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Abstract

Decision-making is the process of choosing and performing actions in response to sensory cues
so as to achieve behavioral goals. A sophisticated research effort has led to the development of
many mathematical models to describe the response time (RT) distributions and choice behav-
ior of observers performing decision-making tasks. However, relatively few researchers use these
models because it demands expertise in various numerical, statistical, and software techniques.
Although some of these problems have been surmounted in existing software packages, the pack-
ages have often focused on the classical decision-making model, the diffusion decision model.
Recent theoretical advances in decision-making that posit roles for “urgency”, time-varying deci-
sion thresholds, noise in various aspects of the decision-formation process or low pass filtering of
sensory evidence, have proven to be challenging to incorporate in a coherent software framework
that permits quantitative evaluations among these competing classes of decision-making models.
Here, we present a toolbox — Choices and Response Times in R, or CHaRTr — that provides the
user the ability to implement and test a wide variety of decision-making models ranging from clas-
sic through to modern versions of the diffusion decision model, to models with urgency signals, or
collapsing boundaries. Earlier versions of CHaRTr have been instrumental in a number of recent
studies of humans and monkeys performing perceptual decision-making tasks. We also provide
guidance on how to extend the toolbox to incorporate future developments in decision-making
models.
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1. Introduction1

Perceptual decision-making is the process of choosing and performing appropriate actions in re-2

sponse to sensory cues to achieve behavioral goals (Freedman and Assad, 2011; Gold and Shadlen,3

2007; Hoshi, 2013; O’Connell et al., 2018; Shadlen and Kiani, 2013; Shadlen and Newsome, 2001).4

A sophisticated research effort in multiple fields has led to the formulation of cognitive process5

models to describe decision-making behavior (Donkin and Brown, 2018; Ratcliff et al., 2016).6

The majority of these models are grounded in the “sequential sampling” framework, which posits7

that decision-making involves the gradual accumulation of noisy sensory evidence over time until8

a bound (or criterion/threshold) is reached (Brunton et al., 2013; Forstmann et al., 2016; Gold9

and Shadlen, 2007; Hanks et al., 2014; Ratcliff and McKoon, 2008; Ratcliff et al., 2016; Shadlen10

and Kiani, 2013). Models derived from the sequential sampling framework are typically elaborated11

with various systematic and random components so as to implement assumptions and hypothe-12

ses about the underlying cognitive processes involved in perceptual decision-making (Diederich,13

1997a; Ratcliff et al., 2016).14

The most prominent sequential sampling model of decision-making is the diffusion decision model15

(DDM), which has an impressive history of success in explaining the behavior of human and animal16

observers (e.g., Ding and Gold, 2012a,b; Forstmann et al., 2016; Palmer et al., 2005; Ratcliff et17

al., 2016; Tsunada et al., 2016). However, recent studies propose alternative sequential sampling18

models that do not involve the integration of sensory evidence over time. Instead, novel sensory19

evidence is multiplied by an urgency signal that increases with elapsed decision time, and a decision20

is made when the signal exceeds the criterion (Cisek et al., 2009; Ditterich, 2006b; Thura et al.,21

2012). Another line of research proposes that observers aim to maximize their reward rate and22

suggests that the decision boundary dynamically decreases as the time spent making a decision23

grows longer. Such a framework has been argued to provide a better explanation for decision-24

making behavior in the face of sensory uncertainty (Drugowitsch et al., 2012).25

One approach to distinguish between these different models is to systematically manipulate the26

stimulus statistics and/or the task structure and then test whether behavior is qualitatively consis-27

tent with one or another sequential sampling model (Brunton et al., 2013; Carland et al., 2015;28

Cisek et al., 2009; Scott et al., 2015; Thura and Cisek, 2014). An alternative approach is to29

quantitatively analyze the choice and RT behavior with a large set of candidate models, and then30

carefully use model selection techniques to understand the candidate models that best describe31

the data (e.g., Chandrasekaran et al., 2017; Evans et al., 2017; Hawkins et al., 2015b; Purcell32

and Kiani, 2016). The quantitative modeling and model selection approach allows the researcher33

to determine whether a particular model component (e.g., an urgency signal, or variability in the34

rate of information accumulation) is important for generating the observed behavioral data. It35

also provides a holistic method for testing model adequacy, because the proposed model is judged36

on its ability to account for all available data rather than focusing on a specific subset of the data37

(e.g., Evans et al., 2017).38

Despite the apparent benefits of model selection, there are technical and computational chal-39

lenges in the application of decision-making models to behavioral data. Some researchers have40

surmounted these issues by simplifying the process: using analytical solutions for the predicted41
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mean RT and accuracy from the simplest form of the DDM, applied to participant-averaged42

behavioral data (Palmer et al., 2005; Tsunada et al., 2016). However, the complete distribution43

of RTs is highly informative, and often necessary, to reliably discriminate between the latent44

cognitive processes that influence decision-making (Forstmann et al., 2016; Luce, 1986; Ratcliff45

and McKoon, 2008; Ratcliff et al., 2016). Until recently, applying sequential sampling models46

like the DDM to the joint distribution over choices and RT required bespoke domain knowledge47

and computational expertise. This has hindered the widespread adoption of quantitative model48

selection methods to study decision-making behavior.49

Some recent attempts have demystified the application of cognitive models of decision-making50

to behavioral data, providing a path for researchers to apply these methods to their own research51

questions. For instance, Vandekerckhove and Tuerlinckx developed the Diffusion Modeling and52

Analysis Toolbox (Vandekerckhove and Tuerlinckx, 2008), and Voss and Voss developed the53

diffusion model toolbox (fast-dm; Voss and Voss, 2007, 2008). Modern releases have improved54

the parameter estimation algorithms and can leverage multiple observers to perform hierarchical55

Bayesian inference (Wiecki et al., 2013). In hBayesDM (Ahn et al., 2017) and Dynamic Models56

of Choice (Heathcote et al., 2018) researchers can apply a range of models to behavior from57

a wide variety of decision-making paradigms ranging from choice tasks to reversal learning and58

inhibition tasks.59

A common feature across all of the excellent toolboxes currently available is that they only provide60

optimization code to apply the DDM to data, or the DDM in addition to a few alternative models.61

As a consequence, the toolboxes provide no pathway for a researcher to rigorously compare62

the quantitative account of the DDM to alternative theories of the decision making process,63

including models with an urgency signal (Ditterich, 2006a), urgency-gating (Cisek et al., 2009),64

or collapsing bounds (Hawkins et al., 2015b). Simply put, we currently have no openly available65

and extensible toolbox for understanding choice and RT behavior using the many hypothesized66

models of decision-making. We believe there is a critical need for examining how these different67

models perform in terms of describing decision-making behavior.68

The objective of this study was to address this need and provide a straightforward framework69

to analyze a range of existing sequential sampling models of decision-making behavior. Specif-70

ically, we aimed to provide an open-source and extensible framework that permits quantitative71

implementation and testing of novel candidate models of decision-making. The outcome of this72

study is CHaRTr , a novel toolbox in the R programming environment that can be used to analyze73

choice and RT data of humans and animals performing two-alternative forced choice tasks that74

involve perceptual or other types of decision-making. R is an open source language that enjoys75

widespread use and is maintained by a large community of researchers. CHaRTr can be used to76

analyze the RT and choice behavior of these observers, from the perspective of a (potentially77

large) range of decision-making models and can be readily extended when new models are devel-78

oped. These new models can be incorporated into the toolbox with minimal effort and require79

only basic working knowledge of R and C programming; we explain the required skills in this80

manuscript. Similarly, new optimization routines that are readily available as R packages can be81

implemented if desired.82
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2. Methods and Materials83

The methods are focused on the specification of various mathematical models of decision-making,84

and the parameter estimation and model selection processes. For reference, the symbols we use85

to describe the models are shown in Table 1. The naming convention for the models we have86

developed in CHaRTr is to take the main architectural feature of the model and use it as a prefix87

to the model. The diffusion decision model, henceforth DDM, refers to the simplest sequential88

sampling model, cDDM refers to a DDM with collapsing boundaries (Hawkins et al., 2015b),89

dDDM refers to a DDM with urgency signal defined by Ditterich (2006a), uDDM refers to a90

DDM with a linear urgency signal, and bUGM refers to an urgency gating model (UGM) with a91

linear urgency signal composed of a slope and an intercept (Thura et al., 2012).92

Parameter Description

x(t) State of the decision variable at time t.
dt Time step of the decision variable.
z, sz Starting state of the decision variable (i.e., x(0) = z), and decision-to-

decision variability in starting state. sz is the range of a uniform distribution
with mean (midpoint) z.

vi, sv Rate at which the decision variable accumulates decision-relevant informa-
tion (drift rate, v) in condition i, and decision-to-decision variability in drift
rate. sv is the standard deviation of a normal distribution with mean vi.

γ(t) Urgency signal that dynamically modulates the decision variable as a func-
tion of t. Can take different functional forms in different models.

aupper, alower Upper and lower response boundaries that terminate the decision process.
aupper(t), alower(t) Upper and lower response boundaries that vary as a function of t.
Ter, st Time required for stimulus encoding and motor preparation/execution

(non-decision time), and decision-to-decision variability in non-decision
time. st is the range of a uniform distribution with mean (midpoint) Ter.

s Within-decision variability in the diffusion process. Represents the standard
deviation of a normal distribution. By convention, set to a fixed value to
satisfy a scaling property of the model.

E(t) Momentary sensory evidence at time t.
N (0, 1) Normal distribution with zero mean and unit variance.
U(l1, l2) Uniform distribution over the interval l1 and l2.

Table 1: List of symbols used in the decision-making models implemented in CHaRTr

2.1. Mathematical Models of Decision-Making93

Sequential sampling models of decision-making assume that RT comprises two components (Rat-94

cliff and McKoon, 2008; Ratcliff et al., 2016). The first component is the decision time, which95

encompasses processes such as the accumulation of sensory evidence and additional decision-96

related factors such as urgency. The second component is the non-decision time (or residual97
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time), which involves the time required for processes that must occur to produce a response but98

fall outside of the decision-formation process, such as stimulus encoding, motor preparation and99

motor execution time.100

We introduce various models of the decision-making process in approximately increasing level of101

complexity, beginning with the simple DDM.102

2.1.1. Simple Diffusion Decision Model (DDM)103

The diffusion decision model (or DDM) is derived from one of the oldest interpretations of a104

statistical test – the sequential probability ratio test (Wald and Wolfowitz, 1948) – as a model of105

a cognitive process – how decisions are formed over time (Stone, 1960). The DDM provides the106

foundation for the decision-making models implemented in CHaRTr and assumes that decision-107

formation is described by a one-dimensional diffusion process (Fig. 1A) with the stochastic108

differential equation109

x(t+ dt) = x(t) + vdt+ s
√
dtN (0, 1), (1)

where x(t) is the state of the decision-formation process, known as the decision variable, at time t;110

v is the rate of accumulation of sensory evidence, known as the drift rate; dt is the step size of the111

process; s is the standard deviation of the moment-to-moment (Brownian) noise of the decision-112

formation process; N (0, 1) refers to a random sample from the standard normal distribution. A113

response is made when x(t+dt) ≥ aupper or x(t+dt) ≤ alower. Whether a response is correct or114

incorrect is determined from the boundary that was crossed and the valence of the drift rate (i.e.,115

v > 0 implies the upper boundary corresponds to the correct response, v < 0 implies the lower116

boundary corresponds to the correct response). In Fig. 1a, and in all DDM models in CHaRTr,117

we specify alower = 0 and aupper = A, without loss of generality. z represents the starting state118

of the evidence accumulation process (i.e., the position of the decision variable at x(0)) and can119

be freely estimated between alower and aupper. When we assume there is no a priori response120

bias, z is fixed to the midpoint between alower and aupper (i.e., A/2). The decision time is the121

first time step t at which the decision variable crosses one of the two decision boundaries. The122

predicted RT is given as a sum of the decision time and the non-decision time Ter.123

2.1.2. DDM with Variable Starting State, Variable Drift Rate, and Variable Non-Decision Time124

The (simple) DDM assumes a level of constancy from one decision to the next in various com-125

ponents of the decision-formation process: it always commences with the same level of response126

bias (z), the drift rate takes a single value (vi, for trials in experimental condition i), and the127

non-decision time never varies (Ter).128

None of these simplifying assumptions are likely to hold in experimental contexts. For example,129

the relative speed of correct and erroneous responses can differ, and participants’ arousal may130

exhibit random fluctuations over time, possibly due to a level of irreducible neural noise. Decades131

of research into decision-making models suggests that these effects, and others, are often well132
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explained by combining systematic and random components in each of the starting state, drift133

rate, and non-decision time (Fig. 1B). In CHaRTr, we provide variants of the DDM where all of134

these parameters can be randomly drawn from their typically assumed distributions over different135

trials,136

xj(t+ dt) = xj(t) + vijdt+ s
√
dtN (0, 1) (2)

xj(0) ∼ U(z − sz
2
, z +

sz
2
) (3)

vij ∼ N (vi, sv) (4)

Ter,j ∼ U(Ter −
st
2
, Ter +

st
2
) (5)

where i denotes an experimental condition; j denotes an exemplar trial; U denotes the uniform137

distribution. CHaRTr provides flexibility to the user such that they can assume the decision-138

formation process involves none, some or all of these random components. Furthermore, it139

provides flexibility to assume distributions for the random components beyond those that have140

been typically assumed and studied in the literature. For example, one could hypothesize that141

non-decision times are exponentially distributed rather than uniformly distributed (Ratcliff, 2013).142

2.1.3. DDM with Collapsing Decision Boundaries (cDDM)143

The DDM with collapsing boundaries generalizes the classic DDM by assuming that the sensory144

evidence required to commit to a decision is not constant as a function of elapsed decision time.145

Instead, it assumes that the decision boundaries gradually decrease as the decision-formation146

process grows longer and longer (e.g., Bowman et al., 2012; Drugowitsch et al., 2012; Hawkins147

et al., 2015a; Milosavljevic et al., 2010; Tajima et al., 2016). Collapsing boundaries terminate148

slower decisions based on weaker sensory signals (i.e., lower drift rates) at earlier time points than149

models with ‘fixed’ boundaries (i.e., simple DDM) and otherwise equivalent parameter settings.150

The net result of collapsing boundaries is a reduction in the positive skew (right tail) of the151

predicted RT distribution relative to the fixed boundaries DDM. This signature in the predicted152

RT distribution holds whether there is variability in parameters across trials (Section 2.1.2) or153

not (Section 2.1.1).154

Collapsing boundaries allow the observer to implement a decision strategy where they do not155

commit an inordinate amount of time to decisions that are unlikely to be correct (i.e., decision156

processes with weak sensory signals). This allows the observer to sacrifice accuracy for a shorter157

decision time, so they can engage in new decisions that might contain stronger sensory signals158

and hence a higher chance of a correct response. When a sequence of decisions varies in signal-159

to-noise ratio from one trial to the next, like a typical difficulty manipulation in decision-making160

studies, collapsing boundaries are provably more optimal than fixed boundaries in the sense that161

they lead to greater predicted reward across the entirety of the decision sequence (Drugowitsch162

et al., 2012; Tajima et al., 2016). In this type of decision environment, collapsing boundaries163

have provided a better quantitative account of animal behavior, including monkeys, who might164

be motivated to obtain rewards to a greater extent than humans, possibly due to the operant165
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conditioning and fluid/food restriction procedures used to motivate these animals (Hawkins et166

al., 2015a). Whether humans also aim to maximize reward is less clear.167

Fig. 1C shows a schematic of a collapsing boundaries model. In CHaRTr we assume the collaps-168

ing boundary follows the cumulative distribution function of the Weibull distribution, following169

Hawkins et al. (2015a). The Weibull function is quite flexible and can approximate many different170

functions that one might wish to investigate, including the exponential and hyperbolic functions.171

We assume the lower and upper boundaries follow the form172

alower(t) = a

(
1− exp

(
−
(
t

λ

)k
))(

1

2
− a′

)
(6)

aupper(t) = a− alower(t) (7)

where alower(t) and aupper(t) denote the position of the lower and upper boundaries at time t; a173

denotes the position of upper boundary at t = 0 (initial boundary setting, prior to any collapse);174

a′ denotes the asymptotic boundary setting, or the extent to which the boundaries collapsed175

(the maximal possible collapse – where the upper and lower boundaries meet – can occur when176

a′ = 1/2); λ and k denote the scale and shape parameters of the Weibull distribution.177

The collapsing boundaries are denoted in CHaRTr as cDDM. When the k parameter is fixed to178

a particular value to aid stronger identifiability in parameter estimation (Hawkins et al., 2015a),179

we refer to the architecture as cfk to denote a fixed k value, here chosen to be 3 but can be180

modified in user implementations.181

The collapsing boundaries, as implemented here, are symmetric, though they need not be; CHaRTr182

provides flexibility to modify all features of the boundaries, including symmetry for each response183

option, and the functional form. For instance, one might hypothesize that linear collapsing184

boundaries are a better description of the decision-formation process than nonlinear boundaries185

(Murphy et al., 2016; O’Connell et al., 2018). CHaRTr also permits DDMs with collapsing186

boundaries to incorporate any combination of variability in starting state, drift rate, and non-187

decision time (e.g., models of the form cDDMSvSzSt and cfkDDMSvSzSt).188

2.1.4. DDM with an Urgency Signal (uDDM)189

The DDM with an urgency signal assumes that the input evidence – consisting of the sensory signal190

and noise – is modulated by an “urgency signal”. This urgency-modulated sensory evidence is191

accumulated into the decision variable throughout the decision-formation process. As the process192

takes longer, the urgency signal grows in magnitude, implying that sensory evidence arriving193

later in the decision-formation process has a more profound impact on the decision-variable than194

information arriving earlier (Fig. 1D). To make the distinction between an urgency signal and195

collapsing boundaries clear, the DDM with an urgency signal assumes a dynamically modulated196

input signal combined with boundaries that mirror those in the classic DDM; the DDM with197

collapsing boundaries assumes a decision variable that mirrors the classic DDM combined with198

dynamically modulated decision boundaries.199
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As with the collapsing boundaries, the urgency signal can take many functional forms; we have200

implemented two such forms in CHaRTr. The general implementation of the urgency signal is201

E(t) = vdt+ s
√
dtN (0, 1) (8)

x(t+ dt) = x(t) + E(t)γ(t), (9)

where E(t) denotes the momentary sensory evidence at time t; γ(t) denotes the magnitude of202

the urgency signal at time t. Note that with increasing decision time the urgency signal magnifies203

the effect of the sensory signal (vdt) and the sensory noise (s
√
dtN (0, 1)).204

The first urgency signal implemented in CHaRTr follows a 3 parameter logistic function with two205

scaling factors (sx, sy) and a delay (d), originally proposed by Ditterich (2006a):206

S1(t) = exp (sx(t− d)) (10)
S2(t) = exp (−sxd) (11)

γ(t) =
syS1(t)

1 + S1(t)
+

1 + (1− sy)S2(t)

1 + S2(t)
, (12)

The second form of urgency signal implemented in CHaRTr follows a simple, linearly increasing207

function208

γ(t) = b+mt, (13)

where b is the intercept of the urgency signal. The slope is assumed to be m. As with the DDMs209

described above, urgency signal models can incorporate any combination of variability in starting210

state, drift rate and non-decision time, giving rise to a family of different decision-making models.211

We also allow for the possibility of variability across decisions in the intercept term of the linear212

urgency signal,213

γj(t) = bj +mt (14)

bj ∼ U(b− sb
2
, b+

sb
2
), (15)

where j denotes an exemplar trial, and b and sb denote the mean (i.e., midpoint) and range of214

the uniform distribution assumed for the urgency signal.215

In CHaRTr, we have assumed that the urgency signal exerts a multiplicative effect on the sensory216

evidence (Equation 9). One variation of urgency signal models proposed in the literature posits217

that urgency is added to the sensory evidence, rather than multiplied by it (Hanks et al., 2014,218

2011). In the one-dimensional diffusion models considered here, additive urgency signals make219

predictions that cannot be discriminated from a DDM with collapsing boundaries (Boehm et al.,220

2016). That is, for any functional form of an additive urgency signal, there is a function for the221

collapsing boundaries that will generate identical predictions. For this reason we do not provide222

an avenue for simulating and estimating additive urgency signal models in CHaRTr, and instead223

recommend the use of the DDM with collapsing boundaries.224
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2.1.5. Urgency Gating Model (UGM)225

In a departure from the classic DDM framework, the Urgency Gating Model (UGM) proposes226

there is no integration of evidence, at least not in the same form as the DDM (Cisek et al., 2009;227

Thura et al., 2012; Thura and Cisek, 2014). Rather, the UGM assumes that incoming sensory228

evidence is low-pass filtered, which prioritizes recent over temporally distant sensory evidence,229

and this low-pass filtered signal is modulated by an urgency signal that increases linearly with230

time (Equation 13).231

Implementation of the UGM in CHaRTr uses the exponential average approach for discrete low-232

pass filters (smoothing). The momentary evidence for a decision is a weighted sum of past and233

present evidence, which gives rise to the UGM’s pair of governing equations234

α =
τ

τ + dt
(16)

E(t) = αE(t− 1) + (1− α)(vdt+ s
√
dtN (0, 1)), (17)

where τ is the time constant of the low-pass filter, which has typically been set to relatively235

small values of 100 or 200 ms in previous applications of the UGM, and α controls the amount236

of evidence from previous time points that influences the momentary evidence at time t. For237

instance, when α = 0 there is no low-pass filtering, and when τ = 100ms (and dt is 1 ms) the238

previous evidence is weighted by 0.99 and new evidence by 0.01.239

The decision variable at time t is now given as240

γ(t) = b+mt (18)
x(t) = E(t)γ(t). (19)

The intercept and slope of the urgency signal are set to particular values in standard applications241

of the UGM (b = 0, m = 1), reducing equation 19 to242

x(t) = E(t)t. (20)

In CHaRTr, we allow for variants of the UGM where the parameters of the urgency signal are243

not fixed. For instance, similar to the DDM with an urgency signal, we can test a UGM where244

the intercept (b) is freely estimated from data (bUGM), and even an intercept that varies on a245

trial-by-trial basis (Equation 14).246

2.2. Fitting Models to Data: Parameter Estimation and Model Selection247

2.2.1. Parameter Estimation248

In CHaRTr, we estimate parameters for each model and participant independently, using Quantile249

Maximum Products Estimation (QMPE; Heathcote and Brown, 2004; Heathcote et al., 2002).250
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QMPE uses the QMP statistic, which is similar to χ2 or multinomial maximum likelihood esti-251

mation and quantifies agreement between model predictions and data by comparing the observed252

and predicted proportions of data falling into each of a set of inter-quantile bins. These bins are253

calculated separately for the correct and error RT data. In all examples that follow, we use 9254

quantiles calculated from the data (i.e., split the RT data into 10 bins), though the user can spec-255

ify as many quantiles as they wish. Generally speaking, we recommend no fewer than 5 quantiles,256

to prevent loss of distributional information, and no more than approximately 10 quantiles, to257

prevent noisy observations in observed data especially at the tails of the distribution potentially258

bearing undue influence on the parameter estimation routine.259

Many of the models considered in CHaRTr have no closed-form analytic solution for their pre-260

dicted distribution. To evaluate the predictions of each model, we simulate 10,000 Monte Carlo261

replicates per experimental condition during parameter estimation. Once the parameter search262

has terminated, we use 50,000 replicates per experimental condition to precisely evaluate the263

model predictions and perform model selection. In CHaRTr, the user can vary the number of264

replicates used for parameter estimation and model selection; in previous applications, we have265

found these default values provide an appropriate balance between precision of the model pre-266

dictions and computational efficiency. To simulate the models, we use Euler’s method, which267

approximates the models’ representation as stochastic differential equations.268

Alternatives to our simulation-based approach exist, such as the integral equation methods of269

Smith (2000) or others that use analytical techniques to calculate first passage times (Gondan270

et al., 2014; Navarro and Fuss, 2009), to generate exact distributions. We do not pursue those271

methods in CHaRTr owing to the model-specific implementation required, which is inconsistent272

with CHaRTr ’s core philosophy of allowing the user to rapidly implement a variety of model273

architectures.274

We estimate the model parameters using differential evolution to optimize the goodness of fit275

(DEoptim package in R, Mullen et al., 2011). For the type of non-linear models considered276

in CHaRTr, we have previously found that differential evolution more reliably recovers the true277

data generating model than particle swarm and simplex optimization algorithms (Hawkins et al.,278

2015a). DEoptim also allows easy parallelization and can be used readily in the cloud with large279

number of cores to speed the process of model estimation. However, we again provide flexibility280

in this respect; the user can change this default setting and specify their preferred optimization281

algorithm/s.282

2.2.2. Model Selection283

CHaRTr provides two metrics for quantitative comparison between models. Each metric is based284

on the maximized value of the QMP statistic, which is a goodness-of-fit term that approximates285

the continuous maximum likelihood of the data given the model.286

The DDM is a special case of the model variants considered and will almost always fit more287

poorly than any of the other variants. We provide model selection methods that determine if288
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the incorporation of additional components such as urgency or collapsing bounds provide an289

improvement in fit that justifies the increase in model complexity.290

The raw QMP statistic, as an approximation to the likelihood, can be used to calculate the Akaike291

Information Criterion (Akaike, 1974, AIC) and the Bayesian Information Criterion (Schwarz, 1978,292

BIC). We provide methods to compute AIC and BIC owing to the differing assumptions underlying293

the two information criteria (Aho et al., 2014), and differing performance with respect to the294

modeling goal (Evans, in press).295

CHaRTr also provides functionality to transform the model selection metrics into model weights,296

which account for uncertainty in the model selection procedure and aid interpretation by transfor-297

mation to the probability scale. The weight w for model i, w(Mi), relative to a set of m models,298

is given by299

w(Mi) =
exp(−1

2
Z(Mi))

m∑
j=1

exp(−1
2
Z(Mj))

, (21)

where Z is AIC, BIC, or the deviance (−2× log-likelihood; that is, −2× QMP statistic). The300

model weight is interpreted differently depending on the metric Z:301

• Where Z is the log-likelihood, the model weights are relative likelihoods. Z should only302

be used in the model weight transformation when all models under consideration have the303

same number of freely estimated parameters.304

• Where Z is the AIC, the model weights become Akaike weights (Wagenmakers and Farrell,305

2004).306

• Where Z is the BIC, and the prior probability over the m models under consideration is307

uniform (i.e., each model is assumed to be equally likely before observing the data), the308

model weights approximate posterior model probabilities (p(M |Data), Wasserman, 2000).309

2.2.3. Visualization: Quantile Probability Plots310

Visualization of choice and RT data is critical to understanding observed and predicted behavior.311

Such visualization can prove challenging in studies of rapid decision-making because each cell312

of the experimental design (e.g., a particular stimulus difficulty) yields a joint distribution over313

the probability of a correct response (accuracy) and separate RT distributions for correct and314

error responses. Since most decision-making tasks manipulate at least one experimental factor315

across multiple levels, such as stimulus difficulty, each data set is comprised of a family of joint316

distributions over choice probabilities and pairs of RT distributions (correct, error). Following317

convention and recommendation (Ratcliff and McKoon, 2008; Ratcliff et al., 2016), we visualize318

these joint distributions with quantile probability (QP) plots. QP plots are a compact form to319

display choice probabilities and RT distributions across multiple conditions.320

In a typical QP plot, quantiles of the RT distribution of a particular type (e.g., correct responses)321

are plotted as a function of the proportion of responses of that type. For example, consider a322
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hypothetical decision-making experiment with three different levels of stimulus difficulty; Fig. 2323

provides a plausible example of the data from such an experiment. Now assume that for one324

of the experimental conditions, the accuracy of the observer was 55%. To display the choice325

probabilities, correct RTs and error RTs for this condition, the QP plot shows a vertical column326

of N markers above the x-axis position ∼ 0.55, where the N markers correspond to the N327

quantiles of the RT distribution of correct responses (rightmost gray bar in Fig. 2). The QP plot328

also shows a vertical columns of N markers at the position 1 − 0.55 = 0.45, where this set of329

N markers correspond to the N quantiles of the distribution of error RTs (leftmost gray bar in330

Fig. 2). This means that RT distributions shown to the right of .5 on the x-axis reflect correct331

responses, and those to the left of .5 on the x-axis reflect error responses.332

The default CHaRTr QP plot display 5 quantiles of the RT distribution: 0.1, 0.3, 0.5, 0.7 and333

0.9 (sometimes also referred to as five percentiles: 10th, 30th, 50th, 70th, 90th). The .1 quantile334

summarizes the leading edge of the RT distribution, the .5 quantile (median) summarizes the335

central tendency of the RT distribution, and the .9 quantile summarizes the tail of the RT336

distribution. The goal of visualization with QP plots, or other forms of visualization, is to enable337

comparison of the descriptive adequacy of a model’s predictions relative to the observed data.338

3. Results339

The results section first provides guidance on the use of CHaRTr and how to apply the various340

models of the decision-making process to data. The second part of the results section illustrates341

the use of CHaRTr to analyze RT and choice data from hypothetical observers, followed by a342

case study modeling data from two non-human primates (Roitman and Shadlen, 2002). Code for343

the CHaRTr toolbox is available at chartr.chandlab.org/ and will eventually be released344

as an R library.345

3.1. Toolbox flow346

Fig. 3 and Fig. 4 provide flowcharts for CHaRTr. Fig. 3 provides an overview of the five main347

steps involved in the cognitive modeling process. Fig. 4 provides a schematic overview of the348

steps involved in the parameter estimation component of the process, which uses the differential349

evolution optimization algorithm (Mullen et al., 2011).350

The typical steps in CHaRTr for estimating the parameters of a decision-making model from data351

are as follows:352

Step 1: Model Specification: Specify models in the C programming language, and compile the353

C code to create the shared object, chartr-modelspec.so, that is dynamically loaded into354

the R workspace. Future versions of CHaRTr will use the Rcpp framework and will not355

require the compilation and loading of shared objects (Eddelbuettel and François, 2011).356

Step 2: Formatting and Loading Data: Convert raw data into an appropriate format (choice357

probabilities, quantiles of RT distributions for correct and error trials). Save this data object358
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for each unit of analysis (e.g., a participant, different experimental conditions for the same359

participant). Load this data object into the R workspace.360

Step 3: Parameter Specification: Choose the parameters of the desired model that need to be361

estimated along with lower and upper boundaries on those parameters (i.e., the minimum362

and maximum value that each parameter can feasibly take).363

Step 4: Parameter Estimation: Pass the parameters, model and data to the optimization algo-364

rithm (differential evolution). The algorithm iteratively selects candidate parameter values365

and evaluates their goodness of fit to data. This process is repeated until the goodness of366

fit no longer improves (Fig. 4).367

Step 5: Model Selection: The parameter estimates from the search termination point (i.e., the368

point where goodness of fit no longer improves), the corresponding goodness of fit statistics369

and model predictions are saved for subsequent model selection and visualization.370

These 5 steps are repeated for each model and each participant under consideration. In the next371

few sections, we elaborate on each of the steps with examples to illustrate their implementation372

in CHaRTr. We note that use of CHaRTr requires a basic knowledge of R programming, and if373

one wishes to design and test a new decision-making model then also C programming. Owing to374

the many excellent online resources for both languages (a simple search of “R program tutorial”375

will return many helpful results), we do not provide a tutorial for either language here.376

3.1.1. Model Specification377

The difference equation for the model variants implemented in CHaRTr is specified in C code in378

the file "chartr-ModelSpec.c". An example implementation of the DDM (Section 2.1.1) is shown379

in Listing 1. The functions take as input the various parameters that are to be optimized along380

with various constants such as the maximum number of time points to simulate as well as the381

time step.382

383
// Simple Diffusion Decision Model (DDM)384

int DDM(double *z, double *v,double *aU, double *aL, double *s,double *dt,385

double *response,double *rt,double *n,double *maxTimeStep)386

{387

/*388

z - starting point389

aL - lower bound390

aU - upper bound391

v - drift rate392

response - response from the function393

rt - reaction time of the animal394

n - number of trials to simulate395

maxTimeStep - number of time steps396

dt = stepsize (for time usually 0.001 s, or 1 ms depending on model)397

s = standard deviation of noise, usually fixed as a scaling parameter398

.399

*/400

double rhs,x;401

int N,i,timeStep,MaxTimeStep;402

403
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/* Convert some double inputs to integer types. */404

N=(int) *n;405

MaxTimeStep =(int) *maxTimeStep;406

GetRNGstate();407

rhs=sqrt(*dt)*(*s);408

for (i=0;i<N;i++) // For each trial in the list of simulated trials409

{410

x=*z;411

timeStep=0;412

response[i]=(double) -1.0 ;413

do414

{415

timeStep = timeStep+1;416

x = x+(*dt)*(*v)+rhs*norm_rand();417

if (x>=*aU) {418

response[i]=(double) 1.0;419

break ;420

}421

if (x<=*aL) {422

response[i]=(double) 2.0 ;423

break ;424

}425

426

} while (timeStep < MaxTimeStep) ;427

rt[i]=((double) timeStep)*(*dt) - (*dt)/((double) 2.0);428

}429

PutRNGstate();430

}431432

Listing 1: Source code for a function in C that implements the difference equation for the DDM.

Once the C code has been specified for the model, the code is compiled using the following433

command that uses the SHLIB framework (R Core Team) at the terminal (usually ITERM in mac,434

Terminal Emulator in linux). The command shown in Listing 2 calls the appropriate compiler435

(clang on mac, gcc on linux), identifies the appropriate compiler to run, and loads the appropriate436

libraries and ensures the correct options are applied during compilation to create the architecture437

specific shared object.438
439

$ R CMD SHLIB chartr-ModelSpec.c440441

Listing 2: Creating a shared library for loading the specified models into R.

The typical output of the command when run successfully on Linux is shown in Listing 3. The442

output of the compilation is a shared object called chartr-modelspec.so that is dynamically loaded443

into R for use with the differential evolution optimizer.444
445

gcc -std=gnu99 -I/usr/share/R/include -DNDEBUG -fpic -g -O2 -fstack-protector-446
strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -g447
-c chartr-ModelSpec.c -o chartr-modelspec.o448

449
g++ -shared -L/usr/lib/R/lib -Wl,-Bsymbolic-functions -Wl,-z,relro -o chartr-450

ModelSpec.so chartr-ModelSpec.o -L/usr/lib/R/lib -lR451452

Listing 3: Output from the compilation of the command in Listing 2.
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condition, response, RT
90, 1, 0.573
90, 1, 0.472
90, 1, 0.556
.
.
.
90, 0, 0.406
90, 0, 0.429
90, 0, 0.57

Listing 4: The required raw data format for parameter estimation in CHaRTr.

dataDir="Example2" # directory name of data files to fit
subjnam="Subj1"
load(paste(dataDir,"/",subjnam,sep=""))

Listing 5: Loading data for "Subj1" for model estimation.

We anticipate that future versions of CHaRTr will use the Rcpp framework (Eddelbuettel and453

François, 2011), which will obviate the need for compiling and loading shared object libraries.454

3.1.2. Formatting and Loading Data455

To estimate the parameters of decision-making models in CHaRTr, the data need to be organized456

in a separate comma separated values (CSV) file for each participant in a simple three column457

format: "condition, response, RT". "condition" is typically a stimulus difficulty parameter,458

"response" is correct (1) or incorrect (0), and RT is the response time (or reaction time when459

response time and movement can be separated). For example, in a typical file, data for a single460

stimulus difficulty (e.g., one level of motion coherence in a random dot kinematogram) would461

look like Listing 4.462

The raw data are converted in "chartr-processRawData.r" to generate 9 quantiles (10 bins) of463

correct and error RTs to be used in the parameter estimation process. It also stores the data as464

a R list named dat, which includes four fields: n, p, q, pb.465

• n is the number of correct and error responses in each condition.466

• p is the proportion of correct responses in each condition (derived from n).467

• q is the quantiles of the correct and error RT distributions in each condition.468

• pb is the number of responses in each bin of the correct and error RT distributions in each469

condition (derived from n).470

dat is saved to disk as a new file. The dat file is loaded into the R workspace as required for the471

model estimation procedure. Listing 5 shows R code for loading RT and choice data, as stored472

in dat, for a given participant.473
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3.1.3. Parameter Specification474

The next step in model estimation is, for each model, to specify a list of parameters that can be475

freely estimated from data along with each parameter’s lower and upper bound; we provide default476

suggestions for the lower and upper boundaries in CHaRTr. Model parameters can be generated by477

calling the function paramsandlims with two arguments: model name and the number of stimulus478

difficulty levels in the experiment. The number of stimulus difficulties is internally converted into479

drift rate parameters; for example, if there are n stimulus difficulties, then paramsandlims will480

estimate n independent drift rate parameters. There is also functionality in CHaRTr to specify481

fixed (non-estimated) values of some parameters, such as a drift rate of 0 for conditions with non-482

informative sensory information (e.g., 0% coherence in a random dot kinematogram experiment).483

paramsandlims returns a named list with the following fields: lowers, uppers, parnames, fitUGM.484

These variables are used internally in the parameter estimation routines.485

3.1.4. Parameter Estimation486

Steps 1–3 loaded the required data, identified the desired model to fit and specified the parameters487

of the model to be estimated. This information is now passed to the optimization algorithm488

(differential evolution). Parameter optimization is an iterative process of proposing candidate489

parameter values, accepting or rejecting candidate parameter values based on their goodness of490

fit, and repeating. This process continues until the proposed parameter values no longer improve491

the model’s goodness of fit. These are assumed to be the best-fitting parameter values, or the492

(approximate) maximum likelihood estimates. Fig. 4 provides an overview of the steps involved493

in parameter estimation when using the differential evolution optimization algorithm (Mullen et494

al., 2011).495

The accompanying file "chartr-DemoFit.r" provides a complete code example for estimating the496

parameters of a model with urgency.497

3.1.5. Model Selection498

Once the best-fitting parameters have been estimated from a set of candidate models, the final499

step is to use this information to guide inference about the relative plausibility of each of the500

models given the data. Many different levels of questions can be asked of these models. The501

best practices for model selection are described generally in Aho et al. (2014) and for the specific502

problem of behavioral modeling in Heathcote et al. (2015).503

In CHaRTr, we provide functions for converting from the raw QMP statistic that approximates the504

likelihood. The likelihood provides essentially a goodness-of-fit statistic that can be combined505

with penalized model comparison metrics. This could entail comparison between two models506

at multiple levels of granularity. For instance, the question could be, "which of the models507

considered provides the better description of the data", or "is a DDM with variable baseline508

better than a DDM without a variable baseline". It could also be used to compare between a509
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# In this implementation - the variability in drift rate and baseline are
modeled using C code, the randomness in the St parameter is handled by R

DDMSvSzSt={
out=.C("DDMSvSz",zmin=zmin,zmax=zmax,v=v,aU=aU,aL=aL,eta=eta,s=stoch.s,

dt=dt,response=resps,rt=rts,n=nmc,maxTimeStep=maxTimeStep);
rts=out$rt+runif(n=nmc,min=Ter-st0/2,max=Ter+st0/2);

},

Listing 6: R Code for estimating the RTs and choice for the model DDM SvSzSt

model with collapsing boundaries and a model with drift-rate variability (O’Connell et al., 2018)510

or between models with different forms of collapsing boundaries (Hawkins et al., 2015a). All of511

these questions can be answered using CHaRTr. As a guide, we provide illustrations of model512

selection analyses using CHaRTr in two case studies presented in Section 3.4. We also apply the513

model selection analyses to the behavior of monkeys performing a decision-making task (Roitman514

and Shadlen, 2002).515

3.2. Extending CHaRTr516

CHaRTr is designed with the goal of being readily extensible, to allow the user to specify new517

models with minimal development time. This allows the user to focus on the models of scientific518

interest while CHaRTr takes care of the model estimation and selection details behind the scenes.519

Here, we provide an overview of the steps required to add new models to CHaRTr.520

1. Add a new function to “chartr-ModelSpec.c” with the parameters needed to be estimated521

for the model. Specify the model in C code, similar to Listing 1. Provide the new model522

with a unique name (i.e., not shared with any other models in the toolbox), preferably using523

the convention we defined above.524

2. Add any new parameters of the model to the function makeparamlist, and to the param-525

sandlims function in script “chartr-HelperFunctions.r”.526

3. Add the name of the model to the function returnListOfModels, in script “chartr-HelperFunctions.r”.527

4. Make sure additional parameters are passed to the functions diffusionC and getpreds, in528

scripts “chartr-HelperFunctions.r” and “chartr-FitRoutines.r”, respectively.529

5. Finally, specify in function diffusionC the code for generating RTs and responses to use for530

model fitting. For example, the code for generating the RTs and responses for DDMSvSzSt531

is shown in the Listing 6532

3.3. Simulating Data from Models in CHaRTr533

Once models are specified, they can be used to generate simulated RTs and discrimination accu-534

racy for each condition. Simulated data help refine quantitative hypotheses. They also provide535

much greater insight into the dynamics of different decision-making models and how different536

variables in these models modulate the predicted RT distributions for correct and error trials537

(Ratcliff and McKoon, 2008).538
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CHaRTr provides straightforward methods to simulate data from decision-making models and539

generate quantile probability plots to compactly summarize and visualize RT distributions and540

accuracy. The function paramsandlims, used above in the parameter estimation routine, can also541

be used to generate hypothetical parameters to be passed to the function simulateRTs, which542

generates a set of simulated RTs and choice responses. By hypothetical parameters, we mean a543

set of reasonable starting values. An example is shown in Listing 7. These parameters can be544

changed by the user.545

546
source("chartr-HelperFunctions.r")547

nCoh = 5548

nmc = 50000549

model = "DDM"550

fP = paramsandlims(model, nCoh, hypoPars = TRUE)551

currParams = fP$hypoParams552

R = simulateRTs(model, currParams , n=nmc, nds=nCoh)553554

Listing 7: R code for simulating RT and choice responses from the simple diffusion decision model (DDM).

Fig. 5 shows the output of "chartr-Demo.r", which simulates and visualizes choice and RT555

data from four models in CHaRTr : DDM, DDMSvSzSt, UGMSv, and dDDMSv. Fig. 5A shows556

predictions of the simple DDM (see Section 2.1.1), a symmetric, inverted-U shaped QP plot557

(Ratcliff and McKoon, 2008); the symmetry implies that correct and error RTs are identically558

distributed. As variability is introduced to the DDM’s starting state (Sz) and/or drift-rate (Sv;559

see Section 2.1.2), the QP plot loses its symmetry (Fig. 5B); relative to correct RTs, error RTs560

can be faster (due to Sz) or slower (due to Sv). Fig. 5B also introduced variability in non-decision561

time (St), which increases the variance of the fastest responses.562

Fig. 5C shows predictions of a standard variant of the UGM model (UGMSv) that assumes variable563

drift rate, zero intercept, a slope (β) of 1 and a time constant of 100 ms (see Section 2.1.5). The564

urgency gating mechanism in this model reduces the positive skew of the RT distributions, and565

leads to the prediction that error RTs are always slower than correct RTs (Fig. 5C; Hawkins et566

al., 2015b). Like the UGM, the dDDMSv model, another model of urgency (see Section 2.1.4),567

also predicts reduced positive skew of the RT distributions. Unlike the standard UGM, however,568

it can also predict error RTs that are faster or slower than correct RTs (Fig. 5D).569

It is clear from Fig. 5 that various features in data discriminate between various features of the570

decision-making models: the relative speed of correct and error RTs, and critically the shape of571

complete RT distributions. We now provide three illustrative case studies that take advantage of572

the differential predictions of the models, demonstrating the use of CHaRTr for model parameter573

estimation and selection amongst sets of competing models.574

3.4. Case Studies575

To illustrate the utility of the toolbox, we provide three case studies where we simulated data576

from decision-making models in CHaRTr (case studies 1 and 2) or use CHaRTr to model data577
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collected from monkeys performing a decision-making task (case study 3). We use the case578

studies to demonstrate the typical model estimation and selection analyses. The case studies579

also provide a test of model and parameter recovery. That is, whether CHaRTr reliably selects580

the true data-generating model, and whether it reliably estimates the parameters of the true581

data-generating model.582

3.4.1. Case Study 1: Hypothetical Data Generated from a DDM with Variable Drift Rate and583

Non-Decision Time (DDMSvSt)584

For our first case study we assumed the data came from hypothetical observers who made decisions585

in a manner consistent with a DDM with variable drift rate (Sv) and variable start times (St). In586

CHaRTr, this corresponds to simulating data from the model DDMSvSt, where an observer’s RTs587

exhibit variability due to both the decision-formation process and the non-decision components.588

We simulated 300 trials for each of 5 stimulus difficulties, for 5 hypothetical participants.589

For each model and hypothetical participant, we repeated the parameter estimation procedure 5590

times, independently. We heavily recommend this redundant-estimation approach as it greatly591

reduces the likelihood of terminating the optimization algorithm in local minima, which can592

arise in simulation-based models like those implemented in CHaRTr. Variability occurs due to593

randomness in simulating predictions of the model at each iteration of the optimization algorithm,594

and randomness in the optimization algorithm itself (for similar approach, see Hawkins et al.,595

2015a,b). We then select the best of the 5 independent parameter estimation procedures (or596

‘runs’) for each model and participant (i.e., the ‘run’ with the highest value of the QMP statistic).597

If computational constraints are not an issue, then we encourage as many repetitions as possible598

of the parameter estimation procedure.599

Fig. 6A shows the BICs for a set of models, obtained after using CHaRTr to fit the RT and600

choice data from one of the hypothetical observers. All the BICs are reported with reference to601

the DDM (i.e., as difference scores relative to the DDM). Thus, negative values of the BIC score602

suggest a more parsimonious account of the data than the DDM, and positive values suggest the603

opposite.604

Fig. 6B shows the BIC-based approximate posterior model probabilities (Eq. 21) for the top six605

models. DDMSvSt provided the best account of the data; by ‘best account’, we mean the model606

that provided the most appropriate tradeoff between model fit and model complexity among the607

specific set of models under consideration, according to BIC. This suggests that CHaRTr can608

successfully identify the data-generating model – a necessary test for any parameter estimation609

and model selection analysis. We strongly recommend this form of model recovery analysis when610

developing and testing any proposed cognitive model; if a candidate model cannot be successfully611

identified in simulated data, where the true model is known, it will not be useful a model for real612

data.613

The models CHaRTr ranked 2nd to 6th were sensibly related to the data-generating model. These614

models all assumed that observed RTs were influenced by factors other than sensory evidence615
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(such as growing impatience), which might mimic the data-generating model’s RT variability616

that arose due to factors external to the decision-formation process (variable non-decision time).617

Although these results indicate that the DDMSvSt model provided a better account of the data618

than cfkDDMSvSt, dDDMSvSt, cDDMSvSt, and DDMSvSzSt, they also serve as an important619

reminder that model selection should not be used to argue for the "best" model in an absolute620

sense. Rather, it is often most constructive to rank useful hypotheses/explanations about the621

data that can then guide further study (Burnham et al., 2011), which is the approach we have622

used here.623

Fig. 6C shows the estimated parameter values for the best-fitting DDMSvSt model. The pa-624

rameter estimates were very similar to the data-generating values, with some minor over- or625

under-estimation of the drift rate parameters. This suggests that CHaRTr can reasonably re-626

cover the data-generating model and parameters. As above, we also strongly recommend this627

form of parameter recovery analysis when developing and testing any proposed cognitive model.628

Fig. 6D and Fig. 6E show the model selection outcomes from another hypothetical observer.629

The best fitting model is again identified as DDMSvSt. A few other models also provided good630

accounts of the data. As was the case for observer 1, these models predict variability in RTs due631

to mechanisms outside the decision-formation process.632

In the three other hypothetical observers that we simulated, the pattern of results returned633

by CHaRTr was consistent with the results shown for the two hypothetical observers in Fig.634

6: DDMSvSt was chosen as the best fitting model for all observers. If we assume the set of635

observers are independent (which they are in the case of our hypothetical example and usually636

in experiments), we can average over their posterior model probabilities to obtain a group-level637

estimate. As shown in Fig. 6F, DDMSvSt is identified as the most plausible model for the data638

across the set of observers, indicating good model recovery.639

Fig. 7 shows QP plots of the data from two hypothetical observers overlaid on the predictions640

from a range of models. The simple DDM predicted larger variance than was observed in data,641

and therefore provided a poor account of the data. When the DDM is augmented with Sv and642

St, it provided a much improved account of the data, capturing most of the RT quantiles and643

the accuracy patterns. Three other models provided an almost-equivalent account of the data in644

terms of log-likelihoods (DDMSvSzSt, cDDMSvSt, dDDMSvSt), but they did so with the use of645

more model parameters than DDMSvSt. This led to a larger complexity penalty for those models646

and thus larger BICs in comparison to the DDMSvSt model, as shown in the model selection647

analysis in Fig. 6.648

3.4.2. Case Study 2: Hypothetical Data Generated from a UGM with Variable Intercept (bUGMSv)649

In a second case study we simulated data from hypothetical observers whose decision-formation650

process was controlled by an urgency gating model (UGM) with a variable drift rate and an651

intercept (Cisek et al., 2009; Thura et al., 2012), termed bUGMSv in CHaRTr . We again assumed652

five hypothetical subjects, five stimulus difficulties and simulated 500 trials for each of them. We653
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then fit the data with the redundant-estimation approach as in case study 1 and evaluated the654

results of the model selection analysis, all using routines contained in CHaRTr.655

Fig. 8A shows the BICs for the set of models considered for one hypothetical observer’s data,656

again referenced to the DDM (i.e., as difference scores relative to the DDM). Negative values657

of the BIC score suggest a more parsimonious account of the data than the DDM, and positive658

values suggest the opposite. Fig. 8B shows the BIC weights (Eq. 21) for the top six models.659

bUGMSv provided the best account of the data for this hypothetical observer. The models660

CHaRTr ranked 2nd to 6th were also sensibly related to the data-generating model; they all661

assumed the decision-formation process was influenced by factors other than sensory evidence,662

such as growing impatience. The second case study reaffirms our conclusion from the first case663

study that model selection may not be put to best use when arguing for a single "best" model664

in an absolute sense. This is especially true when the data-generating model is not decisively665

recovered from data.666

Model selection sometimes fails to recover the data-generating model. Fig. 8C shows the top six667

models identified by CHaRTr as providing the best fit to another of the hypothetical observers’668

data; uDDMSv provided a better fit than the generative model bUGMSv. This result highlights669

two important points. First, some models under some circumstances can mimic each other (i.e.,670

generate similar predictions), which makes their identification in data difficult. Second, some671

models may not be mimicked, but they may require very many data points to reliably recover.672

We note that these points are not specific to CHaRTr – they are properties of quantitative model673

selection in general and are an important reminder of the necessary careful steps needed when674

aiming to select between models (Chandrasekaran et al., 2018).675

Fig. 8D shows the posterior model probabilities for the different models averaged over all five676

observers considered. Reassuringly, the most plausible model across the set of observers is the677

generative model bUGMSv. The next five best models are all conceptually related to the data678

generating model. For instance, the next best model was UGMSv which is an urgency gating679

model with no intercept. The third best model was uDDMSv which is a DDM model with urgency680

but no gating. Together these results again serve as a reminder of the utility of CHaRTr in the681

analysis of decision-making models, including the ability to quantitatively assess a large set of682

conceptually similar and dissimilar models.683

3.4.3. Case Study 3: Behavioral Data From Monkeys Reported in Roitman and Shadlen (2002)684

To demonstrate the utility of CHaRTr in understanding experimental data, we use CHaRTr to685

model the freely available RT and choice data from two monkeys performing a random-dot motion686

RT decision-making task (Roitman and Shadlen, 2002). In this classic variant of the random-687

dot motion task, the monkeys were trained to report the direction of coherent motion with eye688

movements. The percentage of coherently moving dots was randomized from trial to trial across689

six levels (0%, 3.2%, 6.4%, 12.8%, 25.6% and 51.2%). Monkey b completed 2614 trials and690

Monkey n completed 3534 trials.691
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We demonstrate that CHaRTr replicates key findings from past analyses of these behavioral data.692

Roitman and Shadlen (2002)’s behavioral (and neural) data were originally interpreted as a neural693

correlate of the DDM. Later studies suggested a stronger role for impatience/urgency in these694

data (Ditterich, 2006b; Hawkins et al., 2015b). This is the first result we wish to demonstrate695

again using CHaRTr. Second, Hawkins et al. (2015a) showed that the urgency gating model696

provides a better description of the data than the DDM. We note that recent work suggests the697

evidence for impatience/urgency in Roitman and Shadlen (2002)’s data might be the result of698

the particular training regime the monkeys were exposed to (Evans and Hawkins, 2019).699

Fig. 9A-B shows the results from CHaRTr . For both monkeys, the four best-performing models700

all included a DDM with either urgency or collapsing bounds, and the worst performing models701

were largely DDM models without any forms of urgency. As mentioned above, for any functional702

form of a collapsing boundary there is a form of additive urgency signal that can generate identical703

predictions. So finding that collapsing bound models describe the data better is consistent with704

prior observations that urgency is an important factor. Together, the results are broadly consistent705

with those of Ditterich (2006a) and Hawkins et al. (2015b) who reported that models with forms706

of impatience are systematically better than models without it, for Roitman and Shadlen (2002)’s707

data. Fig. 9C-D shows that when the comparison is restricted to UGM and DDM models, variants708

of the UGM better explain the behavior of the monkeys than variants of the DDM, which is709

consistent with the findings of Hawkins et al. (2015a).710

We can take things one step further and use CHaRTr to derive more insights into the behavior711

of the monkeys in this decision-making task, by examining whether urgency or the time constant712

of integration is a more important factor in explaining their behavior. Fig. 10 shows quantile713

probability plots for five models: DDMSvSzSt, a model from the DDM class without urgency714

but elaborated with variability in various parameters (Sv, Sz, St), two models with Urgency and715

variability in some parameters (uDDMSvSt, uDDMSvSb), and two UGM models with variability716

in parameters (bUGMSvSb, bUGMSvSt). As shown in Fig. 9, addition of urgency dramatically717

improved the ability of these models to account for the decision-making behavior of the two718

monkeys. We next used CHaRTr for a preliminary analysis of whether the gating component719

of the urgency gating model improves model predictions over and above urgency alone. In both720

monkeys, we found that the data are slightly more consistent with models such as bUGMSvSb and721

bUGMSvSt, models that involve urgency and gating with a 100 ms time constant of integration.722

These observations provide hypotheses for further analyses of the neural data and further targeted723

model selection.724

Together, the results in Fig. 9 and Fig. 10 highlight the ease with which CHaRTr can be used725

to make insightful statements about behavior in decision-making tasks and ultimately may be a726

stepping stone for deeper insights into mechanism (Krakauer et al., 2017).727

4. Discussion728

Advances in our understanding of decision making have come from three fronts: 1) through729

novel experimental manipulations of sensory stimuli (Brody and Hanks, 2016; Cisek et al., 2009;730
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Ratcliff, 2002; Ratcliff and Rouder, 2000; Smith and Ratcliff, 2009; Thura and Cisek, 2014)731

and/or task manipulations (Hanks et al., 2014), 2) recording neural data in a variety of decision-732

related structures in multiple model systems (Chandrasekaran et al., 2017; Coallier et al., 2015;733

Ding and Gold, 2012a; Hanks et al., 2015; Schall, 2001; Shadlen and Newsome, 2001; Thura734

et al., 2014) and 3) developing and testing quantitative cognitive models of choices, RTs, and735

other behavioral readouts from animal and human observers performing these decision-making736

tasks (Ratcliff and Smith, 2015). Quantitative modeling is a lynchpin in generating novel insights737

into cognitive processes such as decision-making. However, it has posed significant technical738

and computational challenges to the researcher. Widespread and rapid uptake of quantitative739

modeling requires software toolboxes that can easily implement the many sophisticated models740

of decision-making proposed in the literature (Diederich, 1997b; Ratcliff et al., 2016; Thura et741

al., 2012).742

We contend that the ideal toolbox for developing and implementing cognitive models of decision-743

making and evaluating them against choice and RT data should be simple, offer a plurality of744

cognitive models, provide model estimation and model selection procedures, provide simple simu-745

lation and visualization tools, and be easily extensible when new hypotheses are developed. Such746

a view is broadly consistent with recent research that lays out the best practices for computa-747

tional modeling of behavior (Heathcote et al., 2015; Wilson and Collins, 2019). Ready adoption748

is also facilitated when the toolbox is implemented in an open-source, free programming language749

obviating the need for expensive licenses. The added benefit of an open source toolbox is that750

researchers can look "under the hood", which has at least three benefits: 1) allow a deeper level751

of understanding of the models, 2) readily permit extension of the toolbox, and 3) catch errors752

in implementation. At the time of development of this toolbox and submission of this study, no753

existing toolbox has satisfied all of these criteria.754

CHaRTr was guided by these pragmatic principles, and is our attempt to provide a practical tool-755

box that encompasses a range of cognitive models of decision-making. Some of the models are756

grounded in classic random walk and diffusion models (Ratcliff, 1978; Stone, 1960). Others incor-757

porate modern hypotheses that decision-making behavior might involve signals such as urgency758

(Ditterich, 2006b), collapsing boundaries (Drugowitsch et al., 2012), and variable non-decision759

times (Ratcliff and Tuerlinckx, 2002). Since all of the source code is freely available, the toolbox760

thus provides a framework where models that are proposed into the future can also be imple-761

mented and contrasted against existing models. We provide a suite of functions for estimating762

the parameters of decision-making models, methods to compare log-likelihoods, and calculating763

penalized information criteria from these different models. Finally, the toolbox is developed in the764

R Statistical Environment, an open source language that is maintained by an active community765

of scientists and statisticians (R Core Team, 2016).766

We anticipate that CHaRTr will provide a pathway to standardizing quantitative comparisons767

between models and across studies, and ultimately serve as one of the reference implementations768

for researchers interested in developing and experimentally testing candidate models of decision-769

making processes. CHaRTr also codifies the various parameters of decision-making models, which770

reflects the hypothesized latent constructs and how they interact, and provides easy access to771
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more than 20 models of behavioral performance in decision-making tasks including variants of772

the diffusion decision model, the urgency gating model, diffusion models with urgency signals,773

and diffusion models with collapsing boundaries. CHaRTr also offers pedagogical value because it774

allows the user to effortlessly simulate the many different models of decision-making and generate775

RT and choice data from hypothetical observers. CHaRTr will also allow quantitative evalua-776

tion of the predictions of various decision-making models and help move away from qualitative777

intuition-based predictions from these models. Finally, CHaRTr is also sufficiently flexible that778

users can implement novel models with their own specific assumptions.779

CHaRTr provides researchers with the resources to apply and test more than 20 different, albeit780

overlapping, variants of decision-making models. We have argued throughout that model selection781

techniques ought to be used as a tool for selecting families of models to guide the next generation782

of experiments and further analyses, which is in the spirit of Burnham et al. (2011); we do not783

believe model selection should be used to justify categorical answers ("the best model"). In this784

sense, model selection is one tool in the whole gamut of tools that are needed to understand785

decision-making (Chandrasekaran et al., 2018)786

The most promising approaches for advancing our understanding of decision-making will combine787

the rigorous model selection techniques we advocate here with novel experimental manipulations788

of stimulus statistics (Brody and Hanks, 2016; Cisek et al., 2009; Evans et al., 2017; Thura et al.,789

2014), task contingencies (Hanks et al., 2014; Heitz and Schall, 2012; Murphy et al., 2016; Thura790

and Cisek, 2016), and a range of other factors. We believe that validating and advancing models of791

decision-making will be facilitated by data that is freely available for the kinds of model estimation792

and model selection analyses we have performed here. Here, we took advantage of the freely793

available dataset from Roitman and Shadlen (2002). We anticipate the application of CHaRTr794

to many more decision-making datasets will help to form a coherent picture of how various795

latent cognitive processes affect the behavior of animal and human decision-making. This deeper796

understanding of decision-making behavior (Krakauer et al., 2017) will in turn facilitate a deeper797

understanding of decision-related neural responses (Chandrasekaran et al., 2017; Churchland et798

al., 2008; Cisek et al., 2009; Murphy et al., 2016; O’Connell et al., 2018; Purcell and Kiani, 2016;799

Thura et al., 2012).800

Rigorous model selection techniques are even more relevant if we wish to make further inroads801

into understanding the neural correlates of decision-making. In particular, discriminating between802

multiple candidate models of decision-making is critical for neurophysiological studies of decision-803

making that attempt to relate neural responses in decision-related structures to the features of804

sequential sampling models (Ditterich, 2006a,b; Gold and Shadlen, 2007; Hanes and Schall, 1996;805

Heitz and Schall, 2012; Shadlen and Newsome, 2001; Thura et al., 2012). For example, one of806

the most well-established tenets of the neural basis of decision-making is the gradual ramp-like807

increase in the firing rates of individual neurons in decision-related structures such as the lateral808

intraparietal area (Roitman and Shadlen, 2002; Shadlen and Newsome, 2001), frontal eye fields809

(Ding and Gold, 2012a; Hanes and Schall, 1996), superior colliculus (Ratcliff et al., 2003, 2007),810

prefrontal cortex (Kim and Shadlen, 1999) and dorsal premotor cortex (Chandrasekaran et al.,811

2017; Coallier et al., 2015; Thura et al., 2014). However, questions still remain; for example,812
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is the ramp in a neuron’s response a signature of the evidence integration process posited by a813

DDM or is it more consistent with the presence of, say, an increasing urgency signal. It can be814

challenging to neurally discriminate between frameworks without a clear hypothesis about 1) a815

detailed and ideally quantitative understanding of the behavior (Krakauer et al., 2017; O’Connell816

et al., 2018), and 2) the mapping from the underlying neural mechanisms to the observed behavior817

(Schall, 2004). We believe CHaRTr and other toolboxes of its ilk will play a critical role in further818

advancing our understanding of the neural correlates of decision-making.819

4.1. Future directions820

CHaRTr provides a powerful framework for estimating and discriminating between candidate821

decision-making models. Nevertheless, there is considerable scope for extending its capabilities.822

Here, we outline a few future directions we believe would make CHaRTr, and other toolboxes823

that come in its wake, even more useful for decision-making researchers.824

First, CHaRTr provides options to estimate sequential sampling models that assume relative825

evidence is accumulated over time. A related and compelling line of research assumes a race826

model architecture where a choice between n options is represented as a race between n evidence827

accumulators. The n ≥ 2 accumulators collect evidence in favor of their respective response828

options as a dynamic race toward their respective thresholds. The first accumulator to reach829

the threshold triggers a decision for the corresponding response option. There are a range of830

race models that differ in details, including accumulators that are independent (e.g., Brown831

and Heathcote, 2008; Reddi and Carpenter, 2000) or dependent (e.g., Usher and McClelland,832

2001). Naturally, these models can be elaborated with many features of the relative evidence833

accumulation models implemented in CHaRTr, including variable non-decision times and urgency834

(though see Bogacz et al., 2006; Zhang et al., 2014, for demonstration of the equivalence between835

relative and absolute evidence accumulation models under certain circumstances). Incorporation836

of race models in CHaRTr will be a useful extension into the future.837

Second, the current instantiation of CHaRTr assumes that observers are independent. Recent838

efforts have proposed the use of hierarchical Bayesian methods for the DDM and other decision-839

making models (Ahn et al., 2017; Heathcote et al., 2018; Wiecki et al., 2013). Bayesian methods840

provide two advantages over the current framework provided in CHaRTr. Bayesian methods of841

parameter estimation incorporate prior knowledge into the plausible distribution of parameter val-842

ues, and provide full posterior distributions for all model parameters. CHaRTr currently provides843

only the most likely value for a parameter without any measure of its uncertainty, whereas the844

full posterior distribution provides uncertainty in the estimate for each parameter, thus reducing845

the likelihood of drawing over-confident conclusions. Bayesian methods are also advantageous846

when used in contexts where there are only modest numbers of trials per observer. Hierarchi-847

cal Bayesian models in particular can enhance statistical power by providing opportunities for848

simultaneous estimation of the parameters of individual observers as well as the population-level849

distributions from which they are drawn.850

Despite these benefits, we emphasize that it is far from straightforward to extend the models851
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implemented in CHaRTr to Bayesian parameter estimation methods. The goal of CHaRTr is852

simple and rapid implementation and testing of new models, which takes place via simulation-853

based techniques. Bayesian methods require model likelihood functions, which can be challenging854

to derive and may not even exist for some of the models implemented in CHaRTr , and as such855

the extension to Bayesian methods is not trivial. In future work, we aim to extend the parameter856

estimation routines in CHaRTr to make use of approximate Bayesian techniques.857

Third, the framework in CHaRTr is currently only amenable for analyzing behavior from decision-858

making tasks where the sensory stimulus provides constant evidence over time, albeit with noise,859

and varies along a single dimension. However, previous research suggests that a powerful way860

to dissociate between different models of decision-making is to use time-varying stimuli (Brody861

and Hanks, 2016; Brunton et al., 2013; Cisek et al., 2009; Ratcliff, 2002; Ratcliff and Rouder,862

2000; Smith and Ratcliff, 2009; Thura et al., 2014; Usher and McClelland, 2001). In a related863

vein, there has been increased interest in combining frameworks that posit sensory stimuli are864

optimally combined and could drive multisensory decision-making models (Chandrasekaran et865

al., 2017; Drugowitsch et al., 2014). Future versions of CHaRTr will provide opportunities for866

implementing and testing models in contexts where the sensory stimuli have temporal structure867

(Evans et al., 2017), or involve multi-sensory integration (Chandrasekaran et al., 2017).868

Finally, CHaRTr currently allows the quality of the evidence signal (drift rate) to vary with an869

experimental factor (stimulus difficulty). In future versions of CHaRTr, we will provide capabilities870

for different model parameters to vary with different experimental factors. There are a range of871

other experimental manipulations whose effect will likely appear in model parameters other than872

the drift rate; for example, emphasizing the speed or accuracy of decisions is most likely to affect873

the decision boundary, or the speed with which a boundary collapses. Future versions of CHaRTr874

will allow researchers to test and discriminate between these hypotheses.875
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Figure 1: Schematic of some sequential sampling models of decision-making incorporated in CHaRTr. (A) The
DDM model is the simplest example of a diffusion model of decision-making. (B) A variant of the DDM with
variable non-decision time (St), variable drift-rate (Sv) and a variable start point (Sz). (C) A DDM with collapsing
bounds and variability in the non-decision time and drift rate. The function A(t) takes the form of a Weibull
function as defined in Equation 6. (D) A variant of the DDM with variable non-decision time and drift rate, and
an “urgency signal”. This urgency signal grows with elapsed decision time, which is implemented by multiplying
the decision variable by the increasing function of time γ(t) (Equation 10, following Ditterich, 2006a). (E) UGM
with variable drift rate (Sv) and variable non decision time (St). In the standard UGM, the urgency signal is only
thought to depend on time and thus starts at 0. The sensory evidence is passed through a low pass filter (typically
a 100-250 ms time constant, Carland et al., 2015; Thura et al., 2012). The sensory evidence is then multiplied by
the urgency signal to lead to a decision variable that is then compared to boundaries. (F) Schematic of urgency
signals with an intercept (top panel) and a variable intercept (bottom panel)
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Figure 2: A quantile probability (QP) plot of choice and RT data from a hypothetical decision-making experiment
with three levels of stimulus difficulty. The three difficulty levels are represented as vertical columns mirrored around
the midpoint of the x-axis (.5). In this example, the lowest accuracy condition had ∼ 55% correct responses, so
the RTs for correct responses in this condition are located at .55 on the x-axis and the corresponding RTs for
error responses are located at 1− .55 = .45 on the x-axis; these two RT distributions are highlighted in gray bars.
For each RT distribution we plot along the y-axis the 10th, 30th, 50th, 70th, 90th percentiles (i.e., .1, .3, .5, .7,
.9 quantiles), separately for correct and error responses in each of the three difficulty levels. For clarity, correct
responses are shown in blue and error responses are shown in yellow.
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Figure 3: CHaRTr flow chart. Models are specified and once data is available, the parameters are estimated
through the optimization procedure. Once parameter estimation is complete, the final goodness of fit statistic is
calculated for every model under consideration, which is used for subsequent model selection analyses.
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Figure 4: Flow chart for the parameter estimation component of CHaRTr, which uses the differential evolution
optimization algorithm (Mullen et al., 2011).
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Figure 5: Quantile probability plots of data simulated from four models in CHaRTr. (A) DDM, (B) DDM with
variable drift rates, starting state and non-decision time (DDMSvSzSt), (C) Urgency gating model with variable
drift rates (UGMSv), and (D) DDM with an urgency signal defined as per Ditterich (2006a) (dDDMSv). Gray
points denote data. Lines are drawn for visualization purposes.
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Figure 6: Model selection and parameter estimation outcomes from applying a range of cognitive models of
decision-making to hypothetical data from two observers (case study 1). A-C shows outcomes from one hypo-
thetical observer. D-E shows outcomes from a second hypothetical observer. Data were generated using the
model DDMSvSt. A) BIC values as a function of model with the DDM model as the reference. B) Akaike
weights for the top six models that provided the best account of the data. CHaRTr correctly identifies the true
data-generating model (DDMSvSt) as the most likely candidate for describing the data. C) Data-generative and
estimated parameter values for the DDMSvSt model shown in A. Close alignment indicates CHaRTr recovered
the true parameter values. D-E shows the BIC values and posterior model probabilities from another hypothetical
observer. F) Shows the average posterior model probabilities across all five hypothetical observers, assuming them
to be independent. Reassuringly, DDMSvSt is identified as the most plausible model for the data.
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Figure 7: Quantile probability (QP) plots showing correct RTs (blue) and error RTs (orange) for two hypothetical
observers (case study 1), along with the model predictions (gray dots). Predictions from the four best-fitting mod-
els are shown along with the simplest model the DDM. The four best fitting models are DDMSvSt, cfkDDMSvSt,
dDDMSvSt, cDDMSvSt are shown. Numbers at the top of each plot show the BIC for the model under consider-
ation, assuming the DDM as the base (reference) model. The model DDMSvStprovides the best account of the
data.
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Figure 8: Model selection and parameter estimation outcomes from applying a range of cognitive models of
decision-making to data from a hypothetical observer. Decision-making in this hypothetical observer is controlled
by the model bUGMSv. A) BIC values as a function of model with the DDM model as the reference for one
hypothetical observer, Subj 3. B) Posterior model probabilities for the top six models that provided the best
account of Subj 3’s behavior. C) Results for another hypothetical subject. D) Results for the population of
hypothetical subjects. The most probable model for this set of hypothetical observers is the generative model,
bUGM Sv. However, we note that other models such as UGMSv, and uDDMSv provide quite good descriptions of
the behavior. This result is in keeping with the general notion that model selection ought to be used as a guide
to the most likely models and not necessarily to argue for a "best" model.
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Figure 9: Model selection outcomes from applying a range of cognitive models of decision-making to data from
two monkeys (Roitman and Shadlen, 2002). A-B shows outcomes from monkey b and n to compare models with
various forms of urgency vs. simple diffusion decision models without impatience. For both monkeys, CHaRTr
suggests models with urgency are better candidates for describing the data than DDMs without urgency. C-D
shows outcomes from the monkeys b and n when comparing UGM vs. DDM models. For both monkeys, UGM
based models substantially outperform the DDM based models
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Figure 10: Quantile probability (QP) plots showing data in blue (corrects) and yellow crosses (errors) for the
two monkeys from Roitman and Shadlen (2002), along with the model predictions (gray dots). Predictions from
DDMSvSzSt are shown along with four other models uDDMSvSb, bUGMSvSb, uDDMSvSt, bUGMSvSb. Numbers
at the top of each plot show the BIC for the model under consideration, assuming DDMSvSzSt as the base
(reference) model. For both monkeys the model bUGMSvSb is the best model for describing the data out of these
candidate set of models
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