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Abstract

Aims: The residual cancer burden index is an important quantitative measure
used for assessing treatment response following neoadjuvant therapy for breast
cancer. It has shown to be predictive of overall survival and is composed of two
key metrics: qualitative assessment of lymph nodes and the percentage of invasive
or in-situ tumour cellularity (TC) in the tumour bed (TB). Currently, TC is assessed
through eye-balling of routine histopathology slides estimating the proportion of
tumour cells within the TB. With the advances in production of digitized slides and
increasing availability of slide scanners in pathology laboratories, there is potential
to measure TC using automated algorithms with greater precision and accuracy.
Methods: We describe two methods for automated TC scoring: 1) a traditional
approach to image analysis development whereby we mimic the pathologists’
workflow, and 2) a recent development in artificial intelligence in which features
are learned automatically in deep neural networks using image data alone.
Results: We show strong agreements between automated and manual analysis of
digital slides. Agreements between our trained deep neural networks and experts in
this study (0.82) approach the inter-rater agreements between pathologists (0.89).
We also reveal properties that are captured when we apply deep neural network
to whole slide images, and discuss the potential of using such visualisations to
improve upon TC assessment in the future.
Conclusions: TC scoring can be successfully automated by leveraging recent
advancements in artificial intelligence, thereby alleviating the burden of manual
analysis.
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1 Introduction

Neoadjuvant systemic therapy (NAT) for breast cancer (BC) is used to treat locally advanced and
operable BC to allow breast-conserving surgery [1]. NAT provides an opportunity to monitor clinical,
radiological and ultimately with pathologic response. Pathologic complete response (pCR) to NAT
has been shown to predict survival [2] and local recurrence [3]. As such, accurate assessment of
pathologic response to NAT provides important prognostic information.
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Figure 1: TB outlined in black in a digital slide scanned at 20X magnification (displayed at lower
resolution). Regions of interest are shown in a higher magnification on the right alongside TC scores
provided by an expert pathologist.

Standardized protocol to assess the extent of response with objective measures across multiple
institutions is essential. Symmans et al. [4] proposed a method for quantifying residual disease by
calculating the residual cancer burden index (RCB). RCB is recognized as long-term prognostic
utility [4] and has shown to be more predictive of overall survival compared to other measurements
[5]. The RCB index accounts for two key metrics: qualitative assessment of residual disease in the
breast (via tumour cellularity (TC) in the tumour bed (TB) and proportion of in situ component) and
assessment of lymph nodes). While RCB calculator produces a continuous score, scores are further
categorized in four RCB classes from pCR (RCB-0) to extensive residual disease (RCB-III) that are
easily reproducible [6]. Accurate quantification of TC is laborious, time consuming task that most
practicing pathologists are not trained to perform. Yet, TC is crucial for computing the RCB index.

Currently TC is estimated by manually estimation (“eyeballing”) the TB area at multiple microscopic
fields through several slides that represent the largest linear dimension, and comparing the involved
area with graphic standard skatches [7]. Such illustrations although helpful are semi-quantitative,
subjective measurements. A single case-level score is then obtained by taking an average of TC
scores from different fields and rounded to the nearest 10th percent. However, these scores can also
be reformulated on a continuous scale. As manual analysis is limited to predefined discrete values,
we are yet to discover the potential benefits of continuous TC scores for prognosis. In theory such
measurements can be more precise, however, acquiring them manually is infeasible given there is a
greater chance of error and reproducibility is not possible.

With latest technological advancement in digital pathology, including tissue scanners capable of
scanning whole slides at high resolutions, there is potential to leverage image analysis techniques
to gain more accurate metrics than is achievable by the human eye, and reduce pathology workload
by eliminating time-consuming tasks. TB region can be captured digitally on scanned slides, using
annotation tools (Figure 1). Towards an ultimate goal to automate RCB assessment we explored
methods to evaluate TC as the first step. In this paper, we report the use of automation to compute
TC scores using two different image analysis approaches (Figure 2):

1. An image analysis pipeline which encompasses hand-engineered features designed to mimic
the pathologist’s eye.

2. A deep learning approach which learns features directly from raw image data of digital
slides.

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/571190doi: bioRxiv preprint 

https://doi.org/10.1101/571190


Figure 2: Overview of two methods for generating automated TC score. Hand-engineered feature
approach is shown above and a cascade approach using two deep convolutional neural networks
below.

We performed detailed comparisons between the above approaches to validate the feasibility of
automation in the pathology workflow and measure the progression of image analysis techniques
over the last few years to perform RCB assessment, which currently relies heavily on expert opinion.
Whilst automation can also be used to locate the TB, in this paper we specifically report computation
of TC with predefined TB boundaries, with the intention of implementing this as part of a larger
pipeline in future work.

In this paper, we report the benefits and limitations of latest advancements in artificial intelligence,
compared to a more traditional hand-engineered approach for designing algorithms. To evaluate the
clinical relevance of automation on whole slide images, we also applied our trained models to high
resolution digital slides scanned at 20X, achievable in a matter of minutes. We show that a localised
analysis of TC on a patch-by-patch basis can be used to give a more descriptive representation of the
heterogeneity of the TB area and distribution of TC scores.

2 Methods

2.1 Data

To validate different methods for computing TC, representative sections from 64 patients with
residual invasive BC on resection specimens following NAT were acquired. Representative routine
Hematoxylin and Eosin glass slides were scanned at 20X magnification (0.5 lm/pixel). The study
was approved by the institutional ethics board. The distribution of our training and test sets were
such that patient data used for training was excluded from testing. Patches, each with dimensions
512x512 pixels, were hand-selected from 96 whole slide images, 25 of which were reserved for
testing purposes. In total we extracted 3,593 patches (training: 2579, test: 1121) which were then
labelled manually. Patches were selected to represent a wide representation of range of TC scores.

2.2 Manual interpretation

An experienced pathologist with focused practice in breast pathology and a breast pathology fellow
participated in the study. Each pathologist independently annotated identified patches on a digital
pathology viewing platform, Sedeen Viewer (Pathcore) [8]. For each patch, a TC score, ranging from
0% to 100% for assessment of RCB [7], was provided. Patches which did not contain any tumour
cells were assigned a TC score of 0%. For the test set, we retrieved two sets of annotations, from
Pathologist A and Pathologist B, and compared the variability between both experts. In addition
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Table 1: Number of patches in training and test set which fall into each TC score range.
TC Score Range

0% 1 - 30% 31 - 70% > 70%
Train (Pathologist A) 701 840 665 373
Test (Pathologist A) 242 225 301 353
Test (Pathologist B) 237 312 375 197

to continuous scores, both pathologists also classified each patch to low, medium, high TC and no
tumour cells. Annotations were performed independently therefore each expert was unaware of
scores assigned by the other.

The distribution of TC scores provided by each pathologist is given in Table 1. Note that the
distribution varies considerably at higher cellularity scores (i.e. >70%) within our test sets, with 18%
of Pathologist A’s scores within this range, and 31% in Pathologist B’s scores. Any automated system
must be able to adjust for these differences between our experts.

2.3 Hand-engineered features

To mimic scores provided by pathologists in an automated manner, we first designed a cell nuclei
segmentation algorithm to identify boundaries of individual cells of the following types: lymphocytes,
epithelial cells, malignant cells. Cells boundaries were identified by removing stain variations through
a series of color stretch and color space conversions. A support vector machine (SVM) classifier was
trained from several appearance, textural and spatial features extracted from identified cell nuclei,
producing a cell map during testing (Figure 2 (top)).

To compute a cellularity score, we aggregated the total number of cells of each cell type defined
above; the proportion of malignant cells to remaining cells correlated to the automated TC score. A
full description of this algorithm is given by Peikari et al. [9]

2.4 Deep convolutional neural network

Deep convolutional neural networks (DCNNs) are a family of architectures in artificial intelligence
which are derived from a conceptual model of the human brain [10]. Typically, a DCNN consists of
multiple layers, each of which contain several artificial neurons. By learning connections between
hundreds or even millions of these neurons through simple linear activation functions, we can capture
representations of complex data inputs. In a DCNN, groups of neurons are stacked in a series
of specialized layers which can model further abstract representations of the data without manual
intervention and this is where the power of DCNNs lie. Whilst there are many approaches to building
DCNNs, here we opted to finetune a prebuilt network called InceptionNet [11] which has been
well-adopted in the digital pathology. To compute TC scores, we trained two separate InceptionNets:
one that distinguished between healthy and cancerous tissue, and the other to output regression scores
on a continuous scale between 0% and 100%. Details of the implementation of the InceptionNet
models is provided in supplementary material (SP1).

3 Results

3.1 Agreements between manual and automated scores

A quantitative comparison between the two trained pathologists and our two proposed image analysis
pipelines are given in Table 2 in the form of intra-class correlation coefficient (ICC) values. ICC values
are reported between patches extracted from digital slides and indicate variability between our readers
in the independent test set. The reported intra-rater agreement between the study pathologists was
0.89. Both automated methods fell short of reported intra-rater agreements however automatically-
generated scores were more consistent as shown by reported confidence intervals (shown in square
brackets). This suggests that automated TC scores are consistently stable with scores retrieved from
both annotators, demonstrating the advantage of reproducibility with such systems. Out of the two
automated methods, DCNNs were superior, with an average agreement of 0.82, close to agreements
between our experts and substantially higher than hand-engineered features. Given the upper and
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Table 2: Two-way intra-class correlation (ICC) coefficients between two pathologists, and two
automated methods for predicting TC scores. Upper and lower bounds are given in square brackets.

ICC Coefficient (95% CI)
Pathologist A Hand-engineered [10] DCNN [12]

Pathologist A - 0.74 [0.70, 0.77] 0.83 [0.79, 0.86]
Pathologist B 0.89 [0.70, 0.95] 0.75 [0.71, 0.79] 0.81 [0.78, 0.84]

lower bounds of reported scores, DCNNs were on par with inter-rater agreements, and furthermore
are reproducible.

3.2 Comparison between hand-engineered features and deep learning

A breakdown of prediction accuracies between both automated systems revealed that the DCNN
trained to solely distinguish between health and cancerous tissue performed exceptionally well, giving
accuracy rates of 93% when compared against both experts. Our hand-engineered approach fell short
at 81% due to mis-identified malignant cell nuclei during the cell classification stage.

When comparing TC scores for those patches which contained cancerous structures ie TC scores >0%,
we found the hand-engineered approach produced cellularity scores with strong concordance with
expert pathologists (Figure 3 (left)). Whilst DCNN generated cellularity scores with good agreement
with our study experts, as shown by the line of best fit, generally scores were not as precise as the
hand-engineered approach. However the lack of outliers, particularly in the 0-30% range, meant that
DCNN performed the best overall. The hand-engineered approach particularly suffered in the >70%
range as shown in Figure 4, suggesting further work is needed to represent regions containing high
proportions of tumour cells.

4 Discussion

In this paper, we evaluated three methods for generating TC scores on digital slides of breast tissue
for the purposes of tumour burden assessment. The standard method for computing TC scores is by
visual interpretation of the TB which is a time consuming process and is limited to a rough estimate
of the proportion of cancerous structures in an irregular region of interest performed by an expert.
Furthermore, manual analysis is subject to inter- and intra-rater variability therefore reproducibility
of TC scores is a limitation in current practice.

To increase throughput, we designed two alternative methods for generating TC scores which leverage
advancements in technology to automatically analyse large whole slide images. One approach was to
mimic the way in which a pathologist would compute a score, by first identifying cells in a given
region of interest and then measuring the proportion of malignant to benign cells and stroma. This
approach has been well adopted in the digital pathology community which has led to a large literature
on cell classification and segmentation [12–14] and feature extraction methods [15].

In the last five years there has been a shift in medical image analysis to automatically extract features
from image data alone using deep architectures [10]. The advantages of this approach is that there
is no hand-engineering of features involved, and instead appropriate image properties are captured
in a model containing several layers. There has been previous work using deep neural networks
in digital pathology [16, 17] , and comparisons have shown we can achieve superior performance
compared to traditional feature extraction methods [18–20]. In this study, we also found that by
using deep neural networks, we could achieve strong agreements with scores produced by two study
pathologists; achieving ICC agreements of 0.82, approaching the intra-rater agreement of 0.89 and
with tighter upper and lower bounds, suggesting more stable measurements than can be achieved
manually. Our hand-engineered approach fell short at 0.75 agreement. Given these outcomes, there is
potential to use automation to alleviate the burden of manually estimating TC scores which would
allow assessments such as the RCB index more manageable on a routine basis.

Upon closer inspection of our results, we also found under certain conditions the use of latest
automated techniques produced TC scores more similar to our experts. A subset of the scores
produced by both automated systems are shown in Figure 5. The deep neural networks (D) performed
better when identifying healthy tissue (top row) and patches containing almost all cancerous tissue
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Figure 3: TC scores between 0% and 100% predicted by a hand-engineered approach (left) and deep
neural networks (right) against scores provided by an expert pathologist (Pathologist A).

Figure 4: Boxplot of distribution of scores within low, medium and high ranges of TC.
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Figure 5: Subset of results from TC test dataset for healthy tissue, and low/medium/high TC categories
(top to bottom). Scores are given for both automated systems (H = hand-engineered features, D =
deep convolutional neural networks) and an expert pathologist (P).

(bottom row). The cascade approach we adopted of training a separate cancer detector, proved to
be ideal for removing healthy tissue first, giving accuracy rates of 93% when identifying patches
containing only healthy structures. The advantage of the hand-engineered approach comes in
distinguishing between 30% to 60% TC, and this is demonstrated in Figure 3. Identifying individual
cells and then measuring proportion of malignancy has a positive effect on mimicking scores produced
by experts, whereas the deep neural network either over- or under-estimated in this particular range.

For the purposes of determining RCB, accurate quantification of TC in the lower range leading to
RCB-0 and RCB-1 classes, may enhance clinical prognostication by adopting automation. Symmans
et al. [4] reported RCB-1 was a good predictor of survival outcome with 89% of triple negative breast
cancer patients with RCB-1 relapse-free after 5 years; RCB-2 and RCB-3 were not prognostic. Given
that the deep neural networks excelled at low TC range, the use of automation for measuring TC as a
RCB component could potentially be improved by adding further training examples containing low
TC scores. As it is particularly difficult to quantify TC manually, automation offers an easier method
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for achieving precise scores which can further contribute to use of the RCB index as opposed to RCB
categorical readings.

It should be noted that whilst both automated methods reported here output scores on a continuous
scale, the scores provided to the systems during training were not. Manual assessment was performed
by providing an estimate of the proportion of carcinoma in each patch, often to the nearest 5% in our
experiments; some variations between automation and pathologists’ scores can be explained by the
scoring protocol.

Whilst here we specifically evaluated TC, the RCB index also encompasses a measure of the TB
area [7]. Assessment of TB size relies upon consideration of preNAT imaging, gross examination
and expert interpretation of the TB. In the current study, TC was assessed in patches derived from
predefined TB regions. As such, this work is only an initial step in automating the entire RCB
calculation pipeline. Further work is needed to identify “TB” and to distinguish between invasive
and in situ carcinoma in a fully automated pipeline. This may require assessment of multiple digital
slides per patient.

One of the main advantages of using automation is the ability to perform detailed analysis across
entire whole slide images to give further contextual information. An example of our trained deep
neural networks applied to whole slide images is shown in Figure 6, as heatmaps overlaid on original
digital slides. We have appended a higher resolution image in supplementary materials (SP2). Blue
overlays denotes low TC and red denotes patches with high TC scores. In its simplest form, this
tool can be used to navigate the reader to the most interesting parts of the tissue thus eliminating
around 90% of the slide. This is a desirable property in digital pathology as the substantial portion of
a pathologists’ time is performed sifting through benign tissue [21] and any method for increasing
throughput has significant advantage in the pathology workflow. It is important to note that the deep
neural network designed to distinguish between healthy and cancerous patches suffered when applied
to whole slide images compared to our patch-based test set. During training, the model was only
exposed to a small subset of healthy structures i.e. fatty tissue, folding tissue, red blood cells, and
were therefore unrecognizable during testing. We anticipate that with further training with more
healthy patches, such errors can be avoided. In the long term, a preprocessing phase to first identify
the TB region is recommended.

In Figure 6, we can also see a distinct distribution of TC scores across the TB, suggesting that a
global score of the entire TB may not reflect the characteristics of the TB accurately. There are
clearly “pockets” of high cellularity regions and most of the TB consists of healthy or low cellularity
regions. The RCB index recommends recording the average TC, however our results suggests an
alternative metric which takes into account spatial distribution of TC in the TB may offer new features
possibly advantageous for assessing tumour burden. Further work is also needed to investigate using
continuous scores for clinical assessment, specifically the relationship between heterogeneity of the
TB and prognosis.

To summarize, we performed a comparison between manual and automated assessment of TC and
showed that we can gain reproducible scores with automation, and superior performance with deep
neural networks. We showed that leveraging such tools on whole slide images can give us richer
representations of tumour heterogeneity across the TB, and can potentially be used as an alternative
metric to approximated TC scores currently used in practice.
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Figure 6: TC scores produced by a trained deep neural network overlaid on whole slide images.
Scores are provided on a patch-by-patch level, where blue denotes healthy (0% TC) and red denotes
100% TC. Some close-up results of cellularity scores are provided to the right of each whole slide
image.
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