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Abstract: 

It is generally assumed that translation efficiency is governed by translation initiation. However, the 

efficiency of protein synthesis is regulated by multiple factors including tRNA abundance, codon 

composition, mRNA motifs and amino-acid sequence1-4. These factors influence the rate of protein 

synthesis beyond the initiation phase of translation, typically by modulating the rate of peptide-bond 

formation and to a lesser extent that of translocation. The slowdown in translation during the early 

elongation phase, known as the 5’ translational ramp, likely contributes to the efficiency of protein 

synthesis 5-9. Multiple mechanisms, which could explain the molecular basis for this translational ramp, 

have been proposed that include tRNA abundance bias6,9, the rate of translation initiation10-15, mRNA 

and ribosome structure 11,12,14,16-18, or retention of initiation factors during early elongation events 19. 

Here, we show that the amount of synthesized protein (translation efficiency) depends on a short 

translational ramp that comprises the first 5 codons in mRNA. Using a library of more than 250,000 

reporter sequences combined with in vitro and in vivo protein expression assays, we show that 

differences in the short ramp can lead to 3 to 4 orders of magnitude changes in protein abundance. The 

observed difference is not dependent on tRNA abundance, efficiency of translation initiation, or overall 

mRNA structure. Instead, we show that translation is regulated by amino-acid-sequence composition 

and local mRNA sequence. Single-molecule measurements of translation kinetics indicate substantial 

pausing of ribosome and abortion of protein synthesis on the 4th or 5th codon for distinct amino acid or 

nucleotide compositions. Introduction of preferred sequence motifs, only at the exact positions within 

the mRNA, improves protein synthesis for recombinant proteins, indicating an evolutionarily conserved 

mechanism for controlling translational efficiency.  
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Main 

The efficiency of protein synthesis is governed by the rates of translation initiation, elongation and 

to a lesser extent termination 1-4. Studies have investigated potential factors that contribute to the 

protein synthesis efficiency using both endogenous genes and reporter sequences by focusing on tRNA 

abundance, amino acid sequence or both mRNA sequence and structure 6,9,12,17,19-27. Several conflicting 

models have been proposed regarding the role of codon distribution at the N-terminus as well as the 

local mRNA structure around the translation start sites on the efficiency of protein synthesis 6,9,11,12,25. 

Reduced abundance of tRNAs coding for N-terminal residues of proteins may play a crucial role in 

slowing down initial stages of translation elongation, which could in turn decrease the cost of gene 

expression by reducing the probability of ribosome jamming during translation 6,9,15. Such a translational 

ramp would be beneficial in preventing detrimental collision-dependent abortion of protein 

synthesis 9,27,28. Some of these effects can be rationalized by the presence of mRNA structure structural 

elements within the first 5 to 16 codons 10-12,29,30. In addition, interactions between the nascent peptide 

and the exit tunnel of the ribosome appear to play an important role in dictating the rate of peptidyl 

transfer during these early elongation events 16-18,31. However a unifying mechanism that could explain 

the interplay between protein-synthesis yield and rates of early elongation events remains unknown. 

Here, we present data that strongly suggest that the mRNA and the encoded protein sequences of the 

first five codons are key in dictating the efficiency of protein synthesis. 

To decipher how mRNA sequence and the encoded nascent peptide influence the efficiency of 

protein synthesis, we focused on the region surrounding +10 nucleotide position of a GFP-reporter 

sequence. Previously, this region has been implicated in regulating protein expression levels 11,12,25. We 

created a library of an otherwise fully-optimized eGFP gene with an insertion of 9 random nucleotides 

after the second codon (Fig 1A). We were able to obtain a total of 259,134 unique sequences out of the 

262,144 possible synthetic eGFP constructs. These were nearly identical save for the 3rd, 4th and 5th 

codons of the open reading frame. These three codons coded for 9261 different tri-peptide sequences 

including truncated peptides due to the presence of one or more stop codons in the variable region. The 

library was cloned into the low-copy pBAD plasmid vector and expressed using arabinose induction in E. 

coli DH5-alpha cells. To score global expression of the eGFP variants, bacterial cells were FACS sorted 

into five bins (Fig 1B) with a difference in relative fluorescence units (RFUs) of almost four orders of 

magnitude between bin one and bin five (Fig 1C, fluorescence difference >600-fold). Interestingly, this 

difference is higher than previously reported for expression of 14,000 variants of super-folder green 
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fluorescent protein (sfGFP) with randomized promoters, ribosome binding sites, and first 11 codons 11, 

or when 94 % of the eGFP protein was recoded using synonymous codons 12. These results indicated 

that the overall expression of the protein could be significantly changed as a result of differences in the 

N-terminal sequence that encompasses the first 5 amino acids of the protein, in other words nucleotides 

7-15 of the open-reading frame (ORF) corresponding to the first ribosome footprint after initiation 

(Supplementary Fig 1). 

To assign expression level for each sequence variant, plasmids were isolated from each bin, 

normalized by DNA amounts and sequenced (Supplementary Fig 2). Resulting counts for each variant 

were normalized and the GFP score was calculated to represent the weighted distribution value for each 

independent sequence over five FACS sorted bins (Fig 1D and Supplementary Fig 2). A GFP score close to 

1 indicates sequences with low eGFP expression for which the majority of sequencing counts associated 

with bin 1; a GFP score of 5 specifies sequences that are highly expressed and coupled mostly with bin 5 

(Supplementary Tables 1-5). On average, the complete library had a score slightly over 3 with most of 

the sequences distributed between bins 2, 3 and 4. GFP scores were consistent and reproducible across 

the 213708 constructs in the library with at least 10 reads, with a Pearson correlation of 0.8 among 

biological replicates (Supplementary Fig 2). Since amber stop codon (UAG) suppression in DH5α is highly 

efficient (75-95%)32 we used this feature of the E.coli DH5α cells to compare eGFP variants with amber 

stop codon in randomized positions 3, 4 or 5 with other stop codons (opal-UGA, ochre-UAA, 

Supplementary Fig. 3). While variants with ochre and opal stop codons distributed between GFP scores 

of 1 and 2, distribution of the constructs with an amber stop codon followed the distribution of the 

library without encoded stop codons (188,703 variants). As such amber suppressor tRNA (supE44)32 that 

codes for tRNAGln
CUA and leads to Gln incorporation at UAG codon served as an additional control for the 

codon-anticodon interaction and efficiency of protein synthesis (Supplementary Fig 3).  

To test whether eGFP reporter levels depend on tRNA abundance or rare codons at the start of the 

coding sequence, we compared the distribution of the GFP scores of all library variants to these features 

(Fig 1E and Supplementary Fig 3). We did not find any obvious correlation of GFP scores with tRNA 

abundance (Fig 1E), measured by tRNA adaptation index (tAI)33, or when rare Arg, Ile or Leu codons 

were at the 3rd, 4th and/or 5th codon (Supplementary Fig 3). We also found no correlation with the 

amino-acid chemical properties such as overall charge or hydrophobicity of the encoded tri-peptides 

(Supplementary Fig 4). There was also no correlation between GFP score and plasmid abundance in the 

unsorted cells (Supplementary Fig 2). We found that GFP score correlated moderately with the AT 
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content of variable region similar to the so-called downstream box element (Fig 1F and Supplementary 

Fig 5)10,14,34,35. Indeed, eGFP variants that harbored 6-9 A or T nucleotides at positions +7 to +15 had on 

average better expression than the rest of the library variants. This was further confirmed with more 

thorough analysis of the library sequences divided into four buckets defined by GFP score 

(Supplementary Fig 5). Each bucket represented X≤GFP score<(X+1), where X was 1-4. Sequences motif 

analysis of variants with highest GFP scores (GFP score>4) indicated slight AT bias; however, there was 

not strong bias against GC rich sequences (Supplementary Fig 5). Sequences that were moderately 

expressed had a more or less random distribution of GC nucleotides, with a slight increase in C 

nucleotides for low expressed sequences (1≤GFP score<2). This could potentially be explained by the C-

rich codons for proline and previously described proline stalling during translation 36-38. Taken together, 

these analyses indicate that local mRNA sequence and potentially base-pairing stability of nucleotides +7 

to +15 influence expression of the protein.  

Given that AT-richness correlated slightly with eGFP variants with higher expression, we asked 

whether certain sequences influenced expression of eGFP. Simple analyses of eGFP variants with 

expression scores over 4 indicated slight preference for certain amino acids in positions 3, 4 or 5 

(Supplementary Fig 6). Using a motif-scanning approach, we identified motifs that were enriched in 

eGFP variants with a score greater than 4, when compared to poorly expressed variants (GFP score <3). 

Among several hexanucleotide motifs that were identified, the two most significantly enriched RNA 

motifs (enrichment ratio of >9 and p value < 1E-5) were AADTAT (D stands for not C, Figure 2A) and 

AAVATT (V stand for not T, Figure 2B). During decoding, these motifs code for lysine (K) or asparagine 

(N) and tyrosine (Y) or isoleucine (I), as first and second amino acids, respectively. Intriguingly, all eGFP 

variants with combination of K|N-Y|I amino acids regardless of their synonymous codons had on 

average a GFP score of 4.2±0.4, arguing for possible amino acid contribution for higher expression 

(Supplementary Fig 7). These same amino acids were identified as occurring more frequently in eGFP 

variants with high score (>4) compared to those with low score (Supplementary Fig 6). Analyses of the 

positional bias of hexanucleotide motifs (Fig 2C) revealed that K|N-Y|I amino acid combination on 

average had higher GFP scores than any other amino acid combination encoded by the same 

hexanucleotide motifs in a randomized 9 nucleotide sequence (Fig 2D-2G). We observed also preference 

for certain amino acids at position 3 when K|N-Y or K|N-I motifs were in position 4|5 (Supplementary 

Fig 8). Analysis of the influence of K, N, I and Y isoacceptor tRNAS for indicated rather small differences 

between tested codons. Tendency for reduction in GFP scores was observed for codons with G or C 

nucleotides and when motifs were shifted to position 4 (Fig 2E and 2I, Supplementary Fig 7). These 
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analyses suggest that both amino acid and nucleotide composition at the N-terminus and beginning of 

the coding sequence, respectively, contribute to the overall efficiency of protein synthesis. 

We next probed the effects of mRNA and protein stability on the expression of the reporter protein 

in vitro and in vivo. In particular, we compared the expression of wild type eGFP (WT) and AADTAT 

hexanucleotide variants (Mp1-Mp4, Supplementary Fig 9) by western analysis (Fig 3A, Supplementary 

Fig 9), kinetics of in vitro protein synthesis (Supplementary Fig 10) and endpoint eGFP fluorescence for 

both in vivo and in vitro experiments (Fig 3B). Results from both in vivo and in vitro experiments 

confirmed our FACS and bioinformatics analyses of the library, for which Mp1-Mp4 eGFP variants 

displayed higher expression levels than WT construct. We noted that in vitro expression of Mp1-Mp4 

constructs showed moderately higher levels (range 3-10 fold higher than WT) when compared to the in 

vivo expression in E. coli BL21 cells (3-6 fold higher than WT), suggesting some contribution of protein 

degradation and mRNA stability to the observed difference in protein yields. However, these results also 

indicated that protein and mRNA stability do not strongly contribute to alterations in eGFP expression 

driven by amino acid identities in position 3-5 and ORF nucleotides 7-15 present in the Mp1-Mp4 

constructs. In addition, expression of WT eGFP and two randomly picked reporter constructs coding for 

NCT (GFP score of 3.04±0.40, 5 fold higher expression than WT) and LQI (GFP score of 2.67±0.40, 3 fold 

higher expression than WT) in positions 3-5 maintained the difference in expression ratio regardless of 

the change in the 2nd amino acid (Fig 3C) or when a different E. coli strain was used for expression 

(Supplementary Fig 11). Finally, changing the starting codon (AUG) to near-cognate start codons (GUG, 

UUG) in three different eGFP variants resulted in overall reduction of eGFP expression as observed 

previously 39, but the relative expression difference between the three sequences was unaffected by the 

start codon (Supplementary Fig 12). As such, we deduced that expression differences of analyzed eGFP 

variants were not driven by overall protein or mRNA stability (in vitro or in vivo) or character of the 2nd 

amino acid (N-end rule)40. The difference in the ratio of expression for tested eGFP reporters was 

maintained despite usage of different E. coli strains (K - DH5α, W3110, XAC or B – BL21(DE3)) or reduced 

efficiency of start codon recognition during initiation on near-cognate start sites. These results suggest 

that observed differences in expression of reporter variants are driven by composition and position of 

nucleotides and amino acid sequence between 7-15 nucleotide and 3-5 amino acid, respectively. 

To test whether our results depend on the position of an amino acid or nucleotide motif with 

respect to the start codon, and are therefore independent of the rest of the reporter sequence, we 

created several new reporters. First, we picked three eGFP variants with somewhat different expression 
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levels (KFS for high, GFP Score of 4.90±0.02; IGK for medium, GFP Score of 3.01±0.44; and TVG for low 

expression, GFP score 1.93±0.21) and inserted 6xhistidine tag between the variable sequence and eGFP 

sequence (creating constructs MV-XYZ-6xHis-eGFP, where XYZ = KFS, IGK or TVG). These constructs 

reproduced the expression profile specified by the GFP score in both in vitro and in vivo experiments (Fig 

3D and Supplementary Fig 13). However, insertion of a 6xHistitidine tag between the second codon and 

the variable sequence (MV-6xHis-XYZ-eGFP), equalized expression of all constructs both in vivo and in 

vitro (Fig 3D and Supplementary Fig 13) arguing that the position of amino acid and nucleotide motifs 

drives protein synthesis efficiency.  

To demonstrate that the MV-KFS-6xHis-eGFP protein had the same properties as the WT eGFP 

protein, we purified both proteins and analyzed their spectral properties (Supplementary Fig 14). 

Addition of three amino acids (KFS) and a 6xHis-tag increased overall protein production but did not 

change either quantum yield (QSKG=0.72 for WT eGFP, and QKFS=0.71 for MV-KFS-6xHis-eGFP) or 

absorbance spectra of eGFP variants41. Introduction of the same motifs in the mEOS2 coding sequence 

reproduced the same expression profile as previously determined expression scores for KFS, IGK and 

TVG motifs (Fig 3E). The nucleotide and amino acid sequence of photoconvertible fluorescent protein 

mEOS2 does not resemble that of eGFP, specifically in the first 5 codons (MSAIK vs MVSKG, scores of 

2.79±0.41 and 2.57±0.21, for mEOS2 and eGFP respectively). Insertion of the high expressing KFS and 

KIH motifs in position 3-5 of the N-terminally 6xHis tagged human Gα i protein (hGα i) resulted in 

significantly increased expression of recombinant protein (Fig 3F). The two proteins, mEOS2 and hGα i, 

were expressed from pBAD (Invitrogen) and pET16b vectors (Novagen) which contain different 

promoters (ARA vs T7 promoter, respectively), 5’ untranslated sequences (UTRs) and even different 

number of nucleotides between ribosome binding sites (RBS) and start codons (12 vs 7, respectively). 

These data argue for the significant effect of nucleotide sequence at position +7 to +15 and amino acid 

sequence at position 3-5 on efficiency of protein synthesis regardless of either upstream or downstream 

sequences. Finally, we wondered if the GFP scores could predict the expression level of recombinant 

human protein with 4 alternative start sites in human RGS2 protein (hRGS2)42. In vitro expression of each 

hRGS2 variant with a C-terminal his-tag and a single starting Met-codon (M1, M5, M16 and M33) 

followed the previously established distribution of GFP scores (Supplementary Fig 15). M1 variant was 

expressed the least (GFP score 2.93), followed by medium level expression of M5 (3.52) and M16 (3.45) 

variants, and highest expression of M33 variant (4.01). Together, these data demonstrate that tested 

motifs have a strict positional bias (nucleotides 7-15, amino acids 3-5) and are able to modulate protein 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/571059doi: bioRxiv preprint 

https://doi.org/10.1101/571059
http://creativecommons.org/licenses/by-nc-nd/4.0/


synthesis efficiency regardless of the differences in the vector (promoter, terminator), upstream non-

coding sequence (5’UTR and RBS) or downstream coding sequence (eGFP, mEOS2, hGαi or hRGS2).  

Our in vitro and in vivo assays as well as our experimental data with different proteins and vectors 

(Fig 3 and Supplementary Fig 9-15) indicate striking differences in translation efficiency that is driven by 

nucleotide sequence at the 7-15 positions and that of the amino acid at the 3-5 positions of the open-

reading frame. The position of the randomized sequence in our results (Fig 1-3, Supplementary Fig 2-15) 

as well as the previous studies 7,8,11,12,14,16,21,25 indicated that translation initiation or early elongation 

steps could be influencing efficacy of protein expression. To address this possibility, we assayed the 

efficiency of initiation complex formation and kinetics of peptidyl transfer using a well-defined in vitro E. 

coli translation system43. We did not observe any significant difference in the formation of translation 

initiation complex on 45 nucleotide long messages, resembling either WT eGFP (MVSKG, 13% initiation 

efficiency), one of the preferred AAVTAT motifs (MVKYQ, 15% initiation efficiency) or permuted 

(MVYKQ, 18% initiation efficiency). However, the yield of protein synthesis from the three initiation 

complexes varied significantly Fig 4A). While the full length MVSKGK peptide could hardly be observed 

after 5 minutes of incubation with ternary complexes and EFG, the MVKYQK peptide was readily 

detected only after only 10 seconds of incubation. Permuted MVYKQK full length product was also 

detected albeit with a yield less than that seen with the MVKYQK sequence (Fig 4A). This is likely due to 

the differences in GFP scores between YQK (GFP Score=3.88±0.2) and KYQ (GFP Score=4.89±0.2) arguing 

for both nucleotide and amino-acid composition and positional bias (nucleotides 7-15, amino acids 3-5) 

in determining efficiency of protein synthesis. Surprisingly, translation of MVSKGK peptide (GFP 

Score=2.57±0.21) seemed to be aborted or stalled after the incorporation of the 4th or 5th amino acid 

(Fig 4A, MVSK and MVSKG products). Pelleting of initiation complex and experiment following kinetics of 

peptidyl transfer once again demonstrated previously observed differences in protein synthesis between 

constructs with different nucleotide and amino acid motifs in positions 7-15 and 3-5, respectively. 

However, the difference in the peptide synthesis was not due to the translation initiation efficiency but 

rather to different translation rates in early elongation steps. 

To investigate how the resulting changes in overall translation efficiency is related to rates and 

processivity of translating individual codons, we used single-molecule Förster resonance energy transfer 

(smFRET)-based assay to monitor translation of 8-14 codons within the mRNA open reading frame (Fig 

4B,C; Supplementary Figure 16) 44,45. Our assay monitors ribosomal conformational changes coupled to a 

repeated translation-elongation cycle, as well as binding of specific cognate tRNA to translating 
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ribosome using a zero-mode waveguide-based (ZMW) experimental platform 46, quantifying rate and 

processivity for each translated codons. Ribosomal conformational changes were monitored by site-

specifically labeling small and large ribosomal subunits with Cy3B fluorophore and BHQ-2 quencher, 

respectively. For translating each codon, a rate of tRNA-binding step during decoding and a rate of EF-G-

binding step during translocation were measured as respective non-rotated and rotated ribosomal 

conformation state lifetimes, defined by the FRET-efficiency changes between Cy3B and BHQ-2 due to 

coupled ribosome conformation changes. In addition to the ribosome conformation signal, the 

progression of translation was independently followed by the binding and departure of fluorescently 

labeled Phe-specific tRNA (Phe-(Cy5)-tRNAPhe) to present Phe codons within mRNA. We tested three 

different mRNA sequences in positions 3-5 based on their expression values: K3I4H5 (7AAG AUU CAU15) 

was used for high, I3G4K5 (7AUC GGU AAG15) for medium and T3V4G5 (7ACC GUG GGU15) for low 

expression in otherwise identical sequence (fMet1-Phe2-X3-Y4-Z5-Lys6-Phe7-STOP8, Fig 4C). Comparing 

translation of high (K3I4H5) and low (T3V4G5) expression mRNA construct, we have observed a 

substantial alteration in translation elongation processivity, defined as the percentage of ribosomes that 

translated the entire ORF (Fig 4D; Supplementary Figure 17). The majority of ribosomes translating 

K3I4H5 construct completed synthesis of the peptide (Fig 4E; six cycles of elongation with two Phe-(Cy5)-

tRNAPhe binding events to decode F2 and F7 codons) with 84% of ribosome translating the entire ORF (Fig 

4D). However, T3V4G5-translating ribosomes resulted in aborted protein synthesis (Fig 4E), with only 

27% ribosome reached the in-frame stop codon and with a majority of translating ribosomes arrested 

after the incorporation of 3rd (T) and 4th (V) amino acid (Fig 4D). The experiment with I3G4K5 construct 

revealed intermediate ribosome processivity (54% of ribosomes translating the entire ORF, Fig 4D; 

Supplementary Figure 17) with bulk of translation aborted at amino acids 3 (I) and 4 (G) similar to 

T3V4G5 construct. For ribosomes that passed the “processivity barrier” at amino acids 3 and 4, both non-

rotated and rotated state lifetimes for codon 3-7 were comparable across different mRNA constructs 

(Supplementary Figure 17), indicating possible existence of irreversible branch-points to abortive 

translation during the first 5 codons. The low processivity of translation observed for T3V4G5 construct 

was readily replicated in additional experiments performed at a different experimental temperature as 

well as at a different translational factor concentration (Supplementary Figure 18). Taken together, 

these data demonstrate that the abortive translation elongation via potential ribosome arrest and drop-

off events at codon 3-5 is responsible for the translation efficiency differences observed in our study.  

To understand a relative contribution of a peptide sequence at codon 3-5 compared to their 

respective nucleotide sequence in determining the overall translation efficiency, we employed 
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specifically mischarged tRNAs to change the nascent peptide sequence without altering the mRNA 

sequence. Among different tripeptide sequences on codon 3-5, K3Y4Y5 and V3A4A5 were chosen due to 

its respective high and medium GFP score, as well as the availability of mischarged-tRNA reagents. When 

tested on the previously described single-molecule assay, translation of K3Y4Y5 was highly processive 

(81% of ribosomes translated the entire ORF, Fig 4F), whereas translation of V3A4A5 exhibited an 

intermediate ribosome processivity (56%, Fig 4F). tRNALys and tRNATyr were purified and respectively 

mischarged with Valine and Alanine amino-acids using flexizyme reaction 47, and used to translate 

K3Y4Y5 mRNA construct. Surprisingly, only changing nascent-peptide sequence to V3A4A5 altered the 

processivity of translating K3Y4Y5 codons to 59% (Fig 4F), similar to that of translating V3A4A5 codons. 

Our result shows that the codon 3-5 amino-acid identities contribute to the overall translation efficiency 

in conjunction with the mRNA sequences on position 7-15. 

To gain a further insight of a structural state of ribosomes that aborted protein synthesis at codon 5, 

we tested whether incoming aa-tRNA can access and stably bound to the A site. As in previous 

experiments, we have used Cy3B signal to monitor conformation of translating ribosome and binding of 

Cy5-labeled Lys-tRNA (Lys-(Cy5)-tRNALys) while translating I3G4K5 nascent-peptide sequence 

(Supplementary Figure 19). Analysis of 441 smFRET traces indicated three classes of translation events 

(Fig 4E): Complete translation of ORF (54%), aborted translation after 4th amino acid (G4) without Lys-

(Cy5)-tRNALys sampling (defined as tRNA binding longer than >100 millisecond 48 the A-site Lys codon 

(45%), and one that exhibited Lys-(Cy5)-tRNALys sampling in aborted translation (1%). Considering that a 

majority of arrested ribosomes exhibited a non-rotated-like conformational state without (>100ms 

lifetime) A-site tRNA sampling necessary for a processive elongation, we hypothesize that the ribosome 

is in a non-canonical structural state that cannot make a stable interaction among rRNA monitoring 

bases and codon-anticodon duplex necessary for further elongation 48. Such state may be a result of 

different pathing of an mRNA as well as a nascent-peptide molecule within the ribosome, possibly 

similar to the previously observed interaction among the ErmCL nascent-peptide, the ribosome exit 

tunnel and the antibiotic erythromycin 49. 

In summary, we show that the efficiency of protein synthesis in addition to overall mRNA structure 

and codon content is strongly dependent on the nucleotide sequence positions 7-15 and the resulting 

protein amino acid positions 3-5. The expression levels of 213,708 eGFP variants with randomized 

nucleotide and amino acid motifs in those positions resulted in four order of magnitude difference in 

fluorescence and protein levels. The effect of assayed motifs was dependent on both nucleotide and 
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amino acid sequence, which suggests that a combination of tRNA, mRNA, ribosome and nascent 

polypeptide chain interactions define the efficiency of protein synthesis at the very N-terminus. We 

found that the presence of the 9 nucleotide or 3 amino acid motifs, in the correct coding position, 

granted better efficiency of protein synthesis for the several recombinant proteins. This was achieved 

regardless of their mRNA and protein sequence, the expression vector used, or in vitro and in vivo 

expression conditions. The different expression levels measured from the assayed sequences was not 

associated with efficiency of translation initiation, but instead depended on early elongation steps 

during translation of the 3rd or 4th codon. As such, the probability of the E.coli ribosome to synthesize N-

terminal penta-peptide without ribosome arrest and abruption of translation governs the efficiency of 

protein synthesis. The conservation of the ribosome peptidyl-transfer center50, the temporal and spatial 

position of translation arrest and abruption, specifically during early elongation phase and enclosing first 

five amino acids of the nascent polypeptide chain, suggests that similar mechanism operates in other 

organisms as well. The motifs that we identify will assist in creating tools for higher expression of 

recombinant and industrial proteins as well as for further studies on how ribosomal early elongation 

dynamics influence protein synthesis. 
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Methods 

Construction of Library  
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To create the EGFP library, the optimized EGFP sequence was amplified using primers EGFP-lib For and 

EGFP-Rev using Phusion – HF (NEB). The PCR product was purified using Nucleospin Gel and PCR cleanup 

kit (Macherey Nagel) prior to digestion with (NcoI – For) and (XhoI-Rev). The digested PCR product was 

ligated into digested pBAD low copy vector. The ligation product was purified using Nucleospin Gel and 

PCR cleanup kit (Macharey Nagel) and desalted using Illustra Microspin G-25 Columns (Thermo Fisher). 

The purified and desalted ligation product was then electroporated into high efficiency 5-alpha E.coli 

cells (NEB). The cells were grown overnight on LB-Carbenicillin plates and then, ~2x106 colonies were 

scraped from the plates and collected in LB-media. An equal volume of 50% glycerol was added to the 

liquid culture and the cells were frozen at -80°C.  

Cell Sorting  

For each FACS experiment, one vial (5 ml) of cryopreserved cells was thawed and grown in LB media 

with carbenicillin for 90 min. The cells were centrifuged (3000g for 5 minutes), media was removed and 

cells were then induced with addition of fresh media supplemented with 0.2%% L-arabinose for 3 hours. 

After induction, the culture was pelleted by centrifugation at 3300 g for 10 minutes and washed with 

PBS, followed by a second centrifugation and a final resuspension in PBS. The cells were sorted by level 

of GFP expression into five bins using Aria III flow cytometer (BD Biosciences) with median GFP 

fluorescence of 20, 120, 600, 3600 and 12,000. LB was added to the sorted cells and they were grown at 

37°C for 2 hours prior to plasmid isolation using PureLink HiPure Miniprep Kit (Thermo Fisher). 

Illumina Library Preparation 

PCR was performed with primers Lib_Amp_F and Lib_Amp_R and an equal mass of the plasmid isolated 

from each sorted bin using Phusion-HF MM (98°C for 1 min, 22 cycles: 98°C for 10 s, 55°C for 30 s, 72°C 

for 30 s, and 72°C for 5 min) in separate reactions. The amplicon was purified using Nucleospin Gel and 

PCR cleanup kit (Macherey Nagel) and then digested with NcoI and XhoI. The digested product was 

purified as done previously and ligated into Illumina adapters. It was then amplified using Il_Enrich_F 

and Il_Enrich_R using Phusion HF MM (98°C for 1 min, 21 cycles: 98°C for 10 s, 66°C for 30 s, 72°C for 30 

s, and 72°C for 5 min). The product was subsequently resolved by agarose gel electrophoresis and the 

appropriate sized band was excised and purified. The Illumina library was multiplexed and run on four 

lanes of the Illumina NextSeq System.  

Sequencing analysis 
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Counts for each triplet codon sequence within each FACS sorted bin and the input plasmid pool were 

determined from our sequencing data sets. Sequences with less than 10 total counts across all bins were 

removed. We determined the 'GFP Score' by obtaining a weighted average of counts across all of the 

bins for a given sequence. In short, the ratio of the counts within each bin and the total across all five 

bins for a given sequence was multiplied by the bin number which corresponds to increased GFP 

expression. The average of these weighted values for each sequence was then determined to give 'GFP 

Score' : 

GFP score = (Reads_bin_1/total_reads*1) + (Reads_bin_2/total_reads*2) + (Reads_bin_3/total_reads*3) 

+ (Reads_bin_4/total_reads*4) + (Reads_bin_5/total_reads*5) 

As such, 1 represents minimal and 5 maximal eGFP score; wild type eGFP sequence has a score of 

2.57±0.2. We compared 'GFP Score' to various mRNA (GC or AT content) and peptide sequence 

attributes (charge and hydrophobicity) in R using custom scripts or previously described packages 

(peptides) respectively.   

For comparison of tAI with 'GFP Score' we determined the tAI of all possible triplet codon sequences 

using CodonR (https://github.com/dbgoodman/ecre_cds_analysis/tree/master/codonR). To identify 

mRNA sequence motifs we used the R package motifRG. Sequences with a 'GFP Score' above 4 were 

considered 'high' and sequences with a 'GFP Score' below 3 were considered 'low'. The same 

stratification was used for identifying peptides associated with mRNA sequences with high 'GFP Score' 

using the R package peplib. All scripts used for analysis and model fitting are available at the Github 

repository under MIT license (https://github.com/cottrellka/EGFP_library_seq). 

In vivo constructs expressions 

Modified and wild type mEOS, eGFP and human G protein subunit alpha i1 (Giα; NM_002069) construct 

DNA were created by PCR using forward primers that code for the certain sequence extracted from our 

EGFP library expression found in the FACS experiment  (KFS, KYY, KIH - high expression, IGK – moderate 

expression, TVG – low expression). Regulator of G protein signaling 2 (RGS2; NM_002923) constructs 

were amplified by PCR reaction from previously described constructs 51. PCR products were cloned in the 

pBAD or pET16b vector, transformed into Top 10 E.coli cells and sequenced for the correct clones. 

Correct plasmids were transformed to E. coli cells for in vivo expression (TOP10, BL21 DE3, DH5α, 

W3110, XAC E. coli cells were used for expression experiments). Three colonies were picked off the 

plates and grown overnight. Their optical density was measured and equalized to 0.1 OD at 600nm, once 

they reached OD600 of 0.5 colonies were induced with addition of L-arabinose to final 0.2% in LB-media. 
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Expression of fluorescent proteins was followed by fluorescence normalized to number of cells. After 3 

hour of induction. Same number of cells (based on OD600 was centrifuged and re-suspended in 2xSDS 

buffer. Samples were heated at 95°C for 5 minutes, after which they were frozen at -20° C for further 

use. Same volume of samples were loaded on 4-16% gradient SDS-PAGE gels and analyzed by western 

blot analysis using EGFP (JL-8; Clontech) ,penta-HIS (QIAGEN) or α-RF1 E.coli (Zaher Lab) antibodies. 

Anti-mouse or anti-rabbit HRP conjugated antibodies were used as the secondary antibodies.  

In vitro constructs expressions 

PCR products from pBAD or pet16 cloned constructs were used as templates for NEB PURE or PUREFREX 

2.0 in vitro translation reactions. In short, DNA constructs were amplified using Phusion – HF (NEB) kit 

using T7 forward primer and gene specific reverse primer. The PCR product were analyzed on agarose 

gels and purified using the Zymo Clean DNA gel extraction kit. Equal amounts of DNA (50-150ng) were 

used in in vitro reactions. If noted PCR products were used to synthesize RNA using T7 polymerase kit 

(NEB), purified using NEB RNA purification kit and equal amount of purified RNA was used for in vitro 

reaction (1 -3ug).  In vitro protein synthesis was conducted for 2.5 hours at 37°C if not noted differently. 

In case of fluorescent proteins translation was followed in parallel by fluorescence reading using for 2.5 

hours in 1 minute intervals. Same amount of samples were loaded on SDS PAGE gels and western blot 

analyses were performed as described for in vivo expression experiments.  

Spectroscopy experiments 

A Thermo Scientific™ Pierce™ BCA™ Protein Assay (code 10678484) has been used to have an estimate 

of the total protein concentration compared to a protein standard. All spectroscopic experiments have 

been carried out with an UV-VIS Fluorescence Spectrophotometer ISS K2. Absorbance spectrum was 

measured between 350 and 550 nm. Relative quantum yield is generally obtained by comparing the 

intensity of an unknown sample to that of a standard. The quantum yield of the unknown sample can be 

calculated using (ref): Q=Q_R  I/I_R   〖OD〗_R/OD  n^2/(n_R^2 ), where Q is the quantum yield, I is the 

integrated intensity, n is the refractive index, and OD is the optical density. “R” refers to the reference 

fluorophore of known quantum yield (in this case fluorescein). Since the end-point method is not 

accurate for the calculation of the quantum yield, we prepared solutions within the range of 0–0.01 

ODs, by subsequent dilutions of the different proteins to calculate the quantum yield using the gradients 

determined for the sample and the reference. In this case, quantum yield is given by:  Q=Q_R (Grad/〖

Grad〗_R )(n^2/(n_R^2 )) where Grad is the gradient obtained from the plot of the integrated 
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fluorescence intensity vs. optical density (see Supplementary Fig. 14). Absorbance and concentration of 

the eGFP variants was calculated for molecular weight of approximately 27kDa.  

Formation of Ribosomal Initiation Complexes  

To generate initiation complexes (IC), the following components were incubated at 37°C for 30 min: 70S 

ribosomes (2µM), IF1, IF2, IF3, f-[35S]-Met-tRNAfmet (3µM each), mRNA (6µM) in polymix buffer 

containing GTP (2mM). The complexes were then purified away from free tRNAs and initiation factors 

over a 500µL sucrose cushion composed of 1.1M sucrose, 20mM Tris-HCl pH 7.5, 500mM NH4Cl, 0.5mM 

EDTA, and 10mM MgCl2. The mixture was spun at 287,000 xg at 4°C for 2 hrs, and the resulting pellet 

was resuspended in 1x polymix buffer and stored at -80°C. To determine the concentration of IC, the 

fractional radioactivity that pelleted was recorded.  

Kinetics of Peptidyl Transfer 

Ternary complexes were formed as described previously 52. Briefly, EF-Tu (10µM final) was incubated 

with GTP (10mM final) and a mix of aminoacyl-tRNAs (including valine, serine, lysine, alanine, glutamine, 

arginine, glutamic acid, methionine, and tyrosine) in polymix buffer for 15 mins at 37°C. The ternary 

complex mixture was then combined with an equivalent volume of IC at 37°C. The reaction was stopped 

at different time points using KOH to a final concentration of 500mM. Peptide products were separated 

from free fMet using cellulose TLC plates that were electrophoresed in pyridine-acetate at pH 2.8 43.  

The TLC plates were exposed to a phosphor-screen overnight, and the screens were imaged using a 

Personal Molecular Imager (PMI) system.  

ZMW-based single-molecule fluorescence assay to monitor translation  

Overall experimental setup (using Pacific Bioscience RSII) and biological reagents have been prepared as 

described previously 44-46. Briefly, each small and large subunit were mutated to include a weakly 

forming RNA hairpin at helix 44 and helix 101, which was used to attach Cy3B/BHQ-2 labeled DNA 

oligonucleotides via RNA/DNA hybridization (labeled DNA oligonucleotides purchased from TriLink 

Technologies). Individual tRNA species used were purchased from Chemical Block Ltd. tRNALys or purified 

from bulk E. coli tRNA 53. tRNAPhe was labeled at acp3U47 position with Cy5 using NHS chemistry as 

previously described 54, with Cy5-NHS-ester purchased from GE Healthcare. Synthesis and purification of 

activated Ala-and Val-DBE (3,5-dinitrobenzyl esters) derivatives was done using detailed protocol 55. 

Aminoacylation of Lys- and Tyr-tRNA (Sigma Aldrich) with synthesize Val-and Ala-DBE derivatives was 
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done using dFx ribozyme (IDT RNA oligoes) as described by Zhang and Ferre-D’Amare, 201456. 5’-

Biotinylated mRNAs used for single-molecule translation assay are purchased from Horizon Dharmacon. 

Translational factors, ribosomal S1 protein, and aminoacylated tRNAs were prepared as previously 

reported. All single-molecule experiments were conducted in a Tris-based polymix buffer consisting of 

50 mM Tris-acetate (pH 7.5), 100 mM potassium chloride, 5 mM ammonium acetate, 0.5 mM calcium 

acetate, 5 mM magnesium acetate, 0.5 mM EDTA, 5 mM putrescine-HCl, and 1 mM spermidine, with 

additional 4 mM GTP.  

Immediately before each single-molecule experiment, small and large ribosomal subunits were mixed 

with respective fluorescently labeled DNA oligonucleotide at 1:1.2 stoichiometric ratio in the previously 

described polymix buffer. Small ribosomal subunits were subsequently mixed with S1 ribosomal protein 

at 1:1 stoichiometric ratio, and subsequently mixed with biotinylated-mRNA, initiation factor 2, amino-

acylated formyl-methionine tRNA at 1:2:13:4 in the presence of 4 mM GTP to form 30S Pre-Initiation 

Complex (30S PIC). 30S PIC was diluted to 10 nM in the polymix buffer supplemented with 4 mM GTP 

and the imaging mix (2.5 mM of PCA (protocatechuic acid), 2.5 mM of TSY, and 2X PCD 

(protocatechuate-3,4-dioxygenase), purchased from Pacific Bioscience; PCD added last), and incubated 

in the zero-mode waveguide chip treated with Neutravidin at room temperature. After immobilizing the 

pre-initiation complex, the chip was washed three-times using the same buffer without the complex to 

remove unbound complexes, and loaded onto the RSII instrument. At the same time, the delivery 

solution, a polymix buffer supplemented with 4 mM GTP, the imaging mix, varying concentration of 

tRNA ternary complexes (labeled or unlabeled), varying concentration of EF-G, and 200 nM of the BHQ-2 

labeled large ribosomal subunit was prepared, and loaded onto the instrument. In general, final 

concentration of purified 50 nM of Phe-(Cy5)-tRNAPhe (50 nM of Flexizyme-charged tRNA for applicable 

experiments), 0.7 µM of total delta-Phe aa-tRNA (total tRNA charged with all amino-acids except Phe; 

tRNA from Roche) and 100 nM of EF-G were used. Higher concentration of factors or different set of 

tRNAs were used as indicated in each experiments.  

At the start of the experiment, the instrument delivered the delivery solution to the chip, and recorded 

8-minute movie with frame rate 10 frame per second, illuminated by 60 mW per mm2 of 532-nm laser 

and 10 mW per mm2 of 642-nm laser. Experiments were performed with the chip temperature clamped 

to specified temperature, usually ranging from 20 to 30 °C. Resulting movies were analyzed using in-

house-written MATLAB (MathWorks) scripts, as previously described. Briefly, traces from each zero-

mode waveguide wells were manually filtered based on the presence of both fluorophores at different 
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time points (signal from immobile fluorophores on the ribosome was expected to be present at the 

beginning of the movie, while signal from fluorophores attached to tRNA was expected not to be) and a 

single photobleaching step for each fluorophores. Filtered traces were manually assigned to rotated 

state and non-rotated state after the subunit joining event, cross-correlated with the labeled tRNA 

binding signals. From assigned traces, both rotated and non-rotated state lifetimes were calculated by 

fitting a single-exponential distribution to the measured state lifetimes using maximum-likelihood 

estimation in MATLAB. 
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Figure legends: 

Figure 1. A. Scheme of the reporter system to test influence of the first 5 amino acids and mRNA 

sequence of the first ribosome footprint. Sequences of 9 random nucleotides were introduced into eGFP 

reporter coding for all amino acid and stop codon possibilities in the positions from 7-15 nucleotide 

coding for amino acids 3, 4 and 5 in protein. Library was introduced in a single (low) copy pBAD plasmid 

with arabinose inducible promoter. B. Image of arabinose induced E. coli colonies separated using 

fluorescence-activated cell sorting (FACS) into 5 bins. Each bin represents approximately 24% of the 

whole cell population depending on EGFP expression with exception of bin 5. Bin 5 represents 2.5% of 

the E.coli cells with highest EGFP expression based on relative fluorescence values (RFUs). C.  Table of 

relative average fluorescence values for colonies in five separated bins. Wild type eGFP expression is 

approximately 250 RFUs. D. Distribution of the plasmid reads based on the GFP score. GFP score 

represents distribution value for each independent sequence in 5 bins. E. No correlation is observed 

between tRNA abundance (tAI –tRNA abundance index) and the expression of eGFP variants based on 

GFP scores. F. Influence of local mRNA structure on expression of eGFP 9nt library. GFP score 

distribution value is plotted in correlation with the number of A or U nucleotides in 9nt randomized 

sequence. Boxplot whiskers indicate the furthest datum that is 1.5*Q1 (upper) or 1.5*Q3 (lower). 

Figure 2. A. and B. enrichment analyses of sequenced constructs with average GFP Score of ≥4.0 results 

in two motifs with DNA sequence AADTAT and AAVATT, or amino acid sequence K|N-Y and K|N-I, 

respectively. Average GFP score of all sequences with two motifs (present) is compared to the rest of 
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library (absent). C. Scheme of analysis of the GFP scores for two motifs by movement one nucleotide at 

the time. Position 1 and position 4 code for K|N-Y and K|N-I amino acid motifs as codons 3 and 4 or 4 

and 5, respectively. D. and E., analysis of average GFP scores for two sequences motifs based on their 

position in 9nt randomized sequence indicates potential amino acid dependence. Average GFP score is 

compared to the rest of library (absent). F. Scheme of analysis of overall influence of amino acid 

sequence when motifs code for amino acids in positions 3 and 4 or 4 and 5, respectively. G. Analysis of 

overall influence of amino acid sequence of motif K|N-I|Y in positions 3, 4 and 5. Average GFP score for 

motifs is compared to the rest of library (absent). H. and I. Analysis of the influence of degenerate 

codons for Tyr or Asn and Lys on the GFP score of AADTAT motif, respectively. All analyzed sequences 

with stop codons were filtered out to represent average coding library (absent). Comparison is shown vs 

all the coding constructs in the library. Boxplot whiskers indicate the furthest datum that is 1.5*Q1 

(upper) or 1.5*Q3 (lower). 

Figure 3. A. Western blot analysis of NEB Pure Express in vitro expression of eGFP constructs with motif 

AAD TAT in different positions coding for amino acids 3, 4 and 5. M1p1 indicates motif1 in position 1, 

M1p2 indicates motif1 in position 2, M1p3 indicates motif1 in position 3 and M1p4 indicates motif1 in 

position 4, where insertion positions are defined as in Figure 2C. Wild type eGFP (WT) control is 

indicated. 5% of in vitro translation reaction is analyzed. B. Relative eGFP fluorescence from in vitro and 

in vivo expression of eGFP constructs with AADTAT motif in different position compared to the wild type 

eGFP construct. NEB Pure Express expression system and pBAD single copy vector in BL21 cells were 

used for in vitro and in vivo expression, respectively. C. Western blot analysis indicates that N-terminal 

rule does not influence expression of eGFP variants from pBAD single copy vector in E. coli Top10 cells. 

Two high expression variants H1 (NCT) and H2 (LQI) and WT eGFP constructs are indicated. Letter in 

superscript indicates amino acid in the second position (A-alanine, V-valine, E-glutamic acid). D. 

Positional bias in controlling expression of eGFP constructs with different amino acids in position 3, 4 

and 5. Western blot analysis of NEB Pure Express in vitro expression of eGFP constructs with sequence 

XYZ (KFS, IGK and TVG, respectively) as amino acids 3(X), 4(Y) and 5(Z) followed by 6xHis tag (MV-XYZ-

6xHis) or as amino acids 9(X), 10(Y) and 11(Z) preceded by 6xHis tag (MV-6xHis-XYZ). eGFP antibody (J8, 

Promega) is used to visualize expression of eGFP. 5% of in vitro translation reaction is analyzed. E. and F. 

simple insertion of different amino acids in recombinant mEOS2 or human Gαi protein constructs can 

modulate their expression in E.coli BL21 cells, respectively. Wild type (WT) and control samples as well 

as amino acids in position 3, 4 and 5 for variants of mEOS2 and Gαi proteins are indicated. mEOS2 and 

Gαi constructs were cloned in pet16b and pBAD vector as C-terminally His-tagged proteins. Proteins 
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were visualized based on their C-terminal 6-Hist tag using Penta-His (Qiagen) antibody. GFP antibody (J8, 

Promega) is used to visualize expression of eGFP and Biorad Precision Plus marker is indicated in all 

images. Same amount of the E.coli cells (OD600) was used for Western Blot analysis of in vivo expression 

of different reporter constructs. 

Figure 4. A. Thin layer chromatography (TLC) analysis of in vitro peptide synthesis using S35-labeled 

methionine (red). Sequences and GFP scores of penta-peptides from wild type eGFP (MVSKG) and two 

high expressing clones MVKYH and MVYKH are indicated. Protein synthesis was initiated at time 0 and 

resolved over time (300 seconds). Points at 1, 5, 10, 20, 30, 45, 60, 90, 120, 180, 240, 300 seconds are 

shown. Migration of tetra- and penta-peptide is indicated. Arrows indicate final hexa-peptide products 

of the reaction. B. Schematics of zero-mode waveguide (ZMW)-based single-molecule FRET assay to 

monitor translation. Elongation factors including fluorescently-labeled tRNA (Phe-Cy5-tRNAPhe) and 

quencher-labeled large ribosomal subunit (BHQ-50S) are delivered to pre-initiation complex (PIC) with 

labeled small ribosomal subunit (Cy3B-30S) and mRNA tethered to the ZMWs. C. Expected fluorescence 

signal observed from a translating complex utilizing FRET between Cy3B and BHQ-2 on ribosomal 

subunits, as well as direct excitation of Cy5 on tRNAPhe. D. Measured percentage of processively 

translating population for different codon 3-5 mRNA constructs (n = 179 molecules for all; error bars 

represent s.e. based on the binomial distribution). E. Representative traces for “processive” translation 

of K3I4H5 (Left) and “abortive” translation of T3V4G5 (Right). F. Measured percentage of processively 

translating population for K3Y4Y5 and V3A4A5 mRNA codons with a correct peptide, and for translating 

K3Y4Y5 mRNA codons with V3A4A5 peptide sequences using Flexizyme-mischarged tRNAs (n = 161, 147 

and 156 molecules from left to right; error bars represent s.e. based on the binomial distribution). 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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