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Abstract

Although methods for tracking animals underwater exist, they frequently involve costly
infrastructure investment, or capture and manipulation of animals to affix or implant
tags. These practical concerns limit the taxonomic coverage of aquatic movement
ecology studies and implementation in areas where high infrastructure investment is
impossible. Here we present a method based on deep-learning and
structure-from-motion, with which we can accurately determine the 3D location of
animals, the structure of the environment in which they are moving. Further
behavioural decomposition of the body position and contour of animals subsequently
allow quantifying the behavioural states of each interacting animal. This approach can
be used with minimal infrastructure and without confining animals to to a fixed area, or
capturing and interfering with them in any way. With this approach, we are able to
track single individuals (Conger Eel, Conger oceanus), small heterospecific groups
(Mullus surmuletus, Diplodus sp.), and schools of animals (Tanganyikan cichlids
Lamprologus callipterus) in freshwater and marine systems, and in habitats ranging in
environmental complexity. Positional information was highly accurate, with errors as
low as 1.67% of body length. Tracking data was embedded in 3D environmental models
that could be used to examine collective decision making, obstacle avoidance, and visual
connectivity of groups. By analyzing body contour and position, we were also able to
use unsupervised classification to quantify the kinematic behavioural states of each
animal. The proposed framework allows us to understand animal behaviour in aquatic
systems at an unprecedented resolution and a fraction of the cost of established
methodologies, with minimal domain expertise at the data acquisition or analysis phase
required. Implementing this method, research can be conducted in a wide range of field
contexts to collect laboratory standard data, vastly expanding both the taxonomic and
environmental coverage of quantitative animal movement analysis with a low-cost,
open-source solution.
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Introduction 1

Understanding the movement and behaviour of animals in their natural habitats is the 2

ultimate goal of behavioural and movement ecology. By situating our studies in the 3

natural world, we have the potential to uncover the natural processes of selection acting 4

on the behaviour in natural populations, in a manner that cannot be achieved through 5

lab studies alone. The ongoing advance of animal tracking and biologging has the 6

potential to revolutionize not only the scale of data collected from wild systems, but 7

also the types of questions that can subsequently be answered. Incorporating 8

geographical data has already given insights, for example, into the homing behaviour of 9

reef fish, migratory patterns of birds, or the breeding site specificity of sea 10

turtles [7, 17,46]. Great advances in systems biology have further been made through 11

the study of movement ecology, understanding migratory patterns of birds traversing 12

their physical environment or the decision-making processes at play within primate 13

groups maneuvering through difficult terrain [36,48]. Understanding these aspects of 14

animal movement can also vastly improve management strategies [8, 9], for example in 15

the creation of protected areas that incorporate bird migratory routes [43] or by 16

reducing by-catch with dynamic habitat usage models [31]. 17

Yet the application of techniques that meet the challenges of working in naturally 18

complex environments is not straightforward, with practical, financial, and analytical 19

issues often precluding effective usage and uptake of these approaches. This problem is 20

disproportionately represented in certain ecosystems, with accessible solutions existing 21

for some that simply do not work in others - for example the Global Positioning System 22

(GPS) being very effective over savanna but failing entirely in underwater applications. 23

These technical limitations can ultimately affect our understanding of entire ecosystems, 24

with knock-on effects to all areas of knowledge and management. This becomes a 25

fundamental problem if certain ecosystems, species, or habitat types fall behind the 26

advances possible in other systems, because as the information available becomes 27

limiting so too do options for informed management and discovery. 28

The inequality of tracking and animal movement approaches is perhaps nowhere 29

better represented than by our lack of understanding of the oceans. Although the 30

oceans constitute up to 90% of habitable ecosystems worldwide, as little as 5% have 31

been explored [20,34,37]. Within the oceans, coastal inshore areas have the greatest 32

species diversity, with approximately 80% of fish species (the most speciose group of 33

vertebrates) inhabiting the shallow, littoral zone [41], while providing over 75% of 34

commercial seafood landings [15]. Coastal regions in both marine and freshwater 35

environments are also those that are of greatest interest for eco-tourism, community 36

fisheries, and industry, while simultaneously being most affected by habitat degradation, 37

exploitation, and anthropogenic pollution. 38

Yet aquatic ecosystems appear to be poorly represented in movement ecology 39

research with only nine publications in the journal Movement Ecology containing one of 40

the following keywords in the title: ’ocean’, ’aquatic’, ’littoral’, ’marine’, ’fish’, ’sea’ [21]. 41

Moreover, of the research into marine or freshwater animal movement, there is a heavy 42

bias towards larger marine fauna, which often inhabit open oceanic areas [21]. This gap 43

of knowledge comes as a surprise when considering the vast attention coastal marine 44

systems receive in other areas of economic and usage management. Knowledge of the 45

coastal regions is essential for establishing sanctuaries and sustainable concepts of ocean 46

preservation [16] and movement data plays a vital role in this process, in that it gives 47

detailed information about the location, preferred habitat and temporal distribution of 48

organisms [28]. 49

In the context of animal tracking, the tendency for studies to focus on larger and 50

more charismatic animals is understandable from both a technical and engagement 51

perspective. The noticeable size bias is mostly caused by the technical constraints of 52
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applied tracking methods, many of which traditionally rely on the application of tags 53

that generate positional data that is most informative for larger animals. Tracking of 54

tagged animals via GPS allows a sparse positioning of animals that surface more or less 55

frequently, while Pop-up satellite archival tags (PSATs) integrate surface positions with 56

logged gyroscope and accelerometer data for underwater position estimates [49]. Not 57

only does the spatial resolution of respective tracking systems, e.g. 4.9m for GPS, limit 58

the possibilities of behavioral analyses on a fine scale, but also excludes densely 59

interacting animals from these research approaches [51]. Alternatively, ultrasonic 60

acoustic telemetry can be used for underwater tracking of smaller animals and those in 61

larger groups [30]. However, this approach is limited to stationary sites for positioning 62

of the acoustic receivers. Further, the cost, maintenance, and installation of these 63

systems preclude their effective use in the majority of coastal systems and for most 64

users. Additionally, these methods require animals to be captured and equipped with 65

tags that should not exceed 5% of the animals weight [10,28,30], rendering current GPS 66

and PSAT tags problematic for small animals. While acoustic tags are small enough for 67

injection, the increased handling time associated with these invasive measures can lead 68

to additional stress for the animals, while the tag itself may disturb the animals’ natural 69

behaviour. Hence, approaches that facilitate the collection of behavioural data in 70

smaller animals, which compose the bulk of all species, are required. 71

The second source of this bias towards larger species is potentially associated with 72

the greater engagement of the public funding bodies with charismatic megafauna. While 73

we do not make any judgments about the value of studying one taxon over another, the 74

benefits of techniques that are applicable to more species are beneficial in opening up 75

avenues of novel research and insight, which may both contribute to a greater public 76

understanding of ecosystems, and help reveal unanticipated behavioural and cognitive 77

abilities in taxa such as fish [6, 29,38]. Moreover, many of the established model 78

organisms are small, and the combination of approaches from highly quantitative 79

laboratory analyses with studies of natural ecology would open synergistic avenues of 80

research in species in which we currently lack information about their natural behaviour 81

and movement [47]. 82

Overall, the benefits of applying these tracking and behavioural analysis techniques 83

in a flexible, accessible, and broadly applicable manner provide ample reward for 84

working to overcome limitations in systems and species coverage. This will improve 85

conservation, management, and scientific understanding of natural systems across scales 86

and conditions. Comparison of patterns of movement and search behaviour across a 87

wider range of taxa may also reveal common rules to shared ecological problems, 88

opening the potential for a fundamental understanding of the mechanisms and 89

evolutionary origins of movement [21,25]. Finally, with the application of quantitative 90

behaviour and movement analyses in natural settings, the trade-off between 91

high-resolution but contrived lab data and lower-resolution but naturalistic field data is 92

lessened. Recent advances in behavioural decomposition [3, 23] and network 93

analysis [11,12] may then be employed in field settings, vastly improving our 94

understanding of behaviour and movement in the wild [36]. 95

In this paper, we present an open-source, low-cost approach based on consumer 96

grade cameras to understand the movement and behaviour of animals of almost any size, 97

as well as reconstruct the traversed environment, in coastal marine and freshwater 98

ecosystems. Our approach synthesizes existing methodologies in machine-vision, neural 99

network based machine learning, behavioural decomposition, and network analyses into 100

a coherent framework that can be deployed in a variety of systems without 101

domain-specific expertise. Object detection is achieved through computer vision [24], 102

which has been successfully employed in terrestrial systems, through e.g. drone based 103

video, yielding highly resolved movement data at the fine scale over broad 104
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environmental contexts. In addition to animal trajectories, this method also provides 105

environmental data that adds the possibility to study interactions of mobile animals 106

with their natural habitat [48]. While aerial drone-based approaches may also be used 107

in some aquatic systems, they are limited to extremely shallow water and large 108

animals [40] whereas the application we advocate allows data to be collected on any 109

animal that can be visualized with cameras, hence potentially down to the millimetre 110

scale. Subsequently, calculation of movement, interactions, and postures of animals, in 111

combination with the construction of 3D models of the terrain with which animals 112

interact is achieved through the open-source analysis pathway. Set-up costs can be as 113

small as mobile phone cameras in waterproof bags, and can be taken into habitats 114

which are otherwise explored by snorkeling, diving, or with the use of remotely operated 115

underwater vehicles (ROVs). Analysis can be performed on open-source computing 116

services or clusters (e.g. Google Colaboratory) or local GPU-accelerated machines. 117

Overall, this method provides a low-cost approach for measuring the movement and 118

behaviour of aquatic animals that can be implemented across scales and contexts. 119

Materials and Methods 120

Three data sets of varying complexity were used to demonstrate the versatility of the 121

proposed method. These were chosen to range from single animals (’single’; Conger 122

oceanicus) and small heterospecific groups (’mixed’; Mullus surmuletus, Diplodus sp.) to 123

schools of conspecific individuals (’school’; Lamprologus callipterus) under simple and 124

complex environmental conditions, resulting in the data sets single, mixed and school 125

respectively. The single and mixed data sets were created while snorkeling at the 126

surface, using a stereo camera set-up (2x GoPro) at STARESO, Corsica (Submarine 127

and Oceanographic Research Station). The school data set was collected via SCUBA 128

(5-8 m) with a multi-camera array (12x GoPro) in Lake Tanganyika, Zambia 129

(Tanganyika Science Lodge, Mpulungu). In contrast to the single and mixed data sets 130

on untagged individuals, tags made of waterproof paper (8×8 mm) were attached 131

anterior to the dorsal fin of the fish for the school data set [18]. Observations done prior 132

suggest that these tags do not modify behaviour in comparison to untagged individuals. 133

Automated animal detection and tracking 134

Since all data was collected in form of videos, animal tracking was required for 135

subsequent behavioral analysis. Camera synchronization was achieved using a 136

convolution of Fourier transformed audio signals to determine the video offsets in order 137

to enable the advantages of a multiple view setup. The synchronized videos were 138

tracked independently using an implementation of a Mask and Region based 139

Convolution Neural Network (Mask R-CNN) for precise object detection at a temporal 140

sampling rate of either 30 Hz (single, mixed) or 60 Hz (school) [1, 22]. Mask R-CNN 141

models were trained on small subsets of labeled video frames with 40, 80 and 160 142

images for single, mixed and school respectively. The original image resolutions of 143

2704×1520 px (single, school) and 3840×2160 px (mixed) were downsampled during the 144

training and prediction phase to achieve better performance. After training, the models 145

were able to accurately detect and segment the observed animals, which was visually 146

confirmed with predictions done on validation data sets. 147

The predicted masks were either used to estimate entire poses of the tracked animals 148

(single, mixed) or to calculate centroids of the tags in case of the school data set. 149

Established morphological image processing was used to skeletonize the binary mask 150

predictions into approximations of the animals’ spines, on which a fixed number of 151

points was equidistantly distributed for fish pose estimation. Both the spine points and 152
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the tag centroid represent pixel coordinates of detected animals in further data 153

processing. Partitioned trajectories were generated from detections with a simple 154

combination of nearest-neighbor assignment and filtering for linear motion over a short 155

time window, reducing later quality control and manual track identification for 156

continuous trajectories to a minimum. 157

Structure from motion 158

The field of computer vision has developed powerful techniques that have found 159

applications in vastly different fields of science [14,19,52]. The concept of 160

Structure-from-Motion (SfM) is one such method that addresses the large scale 161

optimization problem of retrieving three dimensional information from planar 162

images [32]. This approach relies on a static background scene, from which stationary 163

features can be matched by observing them from different perspectives. This results in 164

a set of images, in which the feature-rich key points are first detected and subsequently 165

used to compute a 3D reconstruction of the scene and the corresponding view point 166

positions. As shown in (1) and (2), a real world 3D point M ′ (consisting of x, y, z) can 167

be projected to the image plane of an observing camera by multiplying the camera’s 168

intrinsic matrix K (consisting of focal lengths fx, fy and principal point cx, cy), with 169

the camera’s joint rotation-translation matrix [R|t] and M ′, resulting in the 170

corresponding image point m′ (consisting of pixel coordinates u, v, scaled by s) [4]. By 171

extension, this can be used to resolve the ray casting from a camera position towards 172

the actual 3D coordinates of a point given the 2D image projection of that point with 173

known camera parameters. Due to this projective geometry, it is not possible to infer at 174

which depth a point is positioned on its ray from a single perspective. SfM is able to 175

circumvent this problem by tracking mutually-observed image points (m′) across images 176

of multiple camera view points. As a result, the points can be triangulated in 3D space 177

(M ′), representing the optimal intersections of their respective rays pointing from the 178

cameras positions towards them. This approach is also able to numerically solve the 179

multi-view system of the cameras relative rotation (R), translation (t) and intrinsic (K) 180

matrices and to retrieve the optimal camera distortion parameters (d). 181

m′ = K[R|t]M ′ (1)

s

uv
1

 =

fx 0 cx
0 fy cy
0 0 1

r11 r21 r13 t1
r12 r22 r23 t2
r13 r23 r33 t3



x
y
z
1

 (2)

Here, SfM was incorporated into the process of data acquisition in order to gain 182

information about the exact camera positions, which was done using the general-purpose 183

and open-access pipeline COLMAP [44,45]. The synchronized videos were split into 184

images, serving as input for the reconstruction process, during which the cameras are 185

calibrated (K, d) and relative extrinsic parameters (R, t) are computed, so that all 186

camera projections relate to a shared coordinate system. Every image results in one 187

corresponding point along the reconstructed, 3D camera path of the recording, where 188

the number of images determines the temporal resolution of resolved camera motion. 189

Only a subset of all video frames were used for reconstruction, sampling the videos with 190

a rate of 3 Hz. This reduces the computational load, since COLMAP optimizes a 191

smaller number of parameters. In addition, this could improve reconstruction accuracy, 192

as the images still had sufficient visual overlap, but increased angles between viewpoints. 193

The retrieved camera parameters were then interpolated to match the acquisition rate 194
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of animal tracking (60 Hz), assuring that reference camera parameters are given for each 195

recorded data point by simulating a continuous camera path. 196

Reconstruction of animal trajectories 197

It is necessary to resolve the camera motion in order to track moving animals with 198

non-stationary cameras, since the camera motion will also be represented in the pixel 199

coordinate trajectories of the animals. With camera information (K, d) and relative 200

perspective transformations (R, t) for the entire camera paths retrieved from SfM, and 201

multi-view animal trajectories available, a triangulation approach similar to SfM can be 202

used to compute 3D animal trajectories. Positions of animals observed in exactly two 203

cameras were triangulated using an OpenCV implementation of the direct linear 204

transformation algorithm, while positions of animals observed in more than two cameras 205

were triangulated using singular value decomposition following an OpenCV 206

implementation [4, 19]. Additionally, positions of animals temporarily observed only in 207

one camera were projected to the world coordinate frame by estimating the depth 208

component as an interpolation of previous triangulation results. Through the recovered 209

camera positions, the camera motion is nullified in the resulting 3D trajectories. Thus, 210

they provide the same information as trajectories recorded with a fixed camera setup 211

(Fig. 1). Animal trajectories and the corresponding reconstructions were scaled, so that 212

the distances between the reconstructed camera locations equal the actual distances 213

within the multi-view camera setup. As a result, all observations are represented on a 214

real world scale. 215

Figure 1. Schematic workflow. Data processing starts with acquisition of synchro-
nized, multi-view videos, which serve as input to the SfM reconstruction pipeline to
recover camera positions and movement. In addition, Mask R-CNN predictions trained
on a subset of images result in segmented masks, from which animal poses can be esti-
mated. They serve as locations of multi-view animals trajectories in the pixel coordinate
system. These trajectories can be triangulated using the known camera parameters and
positions from the SfM pipeline, yielding 3D animal trajectories and poses. Integrating
the environmental information from the scene reconstruction, these data can be used for
in depth downstream analyses.

Results 216

Here we combine Mask-RCNN aided animal detection and tracking with SfM scene 217

reconstruction and triangulation of 3D animal trajectories to obtain high resolution 218

data directly from videos taken while snorkeling or diving in the field. Trajectories were 219

successfully obtained from large groups school, small groups mixed, and single 220

individuals single, and the environment through which animals were moving computed 221

6/15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 9, 2019. ; https://doi.org/10.1101/571232doi: bioRxiv preprint 

https://doi.org/10.1101/571232


and reconstructed. Accurate estimation of fish body posture in 3D space for the single 222

and mixed data sets (Fig. 3) was achieved by inference of spine points from the 223

detection results (masks). Triangulation of the corresponding, multi-view animal 224

detections resulted in small spatial errors (root-mean-square errors (RMSEs) 16.00 px, 225

5.27 px, 10.84 px of the trajectories 3D to 2D reprojections for the three data sets 226

respectively single, mixed, school). This is equivalent to an average detection accuracy 227

on the video images of 3.0% of the animals body length for the mixed and 1.67% length 228

in the single data set. In the case of the school data set, which used tagging approaches, 229

the average accuracy was lower at 29.4% of the tag diagonal (11.3 mm). 230

The acquired trajectories subsequently allowed to perform example quantitative 231

downstream analyses developed in lab based applications. Trajectories themselves only 232

represent one dimensional time series of the animals’ velocities, but estimated poses add 233

a multitude of dimensions to these time series, such as the curvature or the width of the 234

animals at every spine point. This data can be used for high throughput behavioral 235

analyses based on unsupervised or supervised techniques [3, 26]. Here we used a 236

simplified, unsupervised approach to classify motion states from trajectory data of the 237

school data set. Wavelet transformations were applied on the time series of speed, 238

acceleration and directional change to achieve a representation of animal motion in 239

high-dimensional space. This was done in line with established methods, embedding 240

instantaneous motion in broader time scales [3]. Non-linear dimensionality reduction 241

was used to discretize this feature-rich data in a low dimensional embedding via 242

FIt-SNE [33], resulting in motion states through which the animals cycle in a 243

non-Markovian fashion. Animals were observed to show synchronization of these states, 244

demonstrating that the data set could be used to infer the animals’ schooling properties 245

(Fig. 2). 246
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Figure 2. Downstream analyses. A Interaction network of the fish school at a single
time step. Colors indicate the amount and sign of relative time shift to the maximally
correlated individual (arrow). The Voronoi diagram gives an estimate of the group
packing structure. B Polar probability density showing the likelihood of an individual
to be present in any location (<0.5 m) relative to a focal individual. C Detailed view of
trajectories, color coded by movement classification based on FIt-SNE embedding. D
Overview showing the class proportions throughout the entire trial.

In order to resolve the interactions within the fish school, euclidean distances were 247

calculated between individuals (x, y, z coordinates) resulting in a spatial proximity 248

matrix for each frame. From this matrix, the substructure within the school was 249

revealed through hierarchical clustering and by utilizing the elbow method to 250

distinguish the optimal number of subgroups. Within these substructures the 251

leader-follower relationships could be resolved over time through directional correlation 252

analysis [35] (Fig. 2). 253
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Figure 3. 3D environments and animal trajectories. A Reconstructed environ-
ment as dense point cloud (green) resulting from high coverage footage, containing 12
individual tracks of L. callipterus (color) over a duration of 35 s. B Pose of single
individual C. oceanicus. (red) shown every second moving through the environment
reconstructed from sparsely populated coverage over a total of 20 s. C Trajectories of
M. surmuletus (orange) and Diplodus sp. (green) over a duration of 7.1 min. Black bars
denote scale (1 m). See additional Supporting Information for links to high resolution
images.

Discussion 254

The method we demonstrate here allows high resolution, 3D information of animal 255

motion and interactions to be acquired in aquatic ecosystems. While the techniques are 256

based on relatively advanced computational approaches, the open-source package we 257

present requires little domain expertise and can be implemented with low-cost consumer 258

grade cameras. The incorporation of these approaches will facilitate unprecedented 259

applications for field based research across systems, scales, and hopefully users. Our 260

approach allows data collection while swimming or snorkeling, and therefore makes it 261

appropriate for general usage with minimal investment into infrastructure, equipment, 262

or training. Although analyses are computationally demanding, they can be achieved on 263

an average GPU or free cloud-based computing services. The lack of high-end hardware 264

therefore does not interfere with any of the steps required for this method. 265

Although techniques for tracking of small aquatic animals do exist (e.g. telemetry, or 266

in future, underwater time-of-flight cameras), these often have the considerable 267

drawback of tagging and handling the animals or high infrastructure costs. In contrast, 268

our approach does not require animals to be tagged, nor specialized equipment to be 269
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deployed. Our approach is also highly flexible to specific implementation requirements, 270

for instance it can be used in clear water to resolve body posture and fine scale 271

interactions, or can be combined with some form of tagging approach in conditions of 272

high turbidity for example. Because the R-CNN approach can take any input, it is not 273

tied to one particular animal shape or visual scene, and can therefore be flexibly used 274

even in demanding conditions. While it is more limited in range, underwater filming 275

comes as an unintrusive alternative to telemetry, and adds a data layer through the 276

collection of environmental information. Although here we do not provide any analyses 277

of environmental structure, this type of information is valuable when addressing 278

questions on e.g. habitat segmentation and environmental complexity [13,27]. 279

While our approach offers many benefits in terms of applicability and data 280

acquisition, it also suffers from some limitations. The SfM approach relies on the 281

reconstructed components to be static, because key-points are assumed to have the 282

same location over time. Any moving particles, besides the object of interest, will result 283

in degradation of the reconstruction and higher reprojection errors. Very complex 284

environments, occlusions of the animals and highly variable lighting conditions are 285

detrimental to the detection ability and require consideration. The 3D pose estimation 286

is highly reliant on accurate detections and can therefore be compromised by a poorly 287

estimated animal shape during Mask R-CNN segmentation. In these cases, a less 288

detailed approximation of the animals’ positions such as the mask centroid are favorable 289

and can still be reliably employed as in the school example. The error in estimating 290

animal location and pose can be partially explained by detection errors of the Mask 291

R-CNN and inaccuracies derived from the trajectory triangulation. The latter can be 292

estimated as RMSE of the reprojections from 3D back to 2D pixel coordinates. 293

Substantial variation of error between body width and length (single data set) show 294

that the reprojection error scales with object shape. Generally, error will increase with 295

decreasing size of the object, although this size is only relative to the image frame itself, 296

and so can be resolved with zoom lenses or close-up filming of smaller animals. In order 297

to ground truth the 3D projection and resolve the total error, a calibrated, under-water 298

space would be required. This was not possible in the presented trials since all data sets 299

were recorded in the natural environment, allowing the animals to move freely without 300

the boundaries of such a standardized space. Further, referencing the reconstructions to 301

a metric scale is only applicable if the distance between cameras is known or the 302

reconstructions contain objects of known size. This was only the case for two (mixed, 303

school) of the three example data sets. 304

An additional limitation of our approach is associated with the need to annotate 305

images and train detection networks. However, this additional time investment is 306

subsequently offset by the time saved in subsequent observations by using automated 307

detection and classification of behavioural states, for instance by quantifying the 308

behavioural repertoire of the animal using unsupervised machine learning 309

techniques [3,42,50]. The adaptation to three dimensional motion analyses have allowed 310

for a better understanding of the phenotype and development of animal behaviours [53]. 311

In addition, 3D pose estimation is now possible for wild animals, enabling exact 312

reconstruction of the entire animal [54]. There has been a shift in how animal movement 313

is analyzed in light of computational ethological approaches [5, 39,42], with patterns of 314

motion able to be objectively disentangled, revealing the underlying behavioural syntax 315

to the observer. Automated approaches based on video, or even audio, recordings may 316

also overcome sensory limitations of human systems, allowing a better understanding of 317

the sensory umwelt of study species [25] and also facilitate novel experimental 318

designs [2, 42] that can tackle questions of the proximate and ultimate causality of 319

behaviour [5, 39,54]. These methods are gaining interest and sharply contrast with the 320

traditional approach of trained specialists creating behavioural ethograms, but can 321
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usefully be combined and compared to gain further insight into the structure of animal 322

behaviour, potentially generating a more objective and standardized approach to the 323

field of behavioural studies [5]. 324

Advances in analytical prospects for behavioural studies in the lab, coupled with 325

quantitative tracking approaches of animals in the wild, opens the possibility to advance 326

our knowledge of natural systems with highly quantitative data streams [5, 28,39]. 327

However, for effective uptake of these techniques, a common, cost-efficient framework is 328

required. Here, the acquisition of both animal movement and environmental 329

information is combined into a single data collection pipeline. It is implemented in a 330

cost-efficient and open-source fashion, yet it can be easily integrated into more exclusive 331

deployment and remote sensing applications, such as deep sea ROVs, widening the 332

possibilities in the studies of aquatic animals. 333

Supporting Information 334

3D environment and track reconstructions 335

1. single: C. oceanicus @ STARESO, Corsica 336
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3. school : L. callipterus @ Kasakalwe, Tanganyika 338
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