical units provided by 

Analyzer are accurate when the user supplies the correct pixels to mm conversion (Fig. 3). 

Validation using simulated root system images 

To validate the diverse measures generated by the Analyzer software, 10,464 simulated 

images of dicot and monocot root systems from Lobet et al. (2017) were processed (elapsed time 

1 hour 7 mins [8-cores, 3.7 Ghz, 16 Gb]). The RhizoVision Analyzer data was correlated with 

the simulated ground truth data and RIA-J descriptor data (outlined in Lobet et al., 2017). 

Several root features found in common across the datasets were compared (Fig. 4). The ground 

truth total root length was under-estimated by Analyzer (y = -.5 + 1.5 x, R2 = 0.75, p < .01) (Fig. 

4A), which is to be expected as the original simulated roots were three-dimensional but the 
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processed images are flattened to two dimensions. The descriptor length provided was similar to 

the Analyzer length (y = -.1 + 0.97 x, R2 = 0.99, p < .01) (Fig. 4B), indicating that Analyzer 

performs similarly to the previously-used software. Tip number (y = -11 + 1.1 x, R2 = 0.99, p < 

.01) (Fig. 4C), root crown area (y = .2 + 0.96 x, R2 = 0.98, p < .01) (Fig. 4D), root crown 

maximum width (y = -5.1 + 0.99 x, R2 = 0.99, p < .01) (Fig. 4E), and root crown maximum 

depth (y = -5.7 + 1 x, R2 = 1, p < .01) (Fig. 4F) all indicate that Analyzer extracts phenes that 

have the same physical units (slopes equal one) and strong correlations with the ground truth and 

with the phenes extracted from other software. 

A tale of two species: comparing root crowns of wheat and soybean  

In order to validate the entire hardware and software platform, 3,457 images were acquired of 

wheat root crowns in Oklahoma and 2,799 of soybean root crowns in Missouri. In Missouri, 

images were acquired in the field with the imaging system powered by a gasoline generator on 

the same day the root crowns were excavated. In Oklahoma, images were acquired after wheat 

root crowns were brought to the lab, stored in a cold room, and imaged within two weeks. In 

both cases 100% of the root crowns were imaged and successfully processed by the Analyzer 

software, indicating the hardware provides reproducible images irrespective of plant species that 

are optimized for image analysis.  

For a basic understanding of fundamental differences between the wheat and soybean root 

crowns, the means and variation were computed (Fig. 5). Definitions of extracted phenes are 

outlined in Table 1. The total root length of wheat and soybean crowns were 3.1 m and 1.7 m, 

respectively. The number of root tips was 609 for wheat and 370 for soybean. The maximum 

widths were 79 mm and 123 mm for wheat and soybean, respectively, while maximum depths 

were 150 mm and 127 mm for wheat and soybean, respectively. This indicates that wheat has a 
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deeper and narrower root system, while soybean has a wide but shallow root system. The area of 

the convex hull surrounding the roots did not differ substantially, indicating the species have 

roughly the same ability to occupy a soil volume. However, solidity (dividing the root area by 

the convex hull area) was 0.27 for wheat and 0.21 for soybean, which indicates that wheat may 

have a greater forage intensively within the soil volume explored. The median root diameters 

were 0.79 mm and 1.4 mm for wheat and soybean, respectively. Wheat tends to have many more 

holes (gaps in the root crown) than soybean with 473 and 120, respectively. However, wheat 

holes are less than half the size of soybean holes on average at 3.4 mm2 and 7.5 mm2, 

respectively. Finally, wheat has a steeper-angled root system compared to soybean based on the 

average orientation of every pixel in the skeleton, with 49.5° and 42.5° respectively from 

horizontal, which possibly relates to the greater root crown depth observed in wheat. Together, 

this data suggests that despite substantial variation within species, these two species are 

fundamentally different for root crown structure, on average. 

While univariate phene comparisons indicated differences between wheat and soybean on 

average, substantial overlap for all the phenes indicates no single phene can distinguish the two 

species. Principal component analysis was used to identify the major components of phene 

combinations that maximize the multivariate variation (Fig. 6). Principal components (PC) 1 and 

2 explained 45.2% and 19.5% of the multivariate variation, respectively. The phenes that loaded 

most strongly onto PC 1 were size-related phenes such as total root length, perimeter, number of 

root tips, number of holes, several measures of root areas, and some contribution from diameter 

measures. PC 2 was dominated by width, convex hull area, and measures of root angles, which 

are indicators of root orientation. Within this 2D space, wheat and soybean were separated but 

not completely by either axis, but rather along the diagonal of the two components.  
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To determine the linear combinations that separate the two species, linear discriminant 

analysis was employed (Fig. 7). Overall classification accuracy from the fitted model was 99.7%, 

indicating the multivariate data can be used to successfully classify the roots of the two species. 

The positive loadings onto this single discriminant were dominated by total root length. 

However, since length could not entirely discriminate independently, it is offset in the linear 

combination by negative loadings of perimeter, surface area, and network area, and to a lesser 

extent by the number of holes and coarse diameter frequency. Note that in the descriptive 

statistics, while means for most of these phenes are different, there is substantial overlap of the 

standard error and so any one of these phenes are not capable discrimination independently. 

Therefore, linear combination of multivariate data that maximize the separation of classes is a 

powerful method to classify root crowns from different species with substantial accuracy. 

DISCUSSION 

Over the past few years, the throughput, reliability, and standardization of root crown 

phenotyping has been increased using digital imaging and image-based analysis software such as 

DIRT (Bucksch et al., 2014), REST (Colombi et al., 2015), and M-PIP (Seethepalli et al., 2018). 

However, increasing hardware-software integration specifically for root crown phenotyping is 

promising to further increase of throughput and reliability. Minimizing cost, increasing 

throughput, and improving reliability are key demands for developing high-throughput root 

phenotyping platforms. The RhizoVision Crown hardware platform facilitates phenotyping with 

the end-user in mind by using a backlit approach to capture easily segmented images, a simple 

clip-and-replace system for exchanging root crowns, and by integration with the RhizoVision 

Imager software. RhizoVision Imager allows live view so that the user may verify images are 

high-contrast while framed correctly, stores camera settings, and has a barcode scanning mode 
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that saves images with the sample identification. The backlit approach and use of imaging 

software optimized for phenotyping are unique compared all other platforms for root crown 

phenotyping. The improved quality of images captured enable greater accuracy and precision of 

root crown phenotyping, and simultaneously broaden the metrics used to characterize roots 

(Topp et al., 2016). The ergonomics evident in the hardware and control software facilitates 

high-throughput image acquisition.  

Differing from existing root crown phenotyping systems, both RhizoVision Imager and 

RhizoVision Analyzer are designed to be used by any user on Windows 10.  Both provide a 

graphical interface that is intuitive for new users, can be installed by simply downloading a 

binary archive to a local directory, and eliminate the need for uploading large files to the cloud 

before feature extraction like DIRT (Das et al., 2015). RhizoVision Analyzer was physically 

calibrated, and extensively validated with 10,464 simulated external images of dicot and 

monocot root systems with no errors. Excellent agreements were observed between root phenes 

like length, tip number, root crown area, root crown maximum width and root crown maximum 

depth extracted using Analyzer and published data of the simulated images. Furthermore, the 

platform was validated with a phenotypic screen of field excavated root crowns for a wheat and 

soybean population. Root phenes were extracted using the platform and the averages for each 

species were used to determine fundamental differences between the two species. Linear 

discriminant analysis using the obtained multivariate data successfully classified the root crowns 

of the two species with 99.7% accuracy. The wheat and soybean experiments occurred at two 

different sites with different soils and are meant to be illustrative of the broad applicability of this 

system, however the data match trends in the literature, such as the shallow foraging nature of 

first order laterals in soybean or the smaller diameters of wheat roots. In all these image analyses, 
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no segmentation failures or other errors were discovered. Additional image-based measures 

could further improve plant classification and characterization of root topology, for example 

extracting new root phenes such as lateral root branching density, angles and lengths of specific 

classes of roots through optimized algorithms. Incorporation of morphometric descriptors 

(Bucksch et al., 2017) could simplify representation of data, such as persistent homology (Li et 

al., 2018). 

In conclusion, the RhizoVision Crown platform is a cost-effective and high-throughput 

platform that has the potential to democratize access to technologies for root crown phenotyping. 

The platform builds upon previous platforms (Grift et al., 2011; Bucksch et al., 2014; Colombi et 

al., 2015; Seethepalli et al., 2018) by optimizing image acquisition using a backlight and the 

barcode option, using custom imaging software designed for phenotyping, and use of image 

analysis software with a simple graphical interface designed for batch processing. All software 

are free and ready-to-use on the most common operating system, Windows 10. The platform has 

been validated using ground-truth measures of a simulated dataset and successfully extracted 

root phenes from field-excavated root crowns of cereal and legume species. The ergonomics of 

use, the integration of all hardware and software, and the extensive validation tests serve as a 

benchmark for other plant phenotyping platforms. This technology will increase access to root 

crown phenotyping as a method to acquire data for genetic mapping, use in breeding programs, 

and understanding how root phenes can address agricultural sustainability and food security. 

MATERIALS AND METHODS 

RhizoVision Crown Hardware 

The RhizoVision Crown hardware platform (Fig. 1A) is a backlit solution designed to 

produce images in which the background is nearly completely white and the foreground (root 
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crown) is nearly black because it is a silhouette. This is achieved by use of a 61 cm x 61 cm LED 

edge lit flat panel light (Anten, 40 watts, 6000K light color) affixed with epoxy to the back of an 

imaging box. The imaging box is constructed from T-slotted aluminum profiles (80/20 Inc., 

Columbia City, IN) that were assembled to generate a box measuring 65.5 cm x 65.5 cm x 91.4 

cm. Foamed black PVC panels were custom cut (TAP Plastics, Stockton, CA) and placed 

between profiles to isolate the interior from outside light. A root crown holder was constructed 

by attaching a spring clap to the bottom of a foamed PVC panel measuring 22.86 cm x 30.48 cm. 

On the top of the root holder panel a screed door handle was attached for lifting off the 

instrument. A root crown is clamped onto the holder, and the holder panels is placed in an 

indentation designed into the top of the imaging box such that root crowns are consistently 

placed at the desired position.  At one end of the imaging box is the LED panel, and on the other 

is a CMOS sensor monochrome camera (Basler aca3800-um, Graftek Imaging, Inc., Austin, TX). 

The camera is connected to a laptop computer USB 3.0 port using a USB 3.0 cable (Micro-B 

male to A male connectors). For the recommended barcode mode, a USB barcode scanner was 

also connected to the laptop (Tautronics, Fremont, CA). The imaging software is described in the 

following section. 

RhizoVision Imager 

The imaging hardware is controlled by RhizoVision Imager (Seethepalli and York, 2019). 

The software package is open-source with source code located at 

https://github.com/rootphenomicslab/RhizoVisionImager (for x86_64 processor). The compiled, 

ready-to-run software binaries can be downloaded at https://zenodo.org/record/2585882  for 

convenience. The program can connect to multiple Basler USB 3.0 cameras and capture images 

using the Basler Pylon SDK. For each camera, the parameters Gain, Gamma and Exposure Time 
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can be changed to suit the experimental needs (Fig. 1B). Using the lenses mounted on the 

cameras, the aperture and focus of the lens can be modified. 

The program starts with a live view for a connected camera. If multiple cameras are 

connected, the live view for each can be changed in the View menu. The live view can be 

zoomed in and out to view a specific area in the image. To start capturing images from the 

connected cameras, a directory location needs to be specified in which to save the images. For 

single shots, the user may enter an image file name. File names of all the captures images are 

appended by the camera number and by the number of times the image was taken with the same 

name the camera number. This ensures that the images are not overwritten. 

The program also supports barcode reading for designating filenames and image capture. 

When a barcode reader is connected to the computer and enabled in Imager, images are captured 

from all cameras when a barcode is scanned with appended camera number and picture number. 

The program has a log window, where all the events are logged for review. This includes logging 

when a new image is captured, camera devices are refreshed or a barcode scanner is attached. 

The camera settings can be saved as profiles in the program, which may then be reused in later 

experiments or modified with a text editor. The images can be captured as .BMP, .JPEG, .PNG 

or .TIFF files. RhizoVision Imager was implemented in C++ and the user interface was 

developed in Qt, a cross-platform GUI toolkit. 

RhizoVision Analyzer 

RhizoVision Analzyer is designed to quickly analyze the images acquired using the 

RhizoVision Crown platform and the Imager software. Analyzer is open-source with source code 

available at https://github.com/rootphenomicslab/RhizoVisionAnalyzer (for x86_64 processors). 

The compiled, ready-to-run software binaries can be downloaded at 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/569707doi: bioRxiv preprint 

https://doi.org/10.1101/569707
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

https://zenodo.org/record/2585892 for convenience. The overall goal in the design of 

RhizoVision Analyzer was to create a simple-to-use and robust program that batch processes a 

folder containing root crown images and outputs a data file with the measures for each sample in 

a form convenient for data analysis. Analyzer has an option to output segmented images as well 

as processed images on which visual depictions of the extracted features are drawn on the 

segmented image. Coupled with the optimized image acquisition using the hardware platform, 

segmentation of the root crown images from the background requires only simple thresholding of 

the greyscale values for each pixel with minimal loss of data (Fig. 8B). Thresholded (binary) or 

greyscale images from other platforms may also be used. The input image may have irregular 

edges which may lead to non-existent skeletal structures being created (Fig. 8C). Hence, the 

edges of the input image are smoothed so as to remove irregularities along the edge using the 

Ramer–Douglas–Peucker algorithm (Ramer, 1972; Douglas and Peucker, 1973). After this 

procedure, overall shape of a root segment does not change substantially, but the skeletal 

structure now is simpler and has fewer non-existent lateral roots (Fig.8D, Fig. 8F). 

On each row of the segmented and smoothed image, each pixel transition from background to 

foreground (plant root pixel) is counted, obtaining a plant root count profile along the depth of 

the root crown, from which Median and Maximum Number of Roots are determined (Fig. 9). 

Maximum Width and Depth are extracted from this smoothed image (Fig. 9C). The Network 

Area of the image is determined by counting the total number of plant root pixels in the image. 

Further, a convex polygon is fit on the image and the area of this polygon is noted as Convex 

Area (Fig. 2C). 

A precise distance transform is computed on the line smoothed image in order to identify the 

medial axis. The distance transform (Felzenszwalb and Huttenlocher, 2012) of an image is the 
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map of distance of each pixel to the nearest background pixel, here using the Euclidean distance 

metric (Fig. 9B). The medial axis is a set of loci on the distance transform that are equidistant 

from at least two background pixels and is identified from the ridges formed on the distance 

transform map (Fig. 9). In order to make a fully connected skeletal structure, additional pixels 

are added using the connectivity preserving condition from the Guo-Hall thinning algorithm 

(Guo and Hall, 1989; Lam et al., 1992) and the endpoints of the ridges are connected using the 

steepest accent algorithm. The contours of the segmented image are identified for determining 

the perimeter of the plant root image. 

Using the generated skeletal structure, topological properties such as the branch points and 

end points are identified (Fig. 9B). The skeletal pixels connecting one branch point to another 

branch or end point are identified as root segments. The number of end points are noted as 

Number of Root Tips. For each skeletal pixel in every root segment, a 40x40 neighborhood 

window is selected. All the skeletal pixels on the root segment of the current skeletal pixel are 

taken within the window and average angle is computed. Using these angles, the numbers of 

shallow-angled, medium-angled, and steep-roots in an image are noted as histogram bins, by 

grouping the computed angles in ranges of 0˚ to 30˚, 30˚ to 60˚ and 60˚ to 90˚ respectively. This 

histogram is normalized and the bins are named as Shallow, Medium and Steep Angle 

Frequencies. Further, an average of all the angles are computed and noted as Average Root 

Orientation. A similar normalized histogram is constructed using the skeletal pixels on the root 

diameter. The histogram bins are allowed for the user to be specified from the user interface of 

RhizoVision Analyzer. These bins are noted as Fine, Medium and Coarse Diameter Frequency. 

Also, the Average, Median and Maximum diameters are identified from the diameters of all the 

skeletal pixels. The plant root area below the pixel having maximum diameter is noted as Lower 
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Root Area. The segmented and edge smoothed image is color inverted and connected component 

analysis is performed to count the number of Holes and an average of all the sizes of holes is 

computed to determine the Average Hole Size. Table 1 briefly describes the list of features 

extracted from the root crown images. 

RhizoVision Analyzer is implemented in C++ using the OpenCV library. The user interface 

of the program is developed in Qt, a cross-platform GUI toolkit. The program can utilize a 

CPU’s vectorization facilities using Intel’s AVX 2.0 technology, to execute the algorithms faster 

on newer computers. All pixel-based measures are converted to appropriate physical units if the 

user supplies the number of pixels per millimeter before analysis. Depending on the exact 

computer system, Analyzer can be expected to routinely process each image in a fraction of a 

second. 

Field Sites and Root Crown Phenotyping 

Phenotyping soybeans in Missouri 

A soybean recombinant inbred line (RIL) population derived from a cross between PI 398823 

and PI567758 was planted at the Bradford Research Center near Columbia, MO on a Mexico silt 

loam soil (fine, smectitic, mesic Aeric Vertic Epiaqualf).  Pre-plant soil tests indicated that no P 

or K fertilizer application was necessary.  Prior to sowing, the seedbed was prepared by one pass 

with a disc to approximately 0.15 m depth, which was followed by a pass with a harrow. The 185 

RILs and the two parental lines were sown in a randomized complete block design with three 

replications on 14 May 2017 at a density of 344,000 plants ha-1 in 3.04 m long rows with a row 

spacing of 0.76 m.   

Phenotyping wheat in Oklahoma 
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The wheat population is a recombinant inbred line (RIL) population with 184 F7 lines derived 

from the cross ‘TAM 112’ x ‘Duster’. The population was created for mapping QTL or genes 

contributing to a number of important agronomic traits because ‘TAM 112’ is resistant to 

greenbug and wheat curl mite, and it has superior drought tolerance (Rudd et al., 2014), whereas 

‘Duster’ is resistant to Hessian fly and some other diseases (Edwards et al., 2012). ‘TAM 112’ is 

well adapted to dryland production system in the southern High Plains while ‘Duster’ is one of 

the most popular wheat cultivars in the southern Great Plains in the past a few years. 

Field trials were planted in a randomized complete block design with 3 replications of 1.5 m 

by 0.9 m plots and seeded at a rate of 148 kg/ha on 11 November 2017 at Burneyville, 

Oklahoma.  The field was clean tilled prior to planting and rain-fed with no supplemental 

irrigation.  For all trials, first fertilization was pre-plant incorporated with 56 kg/ha nitrogen and 

then top-dressed with 56 kg/ha nitrogen on 23 January 2018 based upon rainfall.  Phosphorous 

and potassium concentrations were sufficient based on soil test results prior to planting.  Weeds 

were controlled with 247 kg/ha of glyphosate at planting and 0.02 kg/ha of Glean XP at Zadoks 

growth stage 13 at both locations.  Post-emergence application of 1.12 kg/ha of 2,4-D was used 

on 14 February 2018 for broadleaf weed control. 

Statistical Analysis 

Statistical analyses were employed by the using R version 3.5.1 (R Core Team, 2018) 

through RStudio version 1.1.45 (RStudio, 2016). Principal component analysis was conducted 

using the ‘prcomp’ function after scaling and centering the data. The R package ‘MASS’ 

(Venables and Ripley, 2013) was used for linear discriminant analysis after data was 

standardized for each measurement such that the mean was zero and the within-group standard 

deviation was 1 in order to interpret loadings. Accuracy was determined by using jackknifed 
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(leave one out) predictions, which helps to control overfitting. The R package ‘ggplot2’ 

(Wickham, 2016) was used for data visualization and linear regressions were fit using the lm 

function.  
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FIGURE LEGENDS 

Figure 1. RhizoVison Crown hardware and software for root crown imaging. Root crowns are 

placed into the imaging unit (A) with a backlit panel for framing the root crown and a laptop 

connected to a vision camera and USB barcode scanner. The vision camera is controlled using 

the software RhizoVison Imager (C) which has a user interface for controlling camera settings, 

provides a live camera view, and image export settings. 

Figure 2. RhizoVision Analyzer for automated batch analysis of root crown images. (A). The 

software has a user interface (A) for selecting input and output folders, choosing image threshold 

levels before analysis, classifying root diameter ranges and saving options. The segmented image 

(B) and feature image (C) are optionally generated by RhizoVision Analyzer. The feature image 

shows a blue convex polygon that is fit around the entire root system for extraction of Convex 

Area. The boundary and skeletal pixels are shown in red and the distance transform is shown in 

green. The “holes” or the background image patches that were disconnected due to the 

overlapping of foreground pixels are colored for distinction. 

Figure 3. Correlation between diameters of copper wires extracted using RhizoVision Analyzer 

(RVA) and caliper-measured diameters (each diameter has two points). 

Figure 4. Correlations and linear fit equations between root features extracted using Analyzer 

and ground-truth simulated root data or published descriptors. (A) Scatter plot with fitted linear 

regression of RVA length against ground-truth data length, (B) Scatter plot with fitted linear 
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regression of RVA length against original descriptor length, (C) Scatter plot with fitted linear 

regression of RVA tip number against original descriptor tip number, (D) Scatter plot with fitted 

linear regression of RVA area against original descriptor area, (E) Scatter plot with fitted linear 

regression of RVA width against original descriptor width, and (F) Scatter plot with fitted linear 

regression of RVA depth against original descriptor depth. 

Figure 5. Summary of means and standard errors of various features extracted from soybean (n =  

2,799) and wheat (n = 3,457) root crown images using the RhizoVision Crown platform.  

Figure 6. Principal component analysis of root crown features from the combined wheat and 

soybean dataset (n = 6,256). Points represent the scores of principal components 1 and 2 (PC1 

and PC2) for each species. Labelled lines demonstrate the correlation of feature values to 

principal component scores.  

Figure 7. Linear discriminant analysis indicating the accuracy of classifying as either soybean 

(scores < 0) or wheat (scores > 0) using the multivariate features generated by the RhizoVision 

Crown platform. 

Figure 8. Example of how RhizoVision Analyzer skeletonizes root crown images before 

extraction of measurements. A small region of interest is selected (A) and magnified (B) for 

demonstration purposes. The thresholded image of the region of interest shows that due to the 

irregular edges, the generated skeletal structure contains lateral roots that are non-existent 

(shown in blue) (C). The skeletal structure of the root is then smoothed to reduce falsely 

classified lateral roots before line smoothing operation (D). During the line smoothing operation 

pixels are either added (shown in red) or deleted (shown in blue). Finally, the skeletal structure 

of the root after line smoothing operation has the falsely classified lateral roots removed (F). 
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Figure 9. Example of how RhizoVision Analyzer extracts quantitiative traits from the 

skeletonized root crown. For each pixel within the root crown skeleton, the corresponding value 

from the distance map is used to estimate root diameter (A). Topological information is extracted 

from the skeletal structure such as branch points (shown in blue), root direction change (shown 

in orange) and end points (shown in green) (B). Finally, for the root counting procedure (C) a 

pixel transition is marked in a horizontal line scanning operation (shown in blue) for each row 

and is recorded for counting the number of roots in that row (shown in red). 
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Figure 1. RhizoVison Crown hardware and software for root crown imaging. Root crowns are

placed into the imaging unit (A) with a backlit panel for framing the root crown and a laptop

connected to a vision camera and USB barcode scanner. The vision camera is controlled using

the software RhizoVison Imager (C) which has a user interface for controlling camera settings,

provides a live camera view, and image export settings. 
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Figure 2. RhizoVision Analyzer for automated batch analysis of root crown images. (A). The 

software has a user interface (A) for selecting input and output folders, choosing image threshold 

levels before analysis, classifying root diameter ranges and saving options. The segmented image 

(B) and feature image (C) are optionally generated by RhizoVision Analyzer. The feature image 

shows a blue convex polygon that is fit around the entire root system for extraction of Convex 

Area. The boundary and skeletal pixels are shown in red and the distance transform is shown in 

green. The “holes” or the background image patches that were disconnected due to the 

overlapping of foreground pixels are colored for distinction. 
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Figure 3. Correlation between diameters of copper wires extracted using RhizoVision Analyzer 

(RVA) and caliper-measured diameters (each diameter has two points). 
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Figure 4. Correlations and linear fit equations between root features extracted using Analyzer 

and ground-truth simulated root data or published descriptors. (A) Scatter plot with fitted linear 

regression of RVA length against ground-truth data length, (B) Scatter plot with fitted linear 

regression of RVA length against original descriptor length, (C) Scatter plot with fitted linear 

regression of RVA tip number against original descriptor tip number, (D) Scatter plot with fitted 

linear regression of RVA area against original descriptor area, (E) Scatter plot with fitted linear 

regression of RVA width against original descriptor width, and (F) Scatter plot with fitted linear 

regression of RVA depth against original descriptor depth. 
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Figure 5. Summary of means and standard errors of various features extracted from soybean (n =  

2,799) and wheat (n = 3,457) root crown images using the RhizoVision Crown platform.  
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Figure 6. Principal component analysis of root crown features from the combined wheat and 

soybean dataset (n = 6,256). Points represent the scores of principal components 1 and 2 (PC1 

and PC2) for each species. Labelled lines demonstrate the correlation of feature values to 

principal component scores.  
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Figure 7. Linear discriminant analysis indicating the accuracy of classifying as either soybean 

(scores < 0) or wheat (scores > 0) using the multivariate features generated by the RhizoVision 

Crown platform. 
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Figure 8. Example of how RhizoVision Analyzer skeletonizes root crown images before

extraction of measurements. A small region of interest is selected (A) and magnified (B) for

demonstration purposes. The thresholded image of the region of interest shows that due to the

irregular edges, the generated skeletal structure contains lateral roots that are non-existent

(shown in blue) (C). The skeletal structure of the root is then smoothed to reduce falsely

classified lateral roots before line smoothing operation (D). During the line smoothing operation

pixels are either added (shown in red) or deleted (shown in blue). Finally, the skeletal structure

of the root after line smoothing operation has the falsely classified lateral roots removed (F). 
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Figure 9. Example of how RhizoVision Analyzer extracts quantitiative traits from the 

skeletonized root crown. For each pixel within the root crown skeleton, the corresponding value 

from the distance map is used to estimate root diameter (A). Topological information is extracted 

from the skeletal structure such as branch points (shown in blue), root direction change (shown 

in orange) and end points (shown in green) (B). Finally, for the root counting procedure (C) a 

pixel transition is marked in a horizontal line scanning operation (shown in blue) for each row 

and is recorded for counting the number of roots in that row (shown in red). 
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TABLE LEGENDS 

Table 1. The list of 27 features extracted from each root crown image by RhizoVision Analyzer.  

Features extracted Description 
Median and maximum 
number of roots 

The number of roots are counted by performing horizontal line scans from 
left to right in each row through the segmented image. In each of the line 
scan, we check if there is a pixel value transition from the previous pixel 
value to the current pixel value on its right side. If the current pixel value 
changes from 0 to 1, we note that a root is present. The number of roots are 
recorded from each row of the segmented image and the median and 
maximum number of roots is determined from these values. 

Number of Root Tips Computed by counting total number of tip pixels in the skeletonized image. 
Total root length Computed by counting the total number of pixels in the skeletonized image. 
Depth, maximum width 
and width-to-depth ratio 

The trait values for both depth and maximum width of the root in the 
segmented image. The ratio of maximum width to depth of the image is 
noted as width-to-depth ratio. 

Network area, convex 
area and solidity 

Network area is the total number of pixels in the segmented image. The 
convex hull of a geometric shape is minimal sized convex polygon that can 
contain the shape. The ratio of network area and the convex area is noted as 
the solidity. 

Perimeter Perimeter is the count of total number of pixels in the perimeter image. 
Average, median and 
maximum diameter 

For each pixel on the skeletonized image, the distance to the nearest non-
root pixel is computed and using this distance as radius a circle is fitted. The 
diameter of the circle at each pixel is noted as the diameter at that pixel. We 
get the list of diameters from all the medial axis pixels and determine the 
average, median and maximum diameter. 

Volume and surface area Using the radii determined earlier, the sum of all cross-sectional areas 
across all the medial axis pixels are noted as volume and the sum of the 
perimeter across all the medial axis pixels are noted as surface area. 

Lower root area The lower root area is the area of the segmented image pixels that are 
located below the location of the medial axis pixel that has the maximum 
radius. 

Holes and Average hole 
size 

Holes are the disconnected background components and indicative of root 
branching and complexity. They can be counted by inverting the segmented 
image. The average hole size (area) is also calculated. 

Average Root Orientation For every medial axis pixel, the orientation at the pixel is computed by 
determining the mean orientation of medial axis pixels in a 40z40 pixel 
locality. The average of all these orientations is noted as average root 
orientation. 

Fine, Medium, Coarse 
Diameter Frequencies 

From the skeletal image, the medial axis pixels are grouped into fine or 
coarse roots based on the diameter values at the pixels. 

Shallow, Medium, Steep 
Angle Frequencies 

Given the skeletal image, for every pixel in the medial axis, we get the 
locations of the medial axis pixels in a 40x40 pixel locality and determine 
the orientation of these pixels in the locality. This orientation is noted for 
every medial axis pixel. Given these orientations, we calculate the 
frequency in bins less than 30, less than 60, and less than 90 degrees. 

Computational time The time taken to extract traits for every plant root image. 
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