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25 Abstract

26 The microbial communities that inhabit the distal gut of humans and other mammals exhibit large 

27 inter-individual variation. While host genetics is a known factor that influences gut microbiota 

28 composition, the mechanisms underlying this variation remain largely unknown. Bile acids (BAs) 

29 are hormones that are produced by the host and chemically modified by gut bacteria. BAs serve as 

30 environmental cues and nutrients to microbes, but they can also have antibacterial effects. We 

31 hypothesized that host genetic variation in BA metabolism and homeostasis influence gut 

32 microbiota composition. To address this, we used the Diversity Outbred (DO) stock, a population 

33 of genetically distinct mice derived from eight founder strains. We characterized the fecal 

34 microbiota composition and plasma and cecal BA profiles from 400 DO mice maintained on a 

35 high-fat high-sucrose diet for ~22 weeks. Using quantitative trait locus (QTL) analysis, we 

36 identified several genomic regions associated with variations in both bacterial and BA profiles. 

37 Notably, we found overlapping QTL for Turicibacter sp. and plasma cholic acid, which mapped 

38 to a locus containing the gene for the ileal bile acid transporter, Slc10a2. Mediation analysis and 

39 subsequent follow-up validation experiments suggest that differences in Slc10a2 gene expression 

40 associated with the different strains influences levels of both traits and revealed novel interactions 

41 between Turicibacter and BAs. This work illustrates how systems genetics can be utilized to 

42 generate testable hypotheses and provide insight into host-microbe interactions. 

43

44 Author summary

45 Inter-individual variation in the composition of the intestinal microbiota can in part be attributed 

46 to host genetics. However, the specific genes and genetic variants underlying differences in the 

47 microbiota remain largely unknown. To address this, we profiled the fecal microbiota composition 
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48 of 400 genetically distinct mice, for which genotypic data is available.  We identified many loci of 

49 the mouse genome associated with changes in abundance of bacterial taxa.   One of these loci is 

50 also associated with changes in the abundance of plasma bile acidsmetabolites generated by the 

51 host that influence both microbiota composition and host physiology. Follow up validation 

52 experiments provide mechanistic insights linking host genetic differences, with changes in ileum 

53 gene expression, bile acid-bacteria interactions and bile acid homeostasis.   Together, this work 

54 demonstrates how genetic approaches can be used to generate testable hypothesis to yield novel 

55 insight into how host genetics shape gut microbiota composition.

56

57 Introduction

58 The intestinal microbiota has profound effects on host physiology and health (1–3). The 

59 composition of the gut microbiota is governed by a combination of environmental factors, 

60 including diet, drugs, maternal seeding, cohabitation, and host genetics (4–7). Together, these 

61 factors cause substantial inter-individual variation in microbiota composition and modulate disease 

62 risk (8,9). Alterations in the composition of the microbiota are associated with a spectrum of 

63 cognitive, inflammatory and metabolic disorders (10–12) and a number of bacterial taxa have been 

64 causally linked with modulation of disease (13–15). A major challenge in the field is deciphering 

65 how host genetics and environmental factors interact to shape the composition of the gut 

66 microbiota. This knowledge is key for designing strategies aimed at modifying gut microbiota 

67 composition to improve health outcomes. 

68 Several mouse and human studies have examined the role of host genetics in shaping the 

69 composition of the gut microbiota (16). Mouse studies comparing gut bacterial communities from 

70 inbred mouse strains (17,18) and strains harboring mutations in immune-related genes (19–22) 
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71 support this notion. Additionally, quantitative trait locus (QTL) analyses in mice have identified 

72 genetic regions associated with the abundance of several bacterial taxa and community structure 

73 (23–26). Twin studies and genome-wide association studies (GWAS) in humans have identified 

74 heritable bacterial taxa and SNPs associated with specific gut microbes. While comparing these 

75 studies is often difficult due to differences in environmental variables among populations, some 

76 associations are consistently detected among geographically discrete populations, such as the 

77 association between Bifidobacterium abundance and the lactase (LCT) gene locus (27–29), 

78 indicating the abundance of specific taxa is influenced by host genetic variation. 

79 Gut microbes and the host communicate through the production and modification of metabolites, 

80 many of which impact host physiology (30–34). Bile Acids (BAs) are host-derived and microbial-

81 modified metabolites that regulate both the gut microbiome and host metabolism (35–37). BAs are 

82 synthesized in the liver from cholesterol, stored in the gallbladder and are secreted in the proximal 

83 small intestine where they facilitate absorption of fat-soluble vitamins and lipids. Once in the 

84 intestine, BAs can be metabolized by gut bacteria through different reactions, including 

85 deconjugation, dehydroxylation, epimerization, and dehydrogenation, to produce secondary BAs 

86 with differential effects on the host (33,35). In addition to their direct effects on the host, BAs 

87 shape the gut microbiota composition through antimicrobial activities (38,39). The detergent 

88 properties of BAs cause plasma membrane damage. The bactericidal activity of a BA molecule 

89 corresponds to its hydrophobicity (40). Additionally, the microbiota modulates primary BA 

90 synthesis through regulation of the nuclear factor FXR (41).  Thus, we hypothesized that host 

91 genetic variation associated with changes in BA homeostasis mediates alterations in gut microbiota 

92 composition.
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93 To investigate how genetic variation affects gut microbiota and BA profiles, we used the 

94 Diversity Outbred (DO) mouse population, which is a heterogenous population derived from eight 

95 founder strains: C57BL6/J (B6), A/J (A/J), 1291/SvImJ (129), NOD/ShiLtJ (NOD), NZO/HiLtJ 

96 (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB) (42,43). These eight strains 

97 capture a large breadth of the genetic diversity found in inbred mouse strains. Additionally, the 

98 founder strains harbor distinct gut microbial communities and exhibit disparate metabolic 

99 responses to diet-induced metabolic disease (18,44,45). The DO population is maintained by an 

100 outbreeding strategy aimed at maximizing the heterozygosity of the outbred stock. The genetic 

101 diversity and large number of generations of outbreeding make it an ideal resource for high-

102 resolution genetic mapping of microbial and metabolic traits (43).  

103 We characterized the intestinal microbiota composition and plasma and cecal BA profiles in ~400 

104 genetically distinct DO mice fed a high-fat/high-sucrose diet for ~22 weeks and performed 

105 quantitative trait loci (QTL) analysis to identify host genetic loci associated with these traits. 

106 Specifically, we focused our analysis on potentially pleiotropic loci, which we defined as a single 

107 genetic locus that associates with both bacterial and BA traits. Our analysis revealed several 

108 instances of bacterial and metabolite traits attributed to the same DO founder haplotypes mapping 

109 to the same position of the mouse genome, including a locus associated with plasma BA levels and 

110 the disease-modulating organism Akkermansia muciniphila. Additionally, we identified the ileal 

111 BA transporter Slc10a2 as a candidate gene that regulates both the abundance of Turicibacter sp. 

112 and plasma levels of cholic acid. 

113

114
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115 Results and discussion

116 Phenotypic variation among Diversity Outbred (DO) mice fed high-fat and high-sucrose diet

117 We investigated the impact of genetic variation on gut microbiota composition and bile 

118 acid (BA) profiles using a cohort of ~400 DO mice maintained on a high-fat high-sucrose diet 

119 (45% kcal from fat and 34% from sucrose) for ~22 weeks (range 21-25 weeks), starting at weaning. 

120 Additionally, we incorporated in our analyses previously published clinical weight traits collected 

121 from the same mice (46) (Fig 1A). All animals were individually housed throughout the duration 

122 of the study to minimize microbial exchange. 

123 We performed LC-MS analyses of plasma and cecal contents to assess abundance of 27 

124 BAs. There was substantial variation in the plasma and cecal BA profiles across the 400 mice (Fig 

125 1C and 1D; S1 Table). Additionally, we examined gut microbiota composition using 16S rRNA 

126 gene amplicon sequencing of DNA extracted from fecal samples collected at the end of the 

127 experiment. Within the cohort, there were 907 unique Exact Sequence Variants (ESVs), (100% 

128 operational taxonomic units defined with dada2 (47)), which were agglomerated into 151 lower 

129 taxonomic rankings (genus, family, order, class, phyla) (S1 Table). The microbial traits 

130 represented each of the major phyla found in the intestine and the relative abundance of these phyla 

131 was highly variable among the DO mice (Fig 1B). For instance, the abundance of taxa classified 

132 to the Bacteroidetes phylum ranged from 1.17 – 89.28%. 

133 For subsequent analysis, we identified a core measurable microbiota (CMM), which we defined 

134 as taxon found in at least 20% of the mice (24). This was done to remove the effects of excessive 

135 variation in the data due to bacterial taxa that were low abundance and/or sparsely distributed. In 

136 total, the CMM was comprised of 86 ESVs and 42 agglomerated taxa (S2 Table). The CMM traits 
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137 represent a small fraction of the total microbes detected, but account for 94.5% of the rarefied 

138 sequence reads, and therefore constitute a significant portion of the identifiable microbiota.

139 Since mice were received in waves of 100, we examined whether animals in each wave 

140 were more similar to each other than mice in other waves. The fecal microbiota composition 

141 significantly clustered by wave (p < 0.001, PERMANOVA) and sex (p < 0.001, PERMANOVA) 

142 (S1 Fig). PCA analysis of plasma and cecal bile acids showed a significant effect of sex, but not 

143 wave, on both plasma (p < 0.0001, Kruskal Wallis) and cecal BA profiles (p < 0.05, Kruskal 

144 Wallis) (S2 Fig). 

145 There is substantial evidence implicating gut microbiota and BAs in metabolic disease 

146 development (36,37). To identify potential relationships among these traits, we performed 

147 correlation analysis which yielded many significant associations after FDR correction (FDR < 

148 0.05) (S3 Table, discussed in S1 Data). 

149

150 Abundance of gut bacterial taxa and bile acids are associated with host genetics

151 To identify associations between regions of the mouse genome and the clinical and 

152 molecular traits discussed above, we performed QTL analysis using the R/qtl2 package (48). We 

153 used sex, days on the diet, and experimental cohort (wave) as covariates. We identified 459 QTL 

154 for bacterial (306), bile acid (131), and body weight (22) traits (Fig 2, S4 Table) with a LOD score 

155 > 5.5.

156 Of the microbial QTL, we found 190 QTL for 76 distinct bacterial ESVs from four phyla 

157 that met a cut-off LOD > 5.5. ESVs with the strongest QTL (LOD > 8) are classified to the 

158 Clostridiales order and map on chr 12 at ~33 Mbp, the Lachnospiraceae family on chr 2 at 164 

159 Mbp, and the S24-7 family on chr 2 at ~115 Mbp. We also identified 116 QTL for microbial taxa 
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160 collapsed by taxonomic assignment (i.e., genus to phylum). The genera Lactococcus and 

161 Akkermansia were also associated with host genetic variation, which is consistent with previous 

162 studies (23,24,49,50). 

163 Similarly, BA QTL mapped to multiple loci spanning the mouse genome and most BA 

164 traits mapped to multiple positions. BA synthesis and metabolism are regulated by multiple host 

165 signaling pathways: there are >17 known host enzymes involved in the production of BAs (36), 

166 transporters, which play a critical role in maintaining the enterohepatic circulation and BA 

167 homeostasis, and receptors that respond to BA in a variety of host tissues (51–53). Therefore, it is 

168 not surprising that our results indicate that BA levels are polygenic and shaped by multiple host 

169 factors. 

170 We observed multiple instances of related BA species associating to the same genetic 

171 locus. These overlapping QTL may indicate the presence of a pleiotropic locus. Interestingly, 

172 several of these loci associate with levels of related BA species in different stages of microbial 

173 modification. For example, cecal taurocholic acid (TCA) and plasma CA QTL overlap on chr 7 at 

174 122 Mbp. Likewise, four BA QTL that are all derivatives of the secondary BA DCA, including 

175 plasma TDCA and cecal DCA, isodeoxycholic acid (IDCA), and HDCA overlap on chr 12 

176 between ~99 – 104 Mbp. For the cecal BA, the WSB founder haplotype was associated with higher 

177 levels of these three BA, while the NOD founder haplotype was associated with lower levels. The 

178 opposite pattern was observed for plasma TDCA, where the NOD and WSB haplotype were 

179 associated with higher and lower levels, respectively (S3A-S3D Fig).

180 We also identified overlapping QTLs on chr 11 at ~71 Mbp for cecal levels of the 

181 secondary BAs lithocholic acid (LCA) and isolithocholic acid (ILCA), the isomer of LCA 

182 produced by bacterial 3-hydroxylation (S3E Fig). Higher levels of these cecal BAs are associated 
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183 with the 129 founder haplotype and lower levels are associated with the A/J founder haplotype 

184 (S3F-S3G Fig). We identified the positional candidate gene Slc13a5 (S3H Fig), which is a sodium-

185 dependent transporter that mediates cellular uptake of citrate, an important precursor in the 

186 biosynthesis of fatty acids and cholesterol (54). Recent evidence indicates that Slc13a5 influences 

187 host metabolism and energy homeostasis (55–57). Slc13a5 is a transcriptional target of pregnane 

188 X receptor (PXR) (58), which also regulates the expression of genes involved in the biosynthesis, 

189 transport, and metabolism of BAs (59). 

190

191 Co-mapping analyses identifies novel interactions between bacterial taxa and bile acid 

192 homeostasis 

193 We searched for regions of the chromosome that were associated with both BA and 

194 bacterial abundance, as this may provide evidence of interactions between the traits (60). We 

195 identified 17 instances of overlapping microbial and BA QTL on 12 chromosomes. This QTL 

196 overlap indicates there might be QTL with pleiotropic effects on BAs and the microbiota, suggest 

197 that genetic variation influencing host BA profiles has an effect on compositional features of the 

198 gut microbiota, or genetic-driven variation in microbiota composition alters BAs.  Examples of 

199 notable instances of overlapping bacterial and BA QTL are discussed in the Supporting 

200 Information (S1 Data).

201 We focused our co-mapping analysis on chr 8 at ~ 5.5 Mbp, where Turicibacter sp. QTL 

202 and plasma cholic acid (CA) QTL overlap (Fig 3A and 3B). These traits were particularly 

203 interesting because both have been shown to be influenced by host genetics by previous studies. 

204 Turicibacter has been identified as highly heritable in both mouse and human genetic studies 

205 (24,27,45,49), whereas multiple reports have found differences in CA levels as a function of host 
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206 genotype (18,61).  Furthermore, CA levels are influenced by both host genetics and microbial 

207 metabolism since it is synthesized by host liver enzymes from cholesterol and subsequently 

208 modified by gut microbes in the intestine. Notably, these co-mapping traits also share the same 

209 allele effects pattern, where the A/J and WSB haplotypes have strong positive and negative 

210 associations, respectively (Fig 3C and 3D).

211 To assess whether the trait patterns observed in the DO founder strains correspond to the 

212 observed allelic effects in the QTL mapping, we performed a separate characterization of the fecal 

213 microbiota composition and plasma bile acids in age-matched A/J and WSB animals fed the 

214 HF/HS diet. The founder strain allele patterns inferred from the QTL mapping closely resembled 

215 the observed levels of Turicibacter sp. (Fig 3E) and plasma CA in the founder strains (Fig 3F), 

216 where A/J animals had significantly higher levels of Turicibacter sp. and CA than WSB animals. 

217 However, Turicibacter levels in the founder strains do not complete mirror the estimated allele 

218 effects. This may be due to other genetic factors that also influence Turicibacter levels, as this taxa 

219 may be influenced by multiple host genes and levels of Turicibacter have previously been 

220 associated on chr 7 (24), 9 and 11 (49). Furthermore, Turicibacter and plasma CA were positively 

221 correlated in the DO mice (r = 0.43, p = 3.53e-10). This finding is consistent with a previous study 

222 that found positive correlations between Turicibacter and unconjugated cecal BAs (62). Taken 

223 together, the overlap between the Turicibacter sp. QTL and plasma CA QTL, along with the 

224 similar allele effects pattern, which reflect the values observed in the founder strains, provide 

225 strong evidence suggesting that these traits are related and they are responding to the common 

226 genetic driver.

227

228 Slc10a2 is a candidate gene for Turicibacter sp. and plasma cholic acid
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229 We searched in the QTL confidence interval for candidate genes via high-resolution 

230 association mapping on chr 8 and identified SNPs associated with both traits.  Among these we 

231 identified SNPs upstream of the gene Slc10a2, which encodes for the apical sodium-bile 

232 transporter (Fig 3G). Slc10a2 is responsible for ~95% of BA reabsorption in the distal ileum and 

233 plays a key role in BA homeostasis (63). In humans, mutations in this gene are responsible for 

234 primary BA malabsorption, resulting in interruption of enterohepatic circulation of BAs and 

235 decreased plasma cholesterol levels (64). Likewise, Slc10a2-/- mice have a reduced total BA pool 

236 size, increased fecal BA concentrations and reduced total plasma cholesterol in comparison to 

237 wild-type mice (63). Additionally, a comparison between germ-free and conventionally-raised 

238 mice found that expression of Slc10a2 is downregulated in presence of the gut microbiota, 

239 suggesting microbes may influence the expression of the transporter (41). 

240 Our analysis identified SNPs associated with levels of Turicibacter sp. and plasma CA at 

241 the QTL peak (Fig 3G). The SNPs with the strongest associations were attributed to the WSB and 

242 A/J haplotypes and fell on intergenic regions near Slc10a2. There is growing evidence that non-

243 coding intergenic SNPs are often located in or closely linked to regulatory regions, suggesting that 

244 they may influence host regulatory elements and alter gene expression (65,66). To assess if 

245 candidate gene expression patterns in the DO founders corresponds to the estimated allelic effects 

246 in the QTL mapping, we quantified Slc10a2 expression in distal ileum samples from A/J and WSB 

247 mice by quantitative reverse transcriptase PCR (qRT-PCR). A/J mice exhibited significantly 

248 higher expression of Slc10a2 compared to WSB mice (Fig 3H), which is consistent with estimated 

249 allele patterns for the overlapping Turicibacter and plasma CA QTLs on chr 8 (Fig 3A and 3B). 

250 Remarkably, several studies have noted concomitant changes in microbiota composition and 

251 Slc10a2 mRNA levels (67–69).
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252

253 A common genetic driver controls Turicibacter sp. and plasma cholic acid

254 We mapped QTL for Turicibacter sp. and for plasma CA levels to a common locus on chr 

255 8 at 5-7 Mbp. Since the LOD profiles and allelic effects are highly similar, the QTL may be due 

256 to a single shared locus (pleiotropy) or multiple closely linked loci. We examined this question 

257 using a likelihood ratio testing of the null hypothesis of pleiotropy versus the alternative of two 

258 independent genetic regulators of these traits (70). Analysis of 1000 bootstrap samples resulted in 

259 a p-value of 0.531, which is consistent with the presence of a single pleiotropic locus that affects 

260 both traits. 

261 We next sought to understand the causal relationships between the microbe and the BA. 

262 We asked whether the relationship between the microbe and BA was causal, reactive or 

263 independent. To establish the directionality of the relationship, we applied mediation analysis 

264 where we conditioned one trait on the other (71).  When we conditioned Turicibacter sp. on plasma 

265 CA (QTL  BA  Microbe), we observed a LOD drop of 3.2 (Fig 4A and 4B). Likewise, when 

266 we conditioned the plasma cholic acid on the microbe (QTL  Microbe  BA) there was a LOD 

267 drop of 3.32 (Fig 4C and 4D). The partial mediation seen in both models suggests that the 

268 relationship between the microbe and the BA could be bidirectional, where they exert an effect on 

269 one another. 

270 From this analysis, we can hypothesize this relationship can be explained by a pleiotropic 

271 model, where a single locus influences a microbial and a BA trait, and the microbial trait is also 

272 reactive to changes in the BA trait. It is important to note that statistical inference only partially 

273 explains the relationship between the traits and there may be other hidden variables that may 

274 further explain the relationship. The complex relationship depicted by the causal inference testing 
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275 is consistent with the interplay between gut microbes and BAs in the intestine and their known 

276 ability to influence the other.  

277

278 Bile acids inhibit Turicibacter sanguinis growth at physiologically relevant concentrations 

279 Due to the strong correlative relationship between the QTL, we tested whether there was a 

280 direct interaction between bile acids and Turicibacter. Turicibacter inhabits the small intestine 

281 where BAs are secreted upon consumption of a meal  (73,74). We screened the human isolate 

282 Turicibacter sanguinis for deconjugation and transformation activity in vitro by HPLC/MS-MS. 

283 We found that T. sanguinis deconjugated ~96-100% of taurocholic acid and 

284 glycochenodeoxycholic acid (Fig 5A) within 24 hours. It also transformed ~6 and 8 % of CA and 

285 CDCA to 7-dHCA and 7-ketolithocholic acid (7-KLCA), respectively (Fig 5B and 5C). The 

286 percent transformed did not increase after 24 hours (data not shown). Both of these transformations 

287 require the action of the bacterial 7-hydroxysteroid dehydrogenase. 

288 Based on these results, we asked if conjugated and unconjugated bile acids differentially 

289 modulate T. sanguinis growth. BA concentrations range from ~1-10 mM along the small intestine 

290 (75) to ~0.2-1 mM in the cecum (76). Therefore, we grew T. sanguinis in the presence of either 

291 conjugated or unconjugated bile acids at physiologically relevant concentrations ranging from 0.1 

292 – 5 mM. T. sanguinis growth decreased with increasing concentrations of BAs and growth was 

293 completely inhibited at 1 mM for unconjugated BAs and 5 mM for conjugated BAs (Fig 5D and 

294 5E).   Growth rate was significantly slower in the presence of 1 mM conjugated and 0.5mM 

295 unconjugated bile acids (Fig 5F). These results suggest that levels of BAs may affect abundance 

296 of Turicibacter in the gut. 
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297 To compare T. sanguinis sensitivity to conjugated bile acids relative to other small intestine 

298 colonizers, we grew four taxa (Bacteroides thetaiotaomicron, Clostridium asparagaiforme, 

299 Lactobacillus reuteri and Escherichia coli MS200-1) known to colonize this region of the intestine 

300 with or without 1 mM conjugated bile acids. Members of these genera are known to have bile salt 

301 hydrolase (BSH) activity to deconjugate bile acids (35). Unlike T. sanguinis, the addition of high 

302 levels of conjugated bile acids had little to no effect on the growth of these four gut microbes (S4 

303 Fig). Consistent with these findings, Turicibacter abundance was negatively correlated with cecal 

304 TCA levels in the DO mice (r = -0.262, p = 0.0035).  

305 Taken together, these data indicate that T. sanguinis is sensitive to higher concentrations 

306 of BA compared to other small intestine colonizers. These reciprocal effects between the BA and 

307 the bacterium provide biological evidence for the correlative relationship shown by the causal 

308 model testing. In summary, using a genetic approach, we identified and provide validation of a 

309 relationship between a genetic locus containing the BA transporter Slc10a2, and levels of 

310 Turicibacter and plasma cholic acid. Based on our findings, we hypothesize that the identified 

311 locus regulates expression of Slc10a2, altering active BA reabsorption in the ileum, leading to 

312 increased intestinal BA concentrations and alterations in the intestinal BA environment. 

313 Consequently, the resulting environmental change provides an unfavorable habitat for 

314 Turicibacter. In turn, lower levels of Turicibacter BA deconjugation activity leads to a decrease 

315 in circulating free plasma cholic acid levels. 

316

317 Conclusion

318 In this study, we performed the first known genetic mapping integration of gut microbiome 

319 and BA profiles. Using DO mice, we identified multiple QTL for gut microbes and bile acids 
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320 spanning the host genome. These included loci that associated with individual microbial and BA 

321 traits, as well as loci with potential pleiotropic effects, where a single genetic region influenced 

322 both the abundance of a gut microbe and levels of a BA. While several studies suggest that host 

323 genetic variation has a minor impact on microbiota composition, there are overlapping findings 

324 among different studies in both human and mouse populations that indicate that specific bacterial 

325 taxa are influenced by host genetics. Our results in the DO population corroborate several of these 

326 key findings (discussed in S1 Data).  Turicibacter sp. is among the microbes consistently 

327 associated with host genetics. This work plus data from previous reports suggest that alterations in 

328 the BA pool driven by Slc10a2 genetic variation and concomitant changes in expression/activity 

329 elicit an impact on gut microbiota community structure and influence the ability of Turicibacter 

330 to colonize and persist in the intestine. Although this microbe deconjugates primary BAs, we found 

331 that it is also sensitive to elevated concentrations of both conjugated and unconjugated BAs. Future 

332 experiments are needed to examine how a decrease in Slc10a2 expression changes intestinal BA 

333 profiles and the consequences on Turicibacter colonization. Additionally, this work identified 

334 multiple host-microbe-metabolite interactions that need to be validated with additional molecular 

335 studies. More broadly, our work demonstrates the power of genetics to identify novel interactions 

336 between microbial and metabolite traits and provides new testable hypotheses to further dissect 

337 factors that shape gut microbiota composition. 

338

339
340 Materials and methods

341 Animals and sample collection. Animal care and study protocols were approved by the 

342 University of Wisconsin-Madison Animal Care and Use Committee. DO mice were obtained from 

343 the Jackson Laboratories (Bar Harbor, ME, USA) at ~4 weeks of age and maintained in the 
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344 Department of Biochemistry vivarium at the University of Wisconsin-Madison. Mice were housed 

345 on a 12-hour light:dark cycle under temperature- and humidity-controlled conditions. Five waves 

346 of 100 DO mice each from generations, 17, 18, 19, 21, and 23 were obtained at intervals of 3-6 

347 months. Each wave was composed of equal numbers of male and female mice. All mice were fed 

348 a high-fat high-sucrose diet (TD.08811, Envigo Teklad, 44.6% kcal fat, 34% carbohydrate, and 

349 17.3% protein) ad libitum upon arrival to the facility. Mice were kept in the same vivarium room 

350 and were individually housed to monitor food intake and prevent coprophagy between animals. 

351 DO mice were sacrificed at 22-25 weeks of age. 

352 The eight DO founder strains (C57BL/6J, A/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ, 

353 PWK/PhJ, WSB/EiJ and CAST/EiJ) were obtained from the Jackson Laboratories. Mice were bred 

354 at the University of Wisconsin-Madison Biochemistry Department. Mice were housed by strain 

355 and sex (2-5 mice/cage), with the exception of CAST that required individual housing. Inbred 

356 founder mice were housed under the same environmental conditions as the DO animals. Like the 

357 DO mice, the eight founder strains were maintained on the HF/HS diet and were sacrificed at 22 

358 weeks of age, except for NZO males that were sacrificed at 14 weeks, due to high mortality 

359 attributable to severe disease. 

360 For both DO and founder mice, fecal samples for 16S rRNA sequencing were collected 

361 immediately before sacrifice after a 4 hour fast. Cecal contents, plasma, and additional tissues were 

362 harvested promptly after sacrifice and all samples were immediately flash frozen in liquid nitrogen 

363 and stored at -80°C until further processing. 

364

365 DNA extraction. DNA was isolated from feces using a bead-beating protocol  

366 {Turnbaugh:2009ei}. Mouse feces (~1 pellet per animal) were re-suspended in a solution 
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367 containing 500μl of extraction buffer [200mM Tris (pH 8.0), 200mM NaCl, 20mM EDTA], 210μl 

368 of 20% SDS, 500μl phenol:chloroform:isoamyl alcohol (pH 7.9, 25:24:1) and 500μl of 0.1-mm 

369 diameter zirconia/silica beads. Cells were mechanically disrupted using a bead beater (BioSpec 

370 Products, Barlesville, OK; maximum setting for 3 min at room temperature), followed by 

371 extraction with phenol:chloroform:isoamyl alcohol and precipitation with isopropanol. 

372 Contaminants were removed using QIAquick 96-well PCR Purification Kit (Qiagen, Germantown, 

373 MD, USA). Isolated DNA was eluted in 5 mM Tris/HCL (pH 8.5) and was stored at -80°C until 

374 further use.  

375

376 16S rRNA Sequencing. PCR was performed using universal primers flanking the variable 4 (V4) 

377 region of the bacterial 16S rRNA gene (102). Genomic DNA samples were amplified in duplicate. 

378 Each reaction contained 10-30 ng genomic DNA, 10 µM each primer, 12.5 µl 2x HiFi HotStart 

379 ReadyMix (KAPA Biosystems, Wilmington, MA, USA), and water to a final reaction volume of 

380 25 µl. PCR was carried out under the following conditions: initial denaturation for 3 min at 95°C, 

381 followed by 25 cycles of denaturation for 30 s at 95°C, annealing for 30 s at 55°C and elongation 

382 for 30 s at 72°C, and a final elongation step for 5 min at 72°C. PCR products were purified with 

383 the QIAquick 96-well PCR Purification Kit (Qiagen, Germantown, MD, USA) and quantified 

384 using Qubit dsDNA HS Assay kit (Invitrogen, Oregon, USA). Samples were equimolar pooled 

385 and sequenced by the University of Wisconsin – Madison Biotechnology Center with the MiSeq 

386 2x250 v2 kit (Illumina, San Diego, CA, USA) using custom sequencing primers. 

387

388 16S analysis. Demultiplexed paired end fastq files generated by CASAVA (Illumina) and a 

389 mapping file were used as input files. Sequences were processed, quality filtered and analyzed 
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390 with QIIME2 (version 2018.4) (https://qiime2.org), a plugin-based microbiome analysis platform 

391 (103). DADA2 (47) was used to denoise sequencing reads with the q2-dada2 plugin for quality 

392 filtering and identification of de novo exact sequence variants (ESVs) (i.e. 100% exact sequence 

393 match). This resulted in 20,831,573 total sequences with an average of 52,078 sequences per 

394 sample for the DO mice, and 2,128,796 total sequences with an average of 34,335.4 sequences per 

395 sample for the eight DO founder strains. Sequence variants were aligned with mafft (104) with the 

396 q2-alignment plugin. The q2-phylogeny plugin was used for phylogenetic reconstruction via 

397 FastTree (105). Taxonomic classification was assigned using classify-sklearn (106) against the 

398 Greengenes 13_8 99% reference sequences (107). Alpha- and beta-diversity (weighted and 

399 unweighted UniFrac (108) analyses were performed using q2-diversity plugin at a rarefaction 

400 depth of 10000 sequences per sample. For the DO mice, one sample (DO071) was removed from 

401 subsequent analysis because it did not reach this sequencing depth. For analysis of the eight DO 

402 founder strains, one sample (NOD5) was removed because it did not reach this sequencing depth. 

403 Subsequent processing and analysis were performed in R (v.3.5.1), and data generated in QIIME2 

404 was imported into R using Phyloseq (109). Sequencing data was normalized by cumulative sum 

405 scaling (CSS) using MetagenomeSeq (110). Summaries of the taxonomic distributions were 

406 generated by collapsing normalized ESV counts into higher taxonomic levels (genus to phylum) 

407 by phylogeny. We defined a core measurable microbiota (CMM) (24) to include only microbial 

408 traits present in 20% of individuals in the QTL mapping. In total, 86 ESVs and 42 collapsed 

409 microbial taxonomies comprised the CMM.

410

411 Sample preparation for plasma bile acid analysis. 40 μL of DO plasma collected at sacrifice 

412 (30 μL used for founder strains) were aliquoted into a tube with 10 μL SPLASH Lipidomix internal 
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413 standard mixture (Avanti Polar Lipids, Inc.). Protein was precipitated by addition of 215 μL 

414 MeOH. After the mixture was vortexed for 10 s, 750 μL methyl tert-butyl ether (MTBE) were 

415 added as extraction solvent and the mixture was vortexed for 10 s and mixed on an orbital shaker 

416 for 6 min. Phase separation was induced by adding 187.5 μL of water followed by 20 s of 

417 vortexing. All steps were performed at 4 °C on ice. Finally, the mixture was centrifuged for 4 min 

418 at 14,000 x g at 4 °C and stored at -80 °C. For targeted bile acids analysis, samples were thawed 

419 on ice. 400 μL of ethanol were added to further precipitate protein, as well as 15 μL of isotope-

420 labeled internal standard mix (12.5 µM d4-TαMCA, 10 µM d4-CDCA). The samples were 

421 vortexed for 20 s and centrifuged for 4 min at 14,000 g at 4 °C after which the supernatant (ca. 

422 1000 μL) was taken out and dried down. Dried supernatants were resuspended in 60 μL mobile 

423 phase (50 %B), vortexed for 20 s, centrifuged for 4 min at 14,000 g and then 50 μL were transferred 

424 to vials with glass inserts for MS analysis.

425

426 Sample preparation for cecal bile acid analysis. 30 ± 7.5 mg cecal contents along with 10 μL 

427 SPLASH Lipidomix internal standard mixture were aliquoted into a tube with a metal bead and 

428 270 μL MeOH were added for protein precipitation. To each tube, 900 μL MTBE and 225 μL of 

429 water were added as extraction solvents. All steps were performed at 4 °C on ice. The mixture was 

430 homogenized by bead beating for 8 min at 25 Hz. Finally, the mixture was centrifuged for 4-8 min 

431 at 11,000 x g at 4 °C. Subsequent processing for the DO mice and eight DO founder strains differed 

432 due to other analyses performed on the samples that are not presented in this paper. For DO 

433 samples, 100 μL of the aqueous and 720 μL of organic layer were combined and stored at -80 °C. 

434 For analysis, these were thawed on ice and 400 μL of ethanol were added to further precipitate 

435 protein, as well as 15 μL of isotope-labeled internal standard mix (12.5 µM d4-TαMCA, 10 µM 
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436 d4-CDCA). The samples were vortexed for 20 s and centrifuged for 4 min at 14,000 g at 4 °C after 

437 which the supernatant (ca. 1000 μL) was taken out and dried down. Dried supernatants were 

438 resuspended in 100 μL mobile phase (50 %B), vortexed for 20 s, centrifuged for 8 min at 14,000 

439 g and then 50 μL were transferred to vials with glass inserts for MS analysis. For the eight DO 

440 founder strains, the mixture was dried down including all solid parts and stored dried at -80 °C. 

441 For targeted bile acid analysis, these dried down samples were then thawed on ice and reconstituted 

442 in 270 μL of methanol, 900 μL of MTBE, and 225 μL of water. 400 μL of ethanol were added to 

443 further precipitate protein, as well as 15 μL of isotope-labeled internal standard mix (12.5 µM d4-

444 TαMCA, 10 µM d4-CDCA). The mixture was bead beat for 8 min at 25 Hz and centrifuged at 

445 14,000 g for 8 minutes after which the supernatant (ca. 1500 μL) was taken out and dried down. 

446 Dried supernatants were resuspended in 100 μL mobile phase (50 %B), vortexed for 20 s, 

447 centrifuged for 4 min at 14,000 g and then 90 μL were transferred to vials with glass inserts for 

448 MS analysis.

449

450 Measurement and analysis of mouse bile acids. LC-MS analysis was performed in randomized 

451 order using an Acquity CSH C18 column held at 50 °C (100 mm × 2.1 mm × 1.7 μm particle size; 

452 Waters) connected to an Ultimate 3000 Binary Pump (400 μL/min flow rate; Thermo Scientific). 

453 Mobile phase A consisted of 10 mM ammonium acetate containing 1 mL/L ammonium hydroxide. 

454 Mobile phase B consisted of MeOH with the same additives (111). Mobile phase B was initially 

455 held at 50% for 1.5 min and then increased to 70% over 13.5 min. Mobile phase B was further 

456 increased to 99% over 0.5 min and held for 2.5 min. The column was re-equilibrated for 5.5 min 

457 before the next injection. Twenty microliters of plasma sample or ten microliters of cecum sample 

458 were injected by an Ultimate 3000 autosampler (Thermo Scientific). The LC system was coupled 
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459 to a TSQ Quantiva Triple Quadrupole mass spectrometer (Thermo Scientific) by a heated ESI 

460 source kept at 325°C (Thermo Scientific). The inlet capillary was kept at 350 °C, sheath gas was 

461 set to 15 units, auxiliary gas to 10 units, and the negative spray voltage was set to 2,500 V. For 

462 targeted analysis the MS was operated in negative single reaction monitoring (SRM) mode 

463 acquiring scheduled, targeted scans to quantify selected bile acid transitions, with two transitions 

464 for each species’ precursor and 3 min retention time windows. Collision energies were optimized 

465 for each species and ranging from 20-55 V. Due to insufficient fragmentation for unconjugated 

466 bile acids, the precursor was monitored as one transition with a CE of 20 V. MS acquisition 

467 parameters were 0.7 FWHM resolution for Q1 and Q3, 1 s cycle time, 1.5 mTorr CID gas and 3 s 

468 Chrom filter. In total, 27 bile acids, including 14 unconjugated, 9 tauro- and 4 glycine-conjugated 

469 species, were measured. The resulting bile acid data were processed using Skyline 3.6.0.10493 

470 (University of Washington). For each species, one transition was picked for quantitation, while the 

471 other was used for retention time confirmation. Normalization of the quantitative data was 

472 performed to the internal standard d4-CDCA as indicated in Equation 1.

473 Equation 1: (Peak Area / d4-CDCA Peak Area) · Average of d4-CDCA Peak Area

474

475 Genotyping. Genotyping was performed on tail biopsies as previously described (42) using the 

476 Mouse Universal Genotyping Array (GigaMUGA) [143,259 markers] (112) at Neogen (Lincoln, 

477 NE). Genotypes were converted to founder strain-haplotype reconstructions using a hidden 

478 Markov model (HMM) implemented in the R/qtl2 package (48). We interpolated the GigaMUGA 

479 markers onto an evenly spaced grid with 0.02-cM spacing and added markers to fill in regions with 

480 sparse physical representation, which resulted in 69,005 pseudomarkers. 

481
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482 QTL mapping. We performed QTL mapping using the R package R/qtl2 (48). QTL mapping was 

483 done through a regression of the phenotype on the founder haplotype probabilities estimated with 

484 an HMM designed for multi-parental populations. Genome scans were performed for each 

485 phenotype with sex, cohort (wave), and days on diet included as additive covariates. Genetic 

486 similarity between mice was accounted for using a kinship matrix based on the leave-one-

487 chromosome-out (LOCO) methods (113). For microbial QTL mapping, normalized gut microbiota 

488 abundance data transformed to normal quantiles. For bile acid QTL mapping, normalized plasma 

489 and cecal bile acid levels were log2 transformed. The mapping statistic reported is log of the odds 

490 ratio (LOD). The significance thresholds were determined by performing 1000 permutations of 

491 genome-wide scans by shuffling phenotypic data in relation to individual genotypes. Significant 

492 QTL were determined at a genome-wide P-value of < 0.05 and the QTL support interval was 

493 defined using the 95% Bayesian confidence interval.

494

495 Mediation/Pleiotropy analysis. To assess whether two co-mapping traits were caused by a 

496 pleiotropic locus, we used a likelihood ratio test implemented with the open source R package 

497 R/qtl2pleio (70). Here, we compared the alternative hypothesis of two distinct loci with the null 

498 hypothesis of pleiotropy for two traits that map to the same genetic region. Parametric 

499 bootstrapping was used to determine statistical significance. Mediation analysis was applied to 

500 identify whether a microbe or bile acid were likely to be a causal mediator of the QTL as presented 

501 in Li et al. (114). This analysis was adapted from a general approach previously described to 

502 differentiate target from mediator variables (115). The effect of a mediator on a target was 

503 evaluated by performing an allele scan or SNP scan using the target adjusted by mediator. Only 

504 individuals with both values for both traits were considered for mediation analysis. Traits with a 
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505 LOD drop >2 after controlling for the mediator were considered for further causality testing. To 

506 statistically assess causality between microbial and bile acid trait sets (causal, reactive, 

507 independent, undecided), a causal model selection test (72) was applied using the R packages 

508 R/intermediate and R/qtl2. Causal model selection tests were evaluated on both alleles and SNPs 

509 in peak region. 

510

511 RNA extraction. Total RNA was extracted from flash-frozen distal ileum tissues by TRIzol 

512 extraction and further cleaned using the RNeasy Mini Kit (Qiagen, Germantown, MD, USA). DNA 

513 was removed by on-column DNase digestion (Qiagen). Purified RNA was quantified using a 

514 Nanodrop 2000 spectrophotometer. 

515

516 Quantitative Real-Time PCR. SuperScript II Reverse Transcriptase with oligo(dT) primer (all 

517 from Invitrogen, Carlsbad, CA, USA) was used to synthesize 20 μl cDNA templates from 1 μg 

518 purified RNA. cDNA was diluted 2X before use and qRT-PCR reactions were prepared in a 10 μl 

519 volume using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and 

520 400 nM specific primers targeting the gene of interest (SLC10A2-F [5’- 

521 TGGGTTTCTTCCTGGCTAGACT-3’]; SLC10A2-R [5’- TGTTCTGCATTCCAGTTTCCAA-

522 3’] (116)). All reactions were performed in triplicate. Reactions were run on a CFX96 Real-Time 

523 PCR System (Bio-Rad, Hercules, CA, USA). The 2-∆∆Ct method (117) was used to calculate 

524 relative changes in gene expression and all results were normalized to GAPDH. 

525

526 Bacterial culturing. Bacterial strains were obtained from DSMZ and ATCC. All strains were 

527 cultured at 37°C under anaerobic conditions using an anaerobic chamber (Coy Laboratory 
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528 Products) with a gas mix of 5% hydrogen, 20% carbon dioxide and 75% nitrogen. Strains were 

529 grown in rich medium (S5 Table) that was filter sterilized and stored in the anaerobic chamber at 

530 least 24 hours prior to use. L. reuteri was grown in medium supplemented with 20 mM glucose. 

531 For all in vitro assays, cultures used for inoculation were grown overnight at 37°C in 10 mL 14b 

532 medium in anaerobic Hungate tubes. Stock solutions of conjugated bile acids (TCA, GCDCA) and 

533 unconjugated bile acids (CA, CDCA, DCA) were prepared to a final concentration of 100 mM and 

534 used for all in vitro assays. All bile acids used were soluble in methanol.

535

536 Microbial bile acid metabolism screen. Stock solutions of conjugated and unconjugated bile 

537 acids (100 mM) were added to 3 ml 14b medium to obtain a final concentration of 100 μM total 

538 bile acid. Tubes were inoculated with a T. sanguinis cultured overnight, then incubated in the 

539 anaerobic chamber at 37°C for 48 hours. At the 24- and 48-hour timepoints, 1 mL of each culture 

540 was removed and the supernatant was collected after brief centrifugation. Each culture supernant 

541 was diluted 10x in initial running solvent (30:70 MeOH:10 mM ammonium acetate). Samples were 

542 spun at max speed for 3 minutes to remove suspended particles prior to loading on the uHPLC. 

543 Samples were analyzed using a uHPLC coupled with a high-resolution mass spectrometer.

544

545 Microbial bile acid screen uHPLC-MS/MS parameters. 10 µL aliquots of diluted supernatant 

546 samples were analyzed using a uHPLC-MS/MS system consisting of a Vanquish uHPLC coupled 

547 by electrospray ionization (ESI) (negative mode) to a hybrid quadrupole-high-resolution mass 

548 spectrometer (Q Exactive Orbitrap; Thermo Scientific). Liquid chromatography separation was 

549 achieved on an Acquity UPLC BEH C18 column (2.1-by 100-mm column, 1.7-µm particle size) 

550 heated to 50˚C. Solvent A was 10 mM Ammonium acetate, pH 6; solvent B was 100% methanol. 
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551 The total run time was 31.5 minutes with the following gradient: 0 min, 30% B; 0.5 min, 30% B; 

552 24 min, 100% B; 29 min, 100% B; 29 min, 30% B; 31.5 min, 30% B. Bile acid peaks were 

553 identified using the Metabolomics Analysis and Visualization Engine (MAVEN) (118). 

554

555 Growth curves. Bacterial growth rate was measured in medium 14b supplemented with either 100 

556 μM, 300 μM, 1 mM bile acids or methanol control. Medium was dispensed inside an anerobic 

557 chamber into Hungate tubes. Tubes containing 10 mL of medium were inoculated with 30 μL of 

558 an overnight culture and incubated at 37°C for 24 hours. T. sanguinis was grown with shaking to 

559 disrupt the formation of flocculent colonies. Growth was monitored as the increase in absorbance 

560 at 600 nm in a Spectronic 20D+ spectrophotometer (Thermo Scientific, Waltham, MA, USA). 

561 Growth rate was determined as μ = ln(X/Xo)/T, where X is the OD600 value during the linear portion 

562 of growth and T is time in hours. Values given are the mean μ values from two independent cultures 

563 done in triplicate. 

564

565 Statistical analysis. All statistical analyses were performed in R (v.3.5.1) (119). Unless otherwise 

566 indicated in the figure legends, differences between groups were evaluated using unpaired two-

567 tailed Welch’s t-test. For multiple comparisons, Krustkal-Wallis test was used if ANOVA 

568 conditions were not met, followed by Mann-Whitney/Wilcoxon rank-sum for multiple 

569 comparisons and adjusted for multiple testing using the Benjamini-Hochberg FDR procedure. The 

570 correlation between the abundance of microbial taxa was performed using Spearman’s correlation 

571 in the “Hmisc” (v.4.1-1) R package (120). The p-values were adjusted using the Benjamini and 

572 Hochberg method, and correlation coefficients were visualized using the “pheatmap” (v.1.0.10) 

573 (121). Multiple groups were compared by Kruskal-Wallis test and adjusted for multiple testing 
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574 using the Benjamini-Hochberg FDR procedure. Significance was determined as p-value < 0.05. 

575 To assess magnitude of variability of the CMMs, summary statistics were calculated on each CMM 

576 (taxa and ESVs). Non-parametric-based PERMANOVA statistical test (122) with 999 Monte 

577 Carlo permutations was used to compare microbiota compositions among groups using the Vegan 

578 R package (123). 

579
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918 Figure 1. Phenotypic variation among Diversity Outbred (DO) mice fed high-fat and high-sucrose 

919 diet. (A) Body weight at 6, 10, 14, and 21-25 (sacrifice) weeks in DO mice fed high-fat and high-

920 sucrose diet (n = 500) (Adapted from Keller et al. (46)) (B) Distributions of the normalized relative 

921 abundance of bacterial phyla identified in DO fecal microbiota (n = 399). (C) Abundance (peak 

922 area) of primary bile acids detected in plasma and (D) cecal contents (n = 384). 

923

924 Figure 2. Genetic architecture of quantitative trait loci (QTL) for microbial exact sequence 

925 variants (ESVs) and taxa abundance, and plasma and cecal bile acids in 400 Diversity Outbred 

926 (DO) mice. The outer layer shows the chromosome location where major tick marks correspond 

927 to 25 Mbp. Logarithm of the odds (LOD) range is shown for each track. Each dot represents a 

928 QTL on each chromosome of the mouse genome for a given trait. Grey dots denote QTLs with 

929 LOD < 5.5. Candidate genes discussed in text are denoted.  

930

931 Figure 3. Co-mapping of Turicibacter sp. and plasma cholic acid (CA) QTL on chromosome 8. 

932 Association of (A) fecal abundance of Turicibacter sp. and (B) plasma CA levels on chromosome 

933 (chr) 8. The x-axis indicates the position in Mbp along chr 8. The y-axis for the top panel and the 

934 y-axis in the bottom panel is the LOD score. A/J and WSB founder alleles are associated with 

935 higher and lower levels of Turicibacter and plasma CA levels, respectively. The estimated founder 

936 strain abundance of (C) Turicibacter and (D) levels of plasma CA in the DO population reflects 

937 measured values observed in founder strains for (E) the abundance of Turicibacter sp. and (F) 

938 plasma cholic acid levels (n = 8 mice/genotype, 4 male and 4 female). (E) Spearman rank 

939 correlation between Turicibacter sp. and plasma CA in DO mice (n=192). (F) Spearman rank 

940 correlation between Turicibacter genera and plasma cholic acid in DO founder strains (n = 19). 
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941 (G) SNPs (top panel) and protein coding genes (bottom panel) under the QTL interval. Magenta 

942 dots correspond to SNPs with the strongest association where the LOD drop < 1.5 from the top 

943 SNP. (H) Relative expression of Slc10a2 measured in the distal ileum by qRT-PCR in A/J and 

944 WSB parental strains (n = 6, 3 male and 3 female). Data are presented as mean ± SEM; Welch’s t 

945 test; * p < 0.05. Correlation p-values adjusted for multiple tests using Benjamini and Hochberg 

946 correction. ND – not detected. 

947

948 Figure 4. Mediation analysis and causal inference testing suggest causal relationship between 

949 Turicibacter sp. abundance and plasma cholic acid (CA) levels. (A) Hypothetical causal model 

950 that proposes that cholic acid (CA) mediates the changes in Turicibacter sp. abundance. (B) 

951 Change in LOD score of plasma CA when adjusting for Turicibacter sp. abundance. The x-axis 

952 indicates the position in Mbp along chr 8. (C) Hypothetical causal model that proposes that 

953 Turicibacter sp. mediates changes in abundance of plasma CA levels. (D) Change in LOD score 

954 of Turicibacter sp. when controlling for plasma CA levels. 

955

956 Figure 5. Turicibacter sanguinis and bile acid interactions. (A) Percent of conjugated bile acids 

957 detected after 24-hour incubation with or without the presence of T. sanguinis. (B) 

958 Transformation of cholic acid (CA) to 7-dehydrocholic acid (7-dHCA), and (C) 

959 chenodeoxycholic acid (CDCA) to 7-ketolithocholic acid (7-KLCA) by T. sanguinis after 24 

960 hours. Growth of T. sanguinis in the presence of 0.1 mM, 0.5 mM, 1 mM and 5 mM (D) 

961 conjugated (equimolar pool of taurocholic acid (TCA) and glycochenodeoxycholic acid 

962 (GCDCA)), and (E) unconjugated (equimolar pool of cholic CA, CDCA, and deoxycholic acid 

963 (DCA)) bile acids over 24 hours. (F) Growth rate () of T. sanguinis in medium supplemented 
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964 with varying concentrations of conjugated and unconjugated bile acids. Data shown are from one 

965 experiment with three technical replicates. Data are presented as mean ± SEM; one-way 

966 ANOVA followed by Tukey’s multiple comparisons test; ** p < 0.01, *** p < 0.001, **** p < 

967 0.0001.

968

969 Supporting information legends

970 S1 Figure. Principal coordinate analysis (PCoA) of unweighted UniFrac distances for fecal 

971 samples. PCoA shows significant clustering by (A) sex (F = 5.572, p = 0.001) and (B) wave (F = 

972 16.954, p = 0.001). Clustering by treatment evaluated by PERMANOVA. 

973

974 S2 Figure. Plasma and cecal bile acids group by sex, but not wave. PCAs of plasma bile acid 

975 profiles colored by (A) sex (p < 0.0001) and (B) wave (p = 0.594), and PCAs of cecal bile acid 

976 profiles colored by (C) sex (p = 0.011) and (D) wave (p = 0.207). Kruskal Wallis one-way test 

977 followed by Wilcoxon pair-wise multiple comparisons with Benjamini and Hochberg correction.

978

979 S3 Figure. Related bile acid species map associate to same locus. (A) Haplotype effects and 

980 LOD scores of plasma taurodeoxycholic acid (TDCA), (B) cecal deoxycholic acid (DCA), (C) 

981 cecal isodeoxycholic acid (IDCA) and (D) cecal hyodeoxycholic acid (HDCA). For each plot, the 

982 x-axis is the physical position in Mbp along chr 12. The y-axis for the top panel is the effect 

983 coefficient depicting the estimated contributions of each founder allele, and the y-axis in the 

984 bottom panel is the LOD score. (E) Cecal levels of isolithocholic acid (ILCA) and lithocholic acid 

985 (LCA) associate to same locus on chr 11. (F) Estimated founder allele effects for cecal ILCA and 
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986 (G) LCA. (H) Genes under cecal LCA and ILCA QTL interval. Dashed lines denote QTL 

987 confidence interval. 

988

989 S4 Figure. Gut associated bacteria have differential growth responses to conjugated bile 

990 acids. Growth rate in the presence of 1 mM conjugated bile acids or methanol control for (A) 

991 Bacteroides thetaiotaomicron, (B) Clostridium asparagiforme, (C) Escherichia coli MS200-1, and 

992 (D) Lactobacillus reuteri. Data shown are from duplicate experiments with three technical 

993 replicates. Data are presented as mean ± SEM; Welch’s t test; no significant differences were 

994 observed between growth conditions for any of the tested organisms.

995

996 S5 Figure. Peptostreptococcaceae and plasma bile acids co-map on chromosome (chr) 3. 

997 Haplotype effects and LOD scores of (A) Peptostreptococcaceae family, (B) plasma cholic acid 

998 (CA), (C) plasma chenodeoxycholic acid (CDCA), (D) plasma muricholic acid (MCA), (E) plasma 

999 ursodeoxycholic acid (UDCA), and (F) plasma 7-dehydrocholic acid (7-dHCA). For each plot, the 

1000 x-axis is the physical position in Mbp along chr 3. The y-axis for the top panel is the effect 

1001 coefficient depicting the estimated contributions of each founder allele, and the y-axis in the 

1002 bottom panel is the LOD score. All overlapping QTL have positive association with the NOD 

1003 allele. (G) Protein coding genes under QTL interval. 

1004

1005 S6 Figure. Exact sequence variant of Akkermansia muciniphila and plasma bile acid QTL 

1006 overlap on chromosome (chr) 1. Haplotype effects and LOD scores of (A) A. muciniphila (B) 

1007 plasma cholic acid (CA), (C) plasma muricholic acid (MCA), and (D) plasma 7-dehydrocholic 

1008 acid (7-dHCA). For each plot, the x-axis is the physical position in Mbp along chr 1. The y-axis 
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1009 for the top panel is the effect coefficient depicting the estimated contributions of each founder 

1010 allele, and the y-axis in the bottom panel is the LOD score. (E) Protein coding genes under 10 Mbp 

1011 QTL interval. Spearman correlations in the DO mice between A. muiniphila and (F) plasma CA, 

1012 (G) plasma MCA, and (H) plasma 7-dHCA levels. Correlation p-values adjusted for multiple tests 

1013 using Benjamini and Hochberg correction. Higher levels of these microbial and bile acid traits 

1014 were associated with the NZO haplotype and lower levels were associated with the 129 haplotype. 

1015 (E) Protein coding genes under 10 Mbp QTL interval. Dashed lines denote QTL confidence 

1016 interval. Spearman correlations in the DO mice between A. muiniphila and (F) plasma CA, (G) 

1017 plasma MCA, and (H) plasma 7-dHCA levels. Correlation p-values adjusted for multiple tests 

1018 using Benjamini and Hochberg correction. 

1019

1020 S1 Table. Measures of variability of microbial exact sequence variants (ESVs) or taxon 

1021 (phylum, class, order, family, genus) in DO mice. Data presented as normalized read counts; n 

1022 = 399; SD, standard deviation.

1023

1024 S2 Table. Measures of variability of cecal and plasma bile acids in DO mice. Bile acid levels 

1025 are presented as log2(peak area); n = 384; SD, standard deviation.

1026

1027 S3 Table. Correlations among microbial taxa, bile acid and weight traits. Spearman's rank 

1028 correlation. Only microbial exact sequence variants, genera and family included in figure. 

1029 Correlations shown passed FDR < 0.01 cut-off and correlation coefficient either < -0.35 or > 0.35. 

1030 Correlating bile acids from same tissue removed from table for brevity.

1031
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1032 S4 Table. QTL peaks for gut microbiota, plasma and cecal bile acid, and weight traits in the 

1033 Diversity Outbred mice. Only QTL with LOD > 5.5 shown. "Pos" is peak position is Mbp. "ci_lo" 

1034 and "ci_hi" correspond to the positions for the 95% bayesian confidence interval.

1035

1036 S5 Table. Media used for bacterial culture. Medium 14(b) recipe.

1037
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