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Abstract 30 

Leishmaniasis is a global health problem with an estimated report of 2 million new cases 31 

every year and more than 1 billion people at risk of contracting this disease in endemic 32 

areas. The innate immune system plays a central role in controlling L. major infection by 33 

initiating a signaling cascade that results in production of pro-inflammatory cytokines and 34 

recruitment of both innate and adaptive immune cells. Upon infection with L. major, 35 

CXCL1 is produced locally and plays an important role in the recruitment of neutrophils 36 

to the site of infection. Herein, we report that L. major specifically targets murine CXCL1 37 

for degradation. The degradation of CXCL1 is not dependent on host factors as L. major 38 

can directly degrade recombinant CXCL1 in a cell-free system. Using mass 39 

spectrometry, we discovered that the L. major protease cleaves at the C-terminal end of 40 

murine CXCL1. Finally, our data suggest that L. major metalloproteases are involved in 41 

the direct cleavage and degradation of CXCL1, and a synthetic peptide spanning the 42 

CXCL1 cleavage site can be used to inhibit L. major metalloprotease activity. In 43 

conclusion, our study has identified an immune evasion strategy employed by L. major 44 

to evade innate immune responses in mice, likely reservoirs in the endemic areas, and 45 

further highlights that targeting these L. major metalloproteases may be important in 46 

controlling infection within the reservoir population and transmittance of the disease. 47 

 48 
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Authors’ summary  50 

Our study discovered a highly specific role for L. major metalloprotease in cleaving and 51 

degrading murine CXCL1. Indeed, L. major metalloprotease did not cleave murine 52 

CXCL2 or human CXCL1, CXCL2 and CXCL8. CXCL1 is a critical chemokine required 53 

for neutrophil recruitment to the site of infection; thus, we propose that this 54 

metalloprotease may have evolved to evade immune responses specifically in the 55 

murine host. We have further identified that the C-terminal end on CXCL1 is targeted for 56 

cleavage by the L. major metalloprotease. Finally, this cleavage site information was 57 

used to design peptides that are able to inhibit CXCL1 degradation by L. major. Our 58 

study highlights an immune evasion strategy utilized by L. major to establish infection 59 

within a murine host.   60 
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Introduction 61 

Leishmania spp. are unicellular eukaryotic protozoan parasites that are transmitted to 62 

mammalian hosts by sandfly (Phlebotomine and Lutzomyia spp.) bites [1]. Upon 63 

transmission of L. major promastigotes (the infectious stage for mammalian hosts with a 64 

long slender body and an anterior flagellin), the promastigotes are quickly taken up by 65 

neutrophils, macrophages and keratinocytes [2-6]. Within the macrophages, Leishmania 66 

spp. promastigotes hijack the phagocytic vacuole and transform into amastigotes (round 67 

body lacking an anterior flagellin) [7]. The Leishmania spp. amastigotes then proliferate 68 

within the vacuole and establish infection within the host [8, 9]. While a mammalian 69 

host-vector system is the major mode of Leishmania spp. transmission, several studies 70 

have reported a vertical transmission of these parasites in mammalian hosts, from a 71 

pregnant female to its offspring [10-13]. Specifically, Leishmania spp. infection has been 72 

found to be endemic in foxhound dog populations in the United States, where the 73 

vectors are not present [14-17]. Given that Leishmania spp. can infect several hosts, 74 

including rodents and dogs (in addition to humans) [18], these studies demonstrate how 75 

these parasites can remain endemic even with strategies to eradicate sandflies. 76 

 77 

Our immune system is extremely efficient in killing pathogens. Professional phagocytes 78 

such as macrophages and neutrophils phagocytose and kill the invading pathogen in 79 

the intracellular phagosome-lysosome compartment. In addition, these phagocytes also 80 

respond to the foreign pathogens by secreting pro-inflammatory cytokines and 81 

chemokines to recruit neutrophils to the site of infection [19-21]. Leishmania spp. have 82 

evolved to evade the host immune response by using its armada of virulence factors to 83 
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avoid host killing [22]. The two major virulence factors of Leishmania spp. include 84 

leishmanolysin metalloprotease glycoprotein 63 (GP63) and lipophosphoglycan (LPG), 85 

and both have been extensively studied for their roles in immune evasion [23, 24]. 86 

GP63 and LPG inhibit the formation of the membrane attack complex to evade 87 

complement-mediated lysis [25, 26], inhibit acidification of leishmania containing 88 

vacuoles [27, 28], and dampen host immune signaling pathways [29, 30] for 89 

establishing infection within the mammalian host. In addition, Leishmania spp. can 90 

hijack the host immune responses to establish infections as shown by Leishmania 91 

chagasi (L. chagasi)-mediated activation of TGF-E and Leishmania major (L. major)-92 

induced activation of NLRP3 inflammasome, events that promote L. major survival and 93 

pathology [31-33]. Here, we have identified one such immune evasion mechanism 94 

employed by L. major.  95 

 96 

L. major is the most common Leishmania spp. and a major cause of cutaneous 97 

leishmaniasis that affects 600,000-1,000,000 people globally [34]. Once deposited at 98 

the site of a sandfly bite, L. major promastigotes are taken up by the resident 99 

macrophages and keratinocytes, which then secrete essential cytokines and 100 

chemokines to elicit an innate immune response [35]. One of the earliest chemokines 101 

that are produced in the skin in response to L. major include CXCL1 [36]. CXCL1 is a 102 

functional homolog of human IL-8 in mice and a potent neutrophil chemoattractant [37-103 

41]. Keratinocytes [3], neutrophils [42] and macrophages [43, 44] have all been 104 

suggested to produce CXCL1 (or IL-8 in humans) in response to Leishmania spp. 105 

infection. Several studies have shown that neutrophils infiltrate the site of Leishmania 106 
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spp. infection as early as 1-hour post-infection and are important for optimal resolution 107 

of the infection [21, 45]. Given the importance of CXCL1 in modulating the early innate 108 

immune response, we reasoned that L. major targets CXCL1 to evade early host innate 109 

immune responses.  110 

 111 

In this current study, we have identified murine CXCL1 as a highly specific substrate for 112 

L. major metalloprotease and a possible immune evasion strategy employed by this 113 

parasite to establish a successful infection within the murine host. We further report that 114 

L. major promotes proteolytic cleavage of murine CXCL1 at the C-terminal end to 115 

initiate its degradation. Finally, we have designed a synthetic peptide spanning the 116 

CXCL1 cleavage site that inhibits L. major protease activity. In conclusion, our study 117 

has uncovered a specific mechanism employed by L. major to degrade murine CXCL1 118 

which may help the parasite to establish infection within the murine host.  119 

  120 

  121 
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Results 122 

L. major infection abrogates LPS-induced CXCL1 production by bone marrow-123 

derived macrophages. 124 

To investigate how L. major impacts innate immune responses elicited by 125 

macrophages, we stimulated bone marrow-derived macrophages (BMDM) with 126 

lipopolysaccharide (LPS) in the presence or absence of L. major (WHOM/IR/-173) 127 

infection following established protocol [32]. As detailed in the experimental outline (Fig. 128 

1A), BMDM were stimulated with 20 ng/ml LPS in the presence or absence of 20 MOI L. 129 

major promastigotes for 48 hours. LPS stimulation of BMDM induced robust production 130 

of IL-6, TNF and CXCL1. Simultaneous LPS stimulation and L. major infection did not 131 

impact the production of IL-6 and TNF by BMDM whereas CXCL1 levels were 132 

significantly blunted (Fig. 1A). These data suggest that L. major specifically targets 133 

LPS-induced CXCL1 production by BMDM. 134 

 135 

Previous studies have shown that L. major targets signaling pathways to evade immune 136 

responses and establish infection [[29]]. To examine whether L. major specifically 137 

targeted CXCL1 expression and production, we designed an experiment whereby 138 

BMDM were infected with 20 MOI L. major for 6 hours, extracellular L. major were 139 

washed, then stimulated with 20 ng/ml LPS for the next 42 hours (Fig. 1B). 140 

Interestingly, L. major-infected BMDM produced equal levels of CXCL1 when compared 141 

to controls (Fig. 1B). These results show that inhibition of CXCL1 by L. major may not 142 

occur through modulation of intracellular signaling pathway that promotes CXCL1 143 

expression and/or production by BMDM.  144 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/571141doi: bioRxiv preprint 

https://doi.org/10.1101/571141
http://creativecommons.org/licenses/by/4.0/


 

 

8 

 145 

CXCL1 detection is significantly reduced by L. major in a cell free system 146 

Given that L. major pre-infection of BMDM prior to LPS stimulation did not affect CXCL1 147 

production, we posited that L. major regulates secreted CXCL1 in the extracellular 148 

milieu. To this end, we used supernatants derived from LPS-stimulated BMDM as a 149 

source of CXCL1 and cultured 500 Pl of these cell-free supernatants with 20 × 106 L. 150 

major promastigotes for 24 hours (Fig. 2A). While levels of IL-6 and TNF detected in the 151 

supernatants remained unchanged, levels of CXCL1 were significantly reduced after 152 

addition of L. major to the supernatants. The reduced levels of CXCL1 were not due to 153 

its short half-life in the culture, as the levels of CXCL1 in the cell free supernatants were 154 

stable up to 48 hours (Supplemental Fig. 1). Thus, L. major directly dampens CXCL1 155 

detection.  156 

 157 

We next examined whether the observed effect of L. major on CXCL1 detection was 158 

dependent on live parasites. To this end, we cultured supernatants from LPS-stimulated 159 

BMDM with L. major lysates (Lm lysate: generated by 3× freeze-thaw cycles of L. major) 160 

or supernatants from L. major culture (Lm sup: supernatant collected from stationary 161 

phase of L. major growth; Fig. 2B). Similar to the addition of live L. major, addition of 162 

Lm lysate or Lm sup also reduced CXCL1 in the supernatants while IL-6 and TNF 163 

remained unaffected (Fig. 2B). These results demonstrate that: first, L. major need not 164 

be alive to dampen CXCL1 detection; second, L. major lysate can dampen CXCL1 165 

detection; and finally, L. major secreted factors dampen CXCL1 detection. Boiling Lm 166 

lysate or Lm sup for 20 minutes at 100ºC rescued CXCL1 detected in the supernatants, 167 
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suggesting that the responsible L. major components are susceptible to heat treatment 168 

(Supplemental Fig. 2). Given the sensitivity to heat treatment, we propose that the 169 

CXCL1 regulating L. major components are proteinaceous. 170 

 171 

L. major reduces recombinant murine CXCL1 (rm-CXCL1) levels in a cell free 172 

system 173 

Macrophages secrete several hundreds of different proteins that may indirectly alter our 174 

observed effect of L. major components on CXCL1 [46]. To this end, we obtained 175 

recombinant murine CXCL1 (rm-CXCL1, Tonbo Biosciences, San Diego, CA) which 176 

was stable in culture up to 48 hours (Supplemental Fig. 3). Importantly, Lm sup 177 

addition to rm-CXCL1 dampened its detection by ELISA in a time-dependent manner, 178 

and boiling Lm sup rescued rm-CXCL1 detection (Supplemental Fig. 3).  179 

 180 

To further investigate the specificity of L. major in reducing rm-CXCL1 levels, we 181 

examined rm-CXCL2, rh-CXCL1, rh-CXCL2 and rh-CXCL8 sequence homology by 182 

CLUSTAL-W alignment and found significant homology between these recombinant 183 

proteins. Despite the significant homology, L. major failed to reduce levels of rm-184 

CXCL2, rh-CXCL1, rh-CXCL2 or rh-CXCL8, demonstrating specific regulation of rm-185 

CXCL1 (Fig. 3, B-F). As expected, L. major did not inhibit rm-TNF levels (Fig. 3G). 186 

Given the specific nature of L. major (WHOM/IR/-170) in dampening rm-CXCL1 levels, 187 

we next determined whether this activity was specific to the WHOM/IR/-170 isolate. 188 

However, supernatant from L. major (IA0, isolated from a patient in Iowa who acquired 189 

L. major in Iraq [47]) was also able to inhibit rm-CXCL1 detection when compared to the 190 
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WHOM/IR/-170 strain (Fig. 3H). Furthermore, exosomes from the L. major supernatants 191 

from both isolates were able to reduce rm-CXCL1 levels, suggesting that the active 192 

components are also present in the L. major-derived vesicles (Fig. 3H).   193 

 194 

L. major inactivates biological activity of CXCL1 195 

Our data show that L. major reduced CXCL1 levels as demonstrated by ELISA (Figs. 1-196 

3). Possible reasons why CXCL1 levels were reduced when incubated with L. major 197 

include: 1) L. major proteins bind to CXCL1, limiting the ability of anti-CXCL1 antibody in 198 

ELISA to interact with CXCL1 or 2) L. major proteases cleaves and degrades CXCL1. 199 

Considering both outcomes, it is possible that CXCL1, either masked or cleaved by L. 200 

major components, could still be biologically active. To this end, we performed a 201 

functional assay where rm-CXCL1 or rm-CXCL1+Lm lysate was used to stimulate 202 

BMDM (Fig. 4A). As demonstrated previously, when rm-CXCL1 is incubated with L. 203 

major, rm-CXCL1 levels are significantly reduced (Fig. 4B). Lm lysate alone has very 204 

little stimulatory activity as demonstrated by mRNA induction of Cxcl1, Tnf and Il6 (Fig. 205 

4, C-E). As expected, rm-CXCL1 induced modest increase of Cxcl1, Tnf and Il6 but rm-206 

CXCL1+Lm lysate failed to induce Cxcl1, Tnf and Il6 mRNA (Fig. 4, C-E). These results 207 

altogether demonstrate that L. major inactivates biological activity of rm-CXCL1.  208 

 209 

L. major cleaves CXCL1 at the C-terminal end to promote its degradation 210 

To determine whether CXCL1 is degraded by L. major, we incubated rm-CXCL1 with 211 

Lm lysate for various time periods and examined rm-CXCL1 by silver staining (Fig. 5A). 212 

Rm-CXCL1 was detected at approximately 10KDa by silver stain. Interestingly, when 213 
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incubated with Lm lysate rm-CXCL1 showed two bands as early as 30 minutes after 214 

incubation, suggesting Lm lysate-mediated cleavage of rm-CXCL1 (Fig. 5A and 215 

Supplemental Fig. 4). By 2 hours, only the cleaved rm-CXCL1 was observed and this 216 

cleaved band intensity decreased over time, suggesting further degradation (Fig. 5A). 217 

L. major-mediated cleavage of rm-CXCL1 was specific because similar experiments 218 

done with rm-CXCL2, rh-CXCL1 and rh-CXCL2 did not result in cleavage or 219 

degradation of these recombinant proteins (Fig. 5B).  220 

 221 

Based on the cleavage pattern of rm-CXCL1 (less than 1KDa shift), cleavage either at 222 

the N-terminal or C-terminal end would result in a large fragment (detected by silver 223 

stain as the lower band, Fig. 5A) and a smaller fragment (which could not be detected 224 

by silver stain; Fig. 5C). To identify the cleavage product and site, we processed the 225 

full-length rm-CXCL1 and Lm lysate-cleaved rm-CXCL1 bands by trypsin digestion and 226 

performed mass spectrometry to determine the sequence of the bands (Supplemental 227 

Fig. 5). The tryptic peptide sequence readouts of full-length rm-CXCL1 covered the 228 

whole rm-CXCL1 peptide sequence (Supplemental Fig. 5B), while the peptide 229 

coverage of cleaved rm-CXCL1 covered all of the rm-CXCL1 peptide sequence except 230 

the last 7 amino acids (MLKGVPK) at the C-terminal end (Supplemental Fig. 5C). 231 

Thus, L. major cleaves rm-CXCL1 after lysine 65 (K65) residue that results in a large N-232 

terminal rm-CXCL1 fragment lacking 7 amino acids at the C-terminal end (Fig. 5D).   233 

 234 

L. major metalloprotease cleaves CXCL1 235 
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L. major has several proteases that enable it to survive within a cell and establish 236 

infection [48]. Metalloproteases and cysteine, serine and aspartic proteases are the 237 

major proteases described in L. major [48]. To examine whether cleavage activity was 238 

dependent on proteases, we first treated our rm-CXCL1 + Lm sup culture with pan 239 

protease inhibitor (Roche and Sigma) (Fig.6, A-C). Roche cOmplete protease inhibitor 240 

is a broad inhibitor of proteases including serine, cysteine and metalloproteases, and 241 

Sigma P8340 inhibitor is reported to inhibit serine, cysteine, acid proteases and 242 

aminopeptidases. However, the presence of protease inhibitors from Roche (cOmplete) 243 

or Sigma (P8340) did not inhibit Lm sup-mediated degradation of rm-CXCL1 as 244 

demonstrated by ELISA (Fig. 6, B and C, and Supplemental Fig. 6). Marimastat, a 245 

broad inhibitor of matrix metalloproteases [49], did not rescue the degradation of rm-246 

CXCL1 by Lm sup (Supplemental Fig. 6B). EDTA treatment, which chelates metal ions 247 

such as Ca2+ and Fe3+ (and thus can inhibit certain metalloprotease), did not rescue rm-248 

CXCL1 cleavage by Lm sup (Fig. 6, D and E). Interestingly, 1,10-Phenanthroline, a 249 

Zn2+ metalloprotease inhibitor [50], rescued rm-CXCL1 degradation by Lm sup (Fig. 6, F 250 

and G). While the addition of 1,10-Phenanthroline resulted in the upward shift of rm-251 

CXCL1 bands in SDS-PAGE gels; importantly, no cleavage or degradation of rm-252 

CXCL1 was observed (Fig. 6G). 253 

 254 

Several studies have shown that 1,10-Phenanthroline inhibits GP63, a Zn2+ 255 

metalloprotease present on all Leishmania spp and is often used in biochemical assays 256 

to inhibit non-specific proteolytic activity of GP63 [51]. To determine whether GP63 was 257 

involved in specific cleavage of rm-CXCL1, we immunoprecipitated (IP) GP63 from Lm 258 
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lysate using anti-GP63 antibody (Fig. 6H). Immunoblotting the GP63+ve and GP63-ve 259 

IP fractions for GP63 showed that GP63 was exclusively present in the IP+ve fraction 260 

and not present in the IP-ve fraction demonstrating successful immunoprecipitation of 261 

GP63 (Fig. 6H). More importantly, when these fractions were cultured with rm-CXCL1, 262 

the IP-ve (Lm lysate lacking GP63) but not the IP+ve (i.e. GP63) fraction degraded rm-263 

CXCL1 suggesting a role for GP63-independent metalloprotease in the specific 264 

degradation of rm-CXCL1 (Fig. 6I).  265 

 266 

Synthetic peptide spanning the CXCL1 cleavage site inhibits L. major proteolytic 267 

activity against rm-CXCL1 268 

Our data suggest that L. major Zn2+ metalloprotease specifically cleaves rm-CXCL1 269 

after the K65 residue leaving a 7-mer amino acid sequence (MLKGVPK). To further 270 

examine the specificity of this L. major metalloprotease, we designed a blocking peptide 271 

that covered this cleavage site (i.e. the last 15 amino acid sequences of rm-CXCL1; Fig. 272 

7A). The addition of blocking peptide was able to rescue Lm lysate-mediated 273 

degradation of rm-CXCL1 in a dose-dependent manner (Fig. 7B). The peptide 274 

sequence from the signal peptide region of rm-CXCL1 (peptide #1 and peptide #2, Fig. 275 

7A) did not inhibit Lm lysate-mediated degradation of rm-CXCL1, demonstrating the 276 

specificity of the blocking peptide (Fig. 7B). These data demonstrate that a synthetic 277 

peptide spanning the murine CXCL1 cleavage site can competitively inhibit L. major-278 

mediated rm-CXCL1 degradation. 279 

  280 
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Discussion 281 

CXCL1 is a potent neutrophil chemoattractant and is rapidly upregulated following 282 

Leishmania spp. infection in the skin [36]; however, the role of CXCL1 during 283 

Leishmania spp. infection of mice in vivo has been understudied. Charmoy et al showed 284 

that mice deficient in CXCL1 have a slight increase in lesion size and reduced numbers 285 

of neutrophil infiltrates in chronic lesions, but the overall pathology remained similar 286 

between WT and Cxcl1-/- mice [33]. However, it should be noted that the study used the 287 

L. major Seidman strain (LmSd) that causes a non-healing infection in C57BL/6 mice 288 

[33]. Thus, more thorough analyses are needed to determine the precise role of CXCL1 289 

during L. major infection in mice and humans. 290 

 291 

Importantly, even depletion of neutrophils using anti-Gr1 neutralizing antibody does not 292 

always lead to increased parasitic burden, lesion or pathology [21]. While some studies 293 

with acute depletion of neutrophils reported worsened pathology during L. major 294 

infections, other studies have shown no role or even amelioration of disease pathology 295 

[5, 52-60]. Thus, mouse strain, L. major strain, route of infection and timing of CXCL1 296 

release may all contribute to the fate of the infection and overall pathology. In line with 297 

this thought, two independent L. major strains were tested in our study, and both strains 298 

degraded CXCL1 in our experimental systems. Whether this degradation of murine 299 

CXCL1 is a specific feature of L. major or a more general feature of all Leishmania spp. 300 

will need further investigation.  301 

 302 
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Our initial observation demonstrated that L. major in culture with macrophages 303 

effectively inhibited LPS-induced CXCL1 production. Further examination showed that 304 

intracellular L. major within the macrophages did not inhibit LPS-induced CXCL1 305 

production. These experiments suggest that L. major does not interfere with signaling 306 

pathways that promote CXCL1 production but directly regulates secreted CXCL1 in the 307 

extracellular milieu. L. major are present as metacyclic promastigotes in sandflies [61]. 308 

When infected into the mammalian host, L. major infect macrophages and resides 309 

within the vacuole where they transform into amastigotes, multiply and establish 310 

infection [62]. Because L. major-infected macrophages which contain amastigotes did 311 

not inhibit CXCL1 production, it could be posited that only the promastigote form of L. 312 

major degrades CXCL1. However, genome microarray analysis shows that the majority 313 

of genes are constitutively expressed in both L. major promastigotes and amastigotes 314 

(>90%) and therefore the major genes and virulent factors expressed by these different 315 

stages of L. major may not be different [63]. Thus, both L. major promastigotes and 316 

amastigotes may similarly cleave and degrade murine CXCL1 in an in vitro assay. In 317 

addition, infected macrophages can secrete exosomes containing L. major proteins [64, 318 

65], which could degrade murine CXCL1. We have consistently shown that L. major 319 

secreted microvesicles (i.e. exosomes) contain these metalloproteases that can 320 

degrade murine CXCL1. Physiologically, L. major promastigotes released during a 321 

sandfly bite may act locally to limit acute CXCL1 produced in response to the infection. 322 

Once L. major are phagocytosed and transformed into amastigotes, they are physically 323 

separated from the CXCL1 due to their location (amastigotes are in the vacuole while 324 
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CXCL1 are secreted by the macrophages and are extracellular) and may only impact 325 

CXCL1 production through the L. major component laden exosomes.  326 

 327 

Our studies suggest that a yet-unknown metalloprotease from L. major cleaves murine 328 

CXCL1. Given that 1,10-Phenanthroline (Zn2+ chelator) but not EDTA (Ca2+ and Fe3+ 329 

metal ion chelator) or Marimastat (Matrix metalloprotease inhibitor) rescued L. major-330 

mediated CXCL1 degradation, it is possible that the unknown metalloprotease is a Zn2+ 331 

metalloprotease. Our studies also demonstrate that the L. major metalloprotease is 332 

highly specific for murine CXCL1 in that its closest murine homolog, CXCL2, or human 333 

homologs, CXCL1, CXCL2 or CXCL8, were not degraded. We hypothesize that this 334 

particular L. major metalloprotease may have evolved to specifically evade host immune 335 

response in rodents. Given that human CXCL1 homologs are not susceptible to this 336 

metalloprotease, one can argue that our results may not have any importance from a 337 

public health standpoint, but we reason otherwise. Our results are highly relevant to 338 

public health because rodents are ubiquitous, serve as a reservoir for Leishmania spp. 339 

and we highlight a rodent-specific L. major evolution in targeting murine CXCL1 [66]. 340 

 341 

Our studies demonstrate that the murine CXCL1 is first cleaved at the C-terminal end 342 

after K65 releasing a 7aa residue. CXCL1 cleavage occurs as early as 30 minutes of 343 

incubation with L. major and by 4 hours the cleavage is complete in that only the 344 

cleaved bands are observed. Interestingly, we did not observe any accumulation of the 345 

cleaved CXCL1 band, suggesting continuous degradation of the cleaved form. While 346 

our data clearly demonstrate that the unknown L. major metalloprotease mediates 347 
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cleavage of murine CXCL1, how the cleaved CXCL1 is further degraded will be the 348 

subject of future investigation. The cleaved murine CXCL1 (lacking the C-terminal 7 aa) 349 

may be highly unstable and undergo spontaneous degradation overtime. Alternatively, 350 

the cleaved murine CXCL1 may be susceptible to additional L. major proteases which 351 

promote its subsequent degradation.  352 

 353 

In conclusion, we have identified an immune evasion strategy utilized by L. major that is 354 

highly specific to murine CXCL1 (Fig. 7C). Specifically, L. major-associated 355 

metalloprotease cleaved murine CXCL1 at K65 residue and released a C-terminal 7 356 

amino acid fragment to promote its degradation. Finally, we have designed a peptide 357 

spanning the cleavage site of CXCL1 that inhibited murine CXCL1 cleavage by L. 358 

major. Our study altogether uncovered an immune evasion strategy employed by L. 359 

major that may have evolved in rodents and highlights how parasites may utilize diverse 360 

immune evasion strategy to establish infection within its diverse mammalian hosts.  361 

362 
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Methods 363 

Ethics statement 364 

Experimental procedures that utilized mice were all approved by the University of Iowa 365 

Animal Care and Use Committee (Approved Animal Protocol # 7042004 – PI Dr. 366 

Prajwal Gurung) and performed in accordance to the Office of Laboratory Animal 367 

Welfare guidelines and the PHS Policy on Humane Care and Use of Laboratory 368 

Animals.  369 

 370 

BMDM culture 371 

BMDMs were prepared as described previously (32). Briefly, bone marrow cells were 372 

harvested from the hind limbs of BALB/c mice (Jackson Laboratory, Stock No. 000651) 373 

and cultured in L cell-conditioned IMDM medium supplemented with 10% FBS, 1% 374 

nonessential amino acid, and 1% penicillin-streptomycin for 5-7 d to differentiate into 375 

macrophages. BMDMs were counted and seeded at 1 × 106 cells in 12-well cell culture 376 

plates in IMDM media containing 10% FBS, 1% nonessential amino acids, and 1% 377 

penicillin-streptomycin. BMDMs were primed with LPS (20 ng/ml) and infected with 20 378 

MOI L. major promastigotes for 24 and 48 hours (Supplemental Figure 1). For some 379 

experiments, BMDMs were LPS primed to generate supernatant containing cytokines 380 

for in vitro biochemical analysis with L. major supernatant (Lm sup) and L. major lysate 381 

(Lm lysate). BMDMs were also treated with rm-CXCL1 (20 ng/ml) or rm-CXCL1+Lm sup 382 

preparations in some experiments.  383 

 384 

L. major culture 385 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/571141doi: bioRxiv preprint 

https://doi.org/10.1101/571141
http://creativecommons.org/licenses/by/4.0/


 

 

19 

L. major strains WHOM/IR/-173 [67] and IA0 [47] were grown in T-25 flasks with M199 386 

media supplemented with 10% FBS, 5% HEPES and 1% penicillin-streptomycin at room 387 

temperature. BMDMs were infected with 20 MOI of L. major promastigotes for 48 hours. 388 

Conditioned L. major supernatant (Lm sup) was prepared after L. major reached the 389 

stable growth phase at approximately 20 × 106 / ml. Following centrifugation (3000×g) to 390 

pellet L. major, supernatants were collected and filtered using a 0.2Pm vacuum filter to 391 

harvest Lm sup. Lm lysate was prepared by collecting the L. major pellet, washing 3 392 

times with PBS followed by 3 freeze-thaw cycles of 7 × 109 L. major /ml in PBS. For the 393 

preparation of L. major exosomes, promastigotes were grown to stable phase and 394 

changed to serum-free media and incubated at room temperature overnight. 395 

Supernatant was obtained as above and then separated using a 100kDa molecular 396 

weight Amicon ultra-15 centrifugal filter (MilliporeSigma, Burlington, MA). The 397 

concentrated vesicles were washed twice with PBS by ultracentrifugation at 110,000xg 398 

at 4qC for 1 hour (Beckman Optma MAX-XP Ultracentrifuge, rotor TLA 120.2; Beckman 399 

Coulter Inc., USA). The final pellet (exosomes) was resuspended in PBS and used in in 400 

vitro biochemistry assays. 401 

 402 

Electrophoresis and in vitro biochemistry 403 

For in vitro reactions, 125ng of total recombinant protein was separated on 4-20% or 404 

10-20% Novex WedgeWell Tris-Glycine precast gels (Thermofisher, Waltham, MA). 405 

For silver stain, the Pierce Mass Spec compatible silver stain kit was used per 406 

manufacturer’s instructions (Thermofisher). Synthetic peptides were generated and 407 

purchased from Pierce Biotechnology (Thermofisher) and are composed of the 408 
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following sequences: peptide#1: CAALLLLATSRLA; peptide#2: RLATGAPIAN; 409 

blocking peptide: LVQKIVQKMLKGVPK. For Western blot analysis a semi-dry transfer 410 

was completed using trans-blot turbo system (Bio-Rad, Hercules, CA) with Immobilon 411 

PVDF membrane. The membranes were blocked in 5% non-fat milk for 1 hour at room 412 

temperature. Membranes were probed with sheep polyclonal antibody Sp180 raised 413 

against L. chagasi promastigote GP63 at a concentration 1:1500 incubated overnight at 414 

4°C. The membranes were then probed with HRP-tagged secondary antibodies at room 415 

temperature for 1 hour and developed using Immobilon Forte Western HRP Substrate 416 

(MilliporeSigma) and imaged with an Odyssey Fc Infrared Imaging System (LI-COR 417 

Bioscience, Lincoln, NE). Immunoprecipitation was performed using Protein G 418 

Dynabeads and Leishmania GP63 monoclonal antibody clone 96-126 (Thermofisher). 419 

As instructed by the manufacturer, 50PL beads were washed in PBS with 0.02% Tween 420 

20 and bound to 5Pg antibody for at least 10 minutes. Following a wash, the antibody 421 

bound beads were incubated with Lm lysate for another 10 minutes and finally either 422 

antigen-antibody binding was negated by acidic (pH 2.8) 50mM Glycine treatment or 423 

bead bound antibody-antigen complexes were used directly for biochemistry. 424 

 425 

Mass spectrometry 426 

In-gel trypsin digestion: The gel was stained using a Pierce mass spec compatible silver 427 

stain kit (Thermofisher) per manufacturer directions. A procedure slightly modified than 428 

that described by Yu et al [68] was used for in-gel digestion. Briefly, the targeted protein 429 

bands from SDS-PAGE gel were manually excised, cut into 1mm3 pieces, and washed 430 

in 100mM ammonium bicarbonate:acetonitrile (1:1, v/v) and 25mM ammonium 431 
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bicarbonate /acetonitrile (1:1, v/v), respectively, to achieve complete de-staining. The 432 

gel pieces were further treated with acetonitrile (ACN), to effectively “dry” the gel 433 

segments and then reduced in 50Pl of 10mM DTT at 56 °C for 60 min. Gel-trapped 434 

proteins were alkylated with 55mM chloroacetamide (CAM) for 30 min at room 435 

temperature. The gel pieces were washed with 25mM ammonium bicarbonate: 436 

acetonitrile (1:1, v/v) twice to remove excess DTT and CAM. 50Pl of cold trypsin solution 437 

at 10ng/Pl in 25mM ammonium bicarbonate was then added to the gel pieces and they 438 

were allowed to swell on ice for 60 min. Digestion was conducted at 37°C for 16 h. 439 

Peptide extraction was performed three times, adding 100μL of 50% acetonitrile/0.1% 440 

formic acid for 0.5 h, combining the supernatants. The combined extracts were 441 

concentrated in a lyophilizer and rehydrated with 15 Pl of mobile phase A.  442 

 443 

LC-MS/MS: Mass spectrometry data were collected using an Orbitrap Fusion Lumos 444 

mass spectrometer (Thermofisher) coupled to an Easy-nLC-1200™ System (Proxeon 445 

P/N LC1400). The autosampler is set to aspirate 3Pl (estimated 0.3ug) of reconstituted 446 

digest and load the solution on a 2.5cm C18 trap (New Objective, P/N IT100-25H002) 447 

coupled to waste, HV or analytical column through a microcross assembly (IDEX, P/N 448 

UH-752). Peptides are desalted on the trap using 16Pl mobile phase A for 4 min. The 449 

waste valve is then blocked and a gradient begins flowing at 0.4Pl/min through a self-450 

packed analytical column, 10cm in length × 75Pm id. The fused silica column was 451 

tapered from 100Pm ID (Polymicro) to ~8Pm at the tip using a Sutter P-2000 laser puller 452 

then packed with 2.7micron Halo C18 particles using a He-pressurized SS cylinder. 453 

Peptides were separated in-line with the mass spectrometer using a 70 min gradient 454 
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composed of linear and static segments wherein buffer A is 0.1% formic acid and B is 455 

95%ACN, 0.1% formic acid. The gradient begins first hold at 4% for 3 min then makes 456 

the following transitions (%B, min): (2, 0), (35, 46), (60, 56), (98, 62), (98, 70). 457 

 458 

Tandem mass spectrometry on the Thermo Q-Exactive hf: Data acquisitions begin with 459 

a survey scan (m/z 380 -1800) acquired on a Q-Exactive Orbitrap mass spectrometer 460 

(Thermofisher) at a resolution of 120,000 in the off-axis Orbitrap segment (MS1) with 461 

automatic gain control (AGC) set to 3E06 and a maximum injection time of 50 ms. MS1 462 

scans were acquired every 3 sec during the 70-min gradient described above. The most 463 

abundant precursors were selected among 2-6 charge state ions at a 1E05 AGC and 70 464 

ms maximum injection time. Ions were isolated with a 1.6 Th window using the multi-465 

segment quadrupole and subjected to dynamic exclusion for 30 sec if they were 466 

targeted twice in the prior 30 sec. Selected ions were then subjected to high energy 467 

collision-induced dissociation (HCD) in the ion routing multipole (IRM). Targeted 468 

precursors were fragmented by (HCD) at 30% collision energy in the IRM. HCD 469 

fragment ions were analyzed using the Orbitrap (AGC 1.2E05, maximum injection time 470 

110 ms, and resolution set to 30,000 at 400 Th). Both MS2 data were recorded as 471 

centroid and the MS1 survey scans were recorded in profile mode. 472 

 473 

Proteomic searches: Initial spectral searches were performed with both Mascot version 474 

2.6.2 (MatrixScience) and Byonic search engines (Protein Metrics ver. 2.8.2). Search 475 

databases were composed of the Uniprot KB for species 10090 (mouse) downloaded 476 

February 6, 2016 containing 58436 sequences. In either search, an equal number of 477 
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decoy entries were created and searched simultaneously by reversing the original 478 

entries in the target database. Precursor mass tolerance was set to 5 ppm and 479 

fragments were searched at 10 ppm. A fixed 57 Da modification was assumed for 480 

cysteine residues while variable oxidation was allowed at methionine. A variable GG 481 

modification at lysine was set to monitor ubiquitylation and potential phosphorylation 482 

was accessed at Ser and Thr residues. The false discovery rate was maintained at 1% 483 

by tracking matches to the decoy database. Both Mascot and Byonic search results 484 

were combined and validated using Scaffold ver. 4.8.5 (Proteome Software). Protein 485 

assignments required a minimum of two peptides established at 70% probability (local 486 

FDR algorithm) and an overall 95% protein probability (assigned by Protein Prophet). 487 

Approximately 300 protein families (including common contaminants) were assigned at 488 

a total FDR to 1.2%. Proteins were annotated with GO terms from goa_uniprot_all.gaf 489 

downloaded on May 3, 2017. 490 

 491 

Immunoassays and recombinant proteins 492 

Cytokine ELISAs and multiplex immunoassays were performed according to 493 

manufacturer instructions. Mouse and human CXCL1 and CXCL2 as well as human IL-494 

8 (CXCL8) were obtained from R&D Systems (Minneapolis, MN) and multiplex CXCL1, 495 

IL-6, and TNF were completed using ProcartaPlex assays (Thermofisher) which were 496 

run on the BioRad Bio-Plex (Luminex, Austin, TX). We obtained our recombinant 497 

proteins from Tonbo biosciences which included mouse CXCL1, CXCL2, and TNF as 498 

well as human CXCL1, CXCL2, and CXCL8. 499 

 500 
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PCR methods 501 

RNA was extracted from BMDM cultures in TRIzol reagent (Thermofisher) followed by 502 

chloroform extraction and isopropanol precipitation. The extracted RNA was reverse-503 

transcribed into cDNA by using qScript Supermix (Quanta Biosciences, Beverly, MA). 504 

Real-time quantitative PCR was performed on Eppendorf realplex EPgradient S 505 

Mastercycler (Eppendorf, Germany) using PerfeCTa SYBR Green SuperMix ROX 506 

(Quanta Biosciences) and the appropriate primers. The sequences of the quantitative 507 

RT-PCR primers are as follows: mCXCL1: 5’-CAATGAGCTGCGCTGTCAGTG-3’, 5’-508 

CTTGGGGACACCTTTTAGCATC-3’; mTnf: 5′-CATCTTCTCAAAATTCGAGTGACAA-509 

3′, 5′-TGGGAGTAGACAAGGTACAACCC-3′; mIL-6: 5’-510 

CAAGAAAGACAAAGCCAGAGTC-3’, 5’-GAAATTGGGGTAGGAAGGAC-3’. 511 

Threshold cycle Ct values were normalized to GAPDH, and gene fold change was 512 

determined by the relative comparison method, relative to the 0 h time point. 513 

 514 

Statistical analysis and alignment 515 

GraphPad Prism 8.0 software was used for data analysis and figure presentation. Data 516 

are shown as mean ± SEM. Statistical significance was determined by t tests (two-tailed 517 

and Mann-Whitney) for two groups, and one-way ANOVA (with Dunnett’s or Tukey’s 518 

multiple comparisons tests) for three or more groups. For the purpose of alignment 519 

presentation, sequences were obtained from the protein manufacturer or the NCBI 520 

protein database and figures were prepared using Jalview 2 [69]. 521 

  522 
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Figure legends 823 
 824 
 825 

Figure 1: L. major diminishes LPS-induced CXCL1 release by BMDMs. (A) BMDMs 826 

were treated with LPS (20 ng/ml) in the presence or absence of L. major (20 MOI) for 48h 827 

and cell culture supernatants were analyzed for the indicated cytokines. (B) BMDMs were 828 

treated with PBS or L. major (20 MOI) for 6h. Then, the cells were washed to remove 829 

extracellular L. major and stimulated with LPS for next 42h and cell culture supernatants 830 

were subjected to cytokines analysis as in (A). Data are representative of at least three 831 

independent experiments. Results are represented as mean + SEM. ***P<0.001. 832 

 833 

Figure 2: L. major inhibits CXCL1 detection in a cell free system. (A) Conditioned 834 

supernatants from 24h LPS (20 ng/ml)-stimulated BMDMs were treated with or without L. 835 

major for 24h and cytokines were analyzed by ELISA. (B) 24h LPS treated conditioned 836 

media from BMDMs were treated with or without L. major, L. major lysate (Lm lysate), or 837 

L. major culture supernatant (Lm sup) for 24h and cytokines were measured as in (A). 838 

Data are representative of at least three independent experiments. Results are 839 

represented as mean + SEM. ****P<0.0001. 840 

 841 

Figure 3: Selective inhibitory activity of L. major on recombinant murine CXCL1 (A) 842 

Sequence alignment of recombinant murine (rm) and recombinant human (rh) CXCL1, 843 

CXCL2, and CXCL8. (B) Rm-CXCL1, (C) rh-CXCL1, (D) rm-CXCL2, (E) rh-CXCL2, (F) 844 

rh-CXCL8, and (G) rm-TNF were incubated with or without Lm sup for indicated time-845 

points and ELISA was performed to quantify the mentioned cytokine/chemokines. (H) 846 
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40 

Rm-CXCL1 was incubated with or without Lm sup or Lm exosomes derived from indicated 847 

strains of L. major for 24h, and CXCL1 quantification was performed as in (G). Data are 848 

representative of at least three independent experiments. Results are represented as 849 

mean + SEM. ****P<0.0001. 850 

 851 

Figure 4: Biological activity of L. major-treated CXCL1 is diminished (A) Schematic 852 

representation of experimental design. (B) Recombinant murine CXCL1 was incubated 853 

with Lm lysate for 24h and CXCL1 levels was determined by ELISA. (C) BMDMs were 854 

treated Lm lysate, rm-CXCL1, or Lm lysate + rm-CXCL1 from (B) for indicated time-points 855 

and mRNA expression of pro-inflammatory genes were evaluated by qPCR. Data are 856 

representative of at least three independent experiments. 857 

 858 

Figure 5: L. major cleaves CXCL1 at the C-terminal end. (A) A silver-stained SDS-859 

PAGE demonstrate time-dependent cleavage of rm-CXCL1. Rm-CXCL1 were left alone 860 

or treated with Lm lysate for the indicated time points. Rm-CXCL1 bands were enlarged 861 

to show the cleavage products on right. (B) Indicated chemokines were treated with Lm 862 

lysate for indicated time-points and subjected to SDS-PAGE followed by silver-staining. 863 

(C) Hypothesized L. major cleavage site on rm-CXCL1 based on the observed cleaved 864 

rm-CXCL1 bands in (A and B). Arrow denotes possible cleavage site on CXCL1 (D) 865 

Identification of CXCL1 cleavage site by Mass Spectrometry analysis (raw data presented 866 

in Supplemental Fig. 4). Arrow represents cleavage site on rm-CXCL1 targeted by L. 867 

major.  Data in A and B are representative of at least three independent experiments.  868 

 869 
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Figure 6: L. major metalloprotease cleaves CXCL1. (A) Recombinant CXCL1 was 870 

incubated with or without Lm sup containing (B) Roche cOmplete protease inhibitor, or 871 

(C) Sigma P8340 protease inhibitor for indicated time-points and subjected to CXCL1 872 

quantification using ELISA. (D) Recombinant CXCL1 was treated with Lm sup in th 873 

presence of (E) EDTA or (F) 1,10-Phenanthroline for indicated time-points and CXCL1 874 

degradation determined by ELISA. (G) Recombinant CXCL1 was treated with Lm sup in 875 

the presence of 1,10-Phenanthroline for indicated time-points and CXCL1 degradation 876 

determined by silver staining. (H) Lm lysate was immunoprecipitated with GP63 antibody 877 

and Western blot was carried out to evaluate the levels of GP63 protein. (I) The fractions 878 

from (H) were incubated with rm-CXCL1 for indicated time-points and ELISA was 879 

performed to quantify the levels of CXCL1. Data are representative of at least three 880 

independent experiments. Results are represented as mean + SEM. ***P<0.001, 881 

****P<0.0001. 882 

 883 

 884 

Figure 7: Synthetic peptide spanning rm-CXCL1 cleavage site inhibits L. major-885 

mediated CXCL1 degradation. (A) Schematic of synthetic peptide generation. 886 

Alignment of full length murine CXCL1 with mature murine CXCL1 demonstrating the 887 

schematic for generation of peptide#1, peptide#2 and blocking peptide. Peptide#1 and 888 

peptide#2 were generated from the N-terminal region of full length murine CXCL1. 889 

Blocking peptide spanning the L. major cleavage site on murine CXCL1 were generated.   890 

Lm lysate-mediated degradation of rm-CXCL1 in the presence of (B) Activity of synthetic 891 

peptides from (A) in inhibiting L. major-mediated degradation of rm-CXCL1. (C) Model of 892 
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L. major metalloprotease function on CXCL1 during infection. Data are representative of 893 

at least three independent experiments. Results are represented as mean + SEM. 894 

****P<0.0001. 895 

Supplemental Figure 1: CXCL1, IL-6, and TNF secreted by LPS-activated BMDMs 896 

are stable in cell culture conditions. Conditioned supernatants from 24h LPS (20 897 

ng/ml) stimulated BMDMs were collected and further cultured for 0, 24, or 48h and stability 898 

of CXCL1, IL-6 and TNF in the culture were determined by ELISA. Data are representative 899 

of at least three independent experiments. Results are represented as mean + SEM. 900 

 901 

Supplemental Figure 2: Heat inactivation of Lm lysate or Lm sup rescues CXCL1 902 

detection. (A) Experimental Design. (B) Conditioned supernatants from 24h LPS (20 903 

ng/ml) stimulated BMDMs were collected and subjected to 24h treatment with control or 904 

boiled (20 min at 100ºC) Lm lysate or Lm sup. Levels of CXCL1, IL-6 and TNF were 905 

determined by ELISA. Results are represented as mean + SEM. ****P<0.0001. 906 

 907 

Supplemental Figure 3: L. major reduces rm-CXCL1 levels in culture. Rm-CXCL1 908 

were left alone or treated with Lm sup (control or boiled) for up to 48 hours in culture. The 909 

quantity of rm-CXCL1 in the culture at 0, 24 and 48 h were determined by ELISA. Data 910 

are representative of at least three independent experiments. Results are represented as 911 

mean + SEM. 912 

 913 

Supplemental Figure 4: Acute time course of L. major-induced CXCL1 cleavage. Rm-914 

CXCL1 were left alone or treated with Lm lysate for acute time points as indicated to 915 
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determine the precise time course of rm-CXCL1 cleavage. Silver staining was used to 916 

visualize rm-CXCL1. Data are representative of at least three independent experiments. 917 

 918 

Supplemental Figure 5: Identification of CXCL1 cleavage site and cleaved products. 919 

(A) A silver-stained SDS-PAGE showing cleavage of full length (BAND 1) and cleaved 920 

rm-CXCL1 (BAND 2). (B) Mass spectrometry analysis of BAND 1 (full length CXCL1) and 921 

tryptic peptide coverage analysis confirm a full length rm-CXCL1. (C) Mass spectrometry 922 

analysis of BAND 2 (cleaved CXCL1) and tryptic peptide coverage analysis confirm a C-923 

terminal end cleavage after K65 residue.  924 

 925 

Supplemental Figure 6: Proteolytic activity of L. major on CXCL1 is not prevented 926 

by Roche cOmplete Inhibitor or Marimastat (A) Conditioned supernatants from 24h 927 

LPS (20 ng/ml)-stimulated BMDMs were collected and treated with Lm sup in the 928 

presence or absence of Roche cOmplete protease inhibitor.  Levels of CXCL1, IL-6 and 929 

TNF were determined by ELISA. (B) Rm-CXCL1 was treated with Lm sup in the presence 930 

or absence of Marimastat (10PM) for indicated time-points and ELISA was performed to 931 

evaluate the levels of CXCL1. Data are representative of at least three independent 932 

experiments. Results are represented as mean + SEM. ***P<0.001, ****P<0.0001. 933 

 934 
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	Statistical analysis and alignment
	GraphPad Prism 8.0 software was used for data analysis and figure presentation. Data are shown as mean ± SEM. Statistical significance was determined by t tests (two-tailed and Mann-Whitney) for two groups, and one-way ANOVA (with Dunnett’s or Tukey’s...

