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1. Abstract 
We perceive the world as a series of events and fluidly segment them into episodes. Although 
individuals generally agree on the segmentation at the occurrence of a salient event, the number 
of determined segments is variable. Working memory plays a key role in tracking and segmenting 
a sequence of events; however, it is unclear which aspect of working memory is related to 
individual variability in event segmentation. We used computational modeling to extract the 
working memory capacity and forgetting rate of healthy adults (n=36) from an association learning 
task, and we studied a link between individuals’ working memory limitations and the subjective 
number of determined events in three movies with different storylines. We found that memory 
decay, measured in the learning task, is related to event segmentation: Participants who 
perceived either a very low (under-segmenters) or a very high (over-segmenters) number of 
events had a higher forgetting rate. We observed that under-segmenters performed better on a 
temporal recognition task for the movie with a linear storyline and an overarching story, benefiting 
from the schema. In contrast, the over-segmenters performed better at free recall than under-
segmenters for all the movies. The results provide evidence that variability in forgetting rate is 
linked to the variability in event perception. 

2. Introduction 
We experience the world as a series of events and perceive events as segments (Zacks et al., 
2006; Zacks and Swallow, 2007; Zacks et al., 2007). Every individual’s experience is different in 
terms of how this flow of events is segmented. Segmentation occurs with perceiving a salient 
event - e.g., a change in the situation, the characters, or the goal (Jafarpour et al., 2019; 
Radvansky and Zacks, 2017). According to the current model of event segmentation (Zacks et 
al., 2007), the working memory system tracks events to help define new event boundaries.; 
segmentation is determined by attention (Bailey et al., 2017) and expectations (Hymel et al., 
2016). However, the link between working memory limitations and event segmentation has not 
been directly shown. 

Working memory is limited in two ways: the amount of information retained, and the duration of 
maintenance of this information (Baddeley, 2003, 2012; Bays and Husain, 2008; D’Esposito and 
Postle, 2015). These two limitations are often measured as working memory capacity, which 
accounts for how many items can be held in memory (Baddeley, 1992; Bays et al., 2009; Cowan, 
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2010; Vogel and Machizawa, 2004), and the forgetting rate, that limits how long the information 
persists in the face of interference (Baddeley, 2012; Collins and Frank, 2012). A challenge in 
measuring these limitations is that other cognitive systems such as attention can contribute to the 
accuracy of short term memory (Jafarpour et al., 2017; Rose et al., 2016; Zokaei et al., 2014). 

Collins and Frank (2012) designed an association learning task that disentangled the working 
memory and learning systems and enabled the identification of both limitations of working memory 
(capacity and decay). In each learning block of the task, the stimulus set size was constant and 
the set size varied across the learning blocks. This design allowed for investigating the working 
memory forgetting rate and capacity separately. They showed that increasing the number of 
stimulus-action associations to be learned (the set size) slowed the learning process, since the 
working memory system became less successful at contributing to the tracking of large sets of 
stimulus-action associations (Collins, 2018). In addition, associations learned quickly within a 
small set size were less durable and decayed more rapidly (Collins, 2018).  

Here, we examined the relationship between event segmentation and working memory 
characteristics. Healthy participants watched three movies with different storylines and performed 
a source memory test. Following this, they performed the association learning task (Collins and 
Frank, 2012). Finally, the participants watched the movies again and were asked to segment the 
movies, determining when new events occurred. We applied a reinforcement learning and 
working memory model (RLWM) to performance on the association learning task to estimate each 
participant’s working memory capacity and forgetting rate based on Collins et al. (2017). We 
determined the cross-task relationship between the variation in the number of determined events 
in the movies with working memory characteristics as estimated from the learning task.  

3. Methods and Material 

3.1. Participants  

36 healthy adults (25 female) were recruited through the online University of Berkeley Psychology 
Department Research Participation Program. Participants provided informed consent and were 
compensated ($36 or 3 course-credits). The Office for the Protection of Human Subjects of the 
University of California, Berkeley approved the study protocol. The mean age was 20.3 (SD = 1.9) 
and ranged from 18 to 27. All were all right-handed by self-report. We discarded one participant 
because she identified two standard deviations more events than the group average. 

3.2. Experimental design 

The experiment ran on a desktop PC and a standard TFT monitor, in a sound-attenuated 
recording room. It consisted of four parts. First, participants watched three mute animations (each 
~3 minutes long) with differing storylines (Figure 1A, see the Supplementary material for the 
details about the animations). They then performed 35 recognition memory tests per movie. At 
each test, subjects saw two scenes from a movie - located on the left and right sides of the screen 
for 2 seconds. Then a prompt appeared asking the participant to indicate which of the two scenes 
happened ‘earlier’ or ‘later’ (Figure 1B). Participants used left or right arrow keys to respond. 

We then ran a version of an association learning task (Collins et al., 2017) to evaluate working 
memory characteristics, namely working memory capacity and forgetting rate. In this task, 
participants used their dominant hand to select from three possible actions (J, K, and L from a 
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keyboard) when they saw an image. They used trial and error to learn the correct image-action 
association. The probability of an action being paired with an image was equal (1/3); thus, an 
action could pair with more than one stimulus. Participants learned the associations in 12 
repetitions of each stimulus; the repetitions were pseudo-randomly interleaved. This procedure 
repeated in a block-design and included 22 blocks (3 blocks of set sizes 6, 5, and 4; 4 blocks of 
set size 3, and 6 blocks of set size 2). The stimulus set-size varied in each block to manipulate 
the requirement for capacity-limited and delay-sensitive working memory (Figure 1C). Participants 
studied the whole stimuli set at the beginning of each block. 

The reward value for a correct response differed across stimuli; an incorrect response yielded no 
reward. Only one action for a stimulus was correct and each correct stimulus–action association 
was assigned a probability (p) of yielding a 2-point versus a 1-point reward, and this probability 
was either high (p = .80), medium (p = .50), or low (p = .20). We counter-balanced the p within 
participant and blocks to ensure an equal overall value of different set sizes and actions. 
Participants had 1.4 s to respond. The feedback was displayed for 0.5 s. There was an inter-
stimulus interval of 0.5 - 0.8 s in which a fixation cross was shown. 

After performing the association learning task, participants watched the movies again; this time 
they segmented the movies by pressing a space-bar to indicate the start of a new event. We 
instructed them to press a key "whenever something new happened." We told the participants: 
"we want to segment this movie into episodes", and we explained that segmentation could occur 
as often as they liked. The consistency of frequency of event segmentation for each participant 
was determined across the three movies. Finally, participants performed a surprise free recall 
test, where they were asked to write a paragraph describing the story of each movie. Participants 
were instructed not to worry about grammar and wording - simply “write what came to their mind.” 
The free recall test allowed us to investigate the relationship between individual difference in event 
segmentation and subsequent memory performance. 
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Figure 1. Experimental design: The experiment consisted of four parts; the first two of which are 
depicted here. Temporal memory test: (A) At encoding, participants watched three mute movies. 
(B) At retrieval, participants were shown two frames of a movie and determined the temporal order 
of two movie frames by pressing the left or right key. There were 35 questions about the temporal 
order of events per movie. Association learning task: (C) Participants performed a block-design 
association learning task. In each block, participants learned by trial and error the association 
between a set of images and three possible actions (A1, A2, and A3); feedback was provided. The 
set size at each block was different (ranging from 2 to 6). (D) A 3-trial example of a learning block. 
Delay quantifies the number of intervening trials from the last time the stimulus was encountered, 
and Pcor quantifies the number of trials that the choice was correct.  

3.3. Analysis details 

3.3.1. Association learning 

We analyzed the association learning task in two ways, without modeling and with reinforcement 
learning and working memory (RLWM) modeling, consistent with previously published studies 
(Collins, 2018; Collins and Frank, 2018; Collins et al., 2014, 2017). Trials with missed responses 
or with less than 200 ms response time were discarded. To generate learning curves, we analyzed 
the proportion of correct choices as a function of the number of iterations (how many times the 
stimulus was encountered) and set size. Next, we used a logistic regression to evaluate the 
performance with respect to three parameters - the set size (number of stimuli in a block), delay 
(number of trials since the last correct choice for the current stimulus), and previously correct 
answers (number of correct choices made so far for the current stimulus) - and their interactions. 
We quantified the effect of working memory and learning on a trial-by-trial basis by modeling the 
probability of a correct choice for each participant as a function of the three parameters: set size, 
the number of previously correct answers, and delay (see Collins et al., 2017 for details).  

3.3.2. Movie segmentation 

We evaluated the keypresses during the movies and discarded any key presses that occurred 
less than 100 ms from the previous key press to remove any multi-clicks. Then we quantified the 
number of events by counting key presses for each movie. A ranked (Spearman) correlation was 
utilized to identify the consistency of individual differences across the movies.  

3.4. Modeling 

We fit three models to the trial-by-trial responses for each subject: two-parameters reinforcement 
learning (RL2), four-parameters reinforcement learning (RL4), and a modified RLWM model 
(Collins et al., 2017). We used the Akaike Information Criterion (AIC) to select the best model 
considering the number of parameters used in each model. RLWM was used as a baseline. We 
simulated data based on the models for validation. 

3.4.1. Two-parameters Reinforcement Learning (RL2) 

The basic model was a reinforcement learning model (without the working memory component) 
with a delta rule learning. For each stimulus, s, and action, 𝑎𝑎, the expected reward was 𝑄𝑄(𝑠𝑠,𝑎𝑎), 
and the Q value was updated with observing feedback, 𝑟𝑟𝑡𝑡, through time. The Q values were 
updated based on a learning rate, 𝛼𝛼, and the difference between expected and observed reward 
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at trial t (known as the prediction error: 𝛿𝛿𝑡𝑡 = 𝑟𝑟𝑡𝑡 − 𝑄𝑄𝑡𝑡(𝑠𝑠,𝑎𝑎)): 𝑄𝑄𝑡𝑡+1(𝑠𝑠,𝑎𝑎) =  𝑄𝑄𝑡𝑡(𝑠𝑠,𝑎𝑎) +  𝛼𝛼 × 𝛿𝛿𝑡𝑡. 
Choosing an action utilized the expected reward value. An action was probabilistically chosen, 
with a greater likelihood of selecting an action that had a higher Q value, using the SoftMax choice 
rule:𝑃𝑃(𝑎𝑎|𝑠𝑠) = 𝑒𝑒𝛽𝛽𝛽𝛽(𝑠𝑠,𝑎𝑎) ∑ (𝑒𝑒𝛽𝛽𝑄𝑄(𝑠𝑠,𝑎𝑎𝑖𝑖))𝑖𝑖⁄  , where 𝛽𝛽 is an inverse temperature free parameter. This 
model had two parameters of 𝛼𝛼 and 𝛽𝛽. 

3.4.2. Four-parameters Reinforcement Learning (RL4) 

This model in addition to RL2 includes a value for unrewarded correct responses and undirected 
noise in action selection. In this experiment, a correct response was sometimes rewarded and 
sometimes not rewarded. We estimated how much a person valued a correct response, 
irrespective of the reward by estimating the value for correct-but-not-rewarded items, i.e. 𝑟𝑟0. The 
model also considered an undirected noise, 0 < 𝜖𝜖 < 1, in the stochastic action selection, to allow 
for choosing an action that did not have the highest Q value. Accordingly, 𝑃𝑃 = (1 − 𝜖𝜖) × 𝑃𝑃 +
𝜖𝜖 × 1

𝑛𝑛𝑎𝑎
, where 1/𝑛𝑛𝑎𝑎 is a uniform probability of choosing an action.  

3.4.3. Reinforcement learning and working memory (RLWM) 

We applied RLWM to extract the working memory capacity and forgetting rate of the participants 
(Collins et al., 2014). Like Collins et al., (2017), this model had 8 parameters and consisted of two 
components. A working memory component with limited working memory capacity, C, and 
forgetting rate, ∅𝑊𝑊𝑊𝑊. The Q value was subject to decay with a forgetting rate, 0 < 𝜙𝜙 < 1, so for all 
the stimuli that are not current, 𝑄𝑄 =  𝑄𝑄 + 𝜙𝜙(𝑄𝑄0 − 𝑄𝑄), where 𝑄𝑄0 = 1

𝑛𝑛𝑠𝑠
.  

The RL component had a learning rate, 𝛼𝛼, value for an unrewarded correct response, 𝑟𝑟0, 
undirected noise, 𝜖𝜖, and a forgetting rate, ∅𝑅𝑅𝑅𝑅 (𝛽𝛽 was set constant at 100). We also allowed for 
the potential lack of an impact of negative feedback (𝛿𝛿 < 0) by estimating a preservation 
parameter, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. In that case, the learning rate is reduced by 𝛼𝛼 = (1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) × 𝛼𝛼. Accordingly, 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 near 1 indicated lack of an impact of negative feedback (learning rate close to 0; high 
preservation of Q value), and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 close to 0 indicated equal learning rate for positive and 
negative feedback.  

The WM component was simulated as encoding of stimulus in a Q learning system, like the RL 
component but the outcome, 𝑟𝑟𝑡𝑡, was 1 for correct, 0 for incorrect (rather than the observed 
reward), the learning rate was set to 1 (𝛼𝛼 = 1), and at most 𝐶𝐶 stimuli could be remembered. We 
formulated the probability of a stimulus being in working memory as:  

If 𝑟𝑟𝑡𝑡 = 1, 𝑃𝑃𝑊𝑊𝑊𝑊(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) = min �1, 𝐶𝐶
𝑛𝑛𝑠𝑠
� × 𝑄𝑄𝑤𝑤𝑤𝑤(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) + (1 − min �1, 𝐶𝐶

𝑛𝑛𝑠𝑠
�)  × 1/𝑛𝑛𝑎𝑎,  

if the 𝑟𝑟𝑡𝑡 = 0, 𝑃𝑃𝑊𝑊𝑊𝑊(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) = min �1, 𝐶𝐶
𝑛𝑛𝑠𝑠
� × (1 −𝑄𝑄𝑤𝑤𝑤𝑤(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)) + (1 − min �1, 𝐶𝐶

𝑛𝑛𝑠𝑠
�)  × 1/𝑛𝑛𝑎𝑎 

, where 𝑛𝑛𝑎𝑎 is the number of possible actions (= 3). In RL case,  

if the 𝑟𝑟𝑡𝑡 > 0, 𝑃𝑃𝑅𝑅𝑅𝑅(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) = 𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)  

if the 𝑟𝑟𝑡𝑡 = 0, 𝑃𝑃𝑅𝑅𝑅𝑅(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) = 1 − 𝑄𝑄𝑅𝑅𝑅𝑅(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡). 
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A mixture weight, 𝑤𝑤0, formulated how much each of the components was used for action selection. 
The weight was 𝑤𝑤0 × min �1, 𝐶𝐶

𝑛𝑛𝑠𝑠
� to represent the confidence in WM efficiency. This initialization 

reflects that participants are more likely to utilize WM when the stimulus set size is low. The overall 
policy was: 

𝑃𝑃(𝑎𝑎|𝑠𝑠) = 𝑤𝑤𝑡𝑡(𝑠𝑠) × 𝑃𝑃𝑊𝑊𝑊𝑊(𝑎𝑎|𝑠𝑠) + (1 −𝑤𝑤𝑡𝑡(𝑠𝑠)) × 𝑃𝑃𝑅𝑅𝑅𝑅(𝑎𝑎|𝑠𝑠). 

A Bayesian model averaging scheme inferred the relative reliability of WM compared with the RL 
system over time, t: 

𝑤𝑤𝑡𝑡+1(𝑠𝑠) =  
𝑃𝑃𝑊𝑊𝑊𝑊(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) 𝑤𝑤𝑡𝑡(𝑠𝑠)

𝑃𝑃𝑊𝑊𝑊𝑊(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) 𝑤𝑤𝑡𝑡(𝑠𝑠) + 𝑃𝑃𝑅𝑅𝑅𝑅(𝑟𝑟𝑡𝑡|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) (1 −  𝑤𝑤𝑡𝑡(𝑠𝑠))
 

, where 𝑃𝑃𝑊𝑊𝑊𝑊 is the probability that action 𝑎𝑎 is selected for stimulus 𝑠𝑠 according to the WM 
component at time 𝑡𝑡 and 𝑃𝑃𝑅𝑅𝑅𝑅 is the probability of action selection according to the RL component. 
We assumed that although the 𝑤𝑤0 is the same for all stimuli, the development of mixture weight 
over time would be different for each stimulus because the probability of retaining a stimulus in 
working memory or another retention system is not equal (Jafarpour et al., 2017). 

3.5. Cross-task comparison  

We determined the correlation between the logistic regression-estimated Beta values (from the 
trial-by-trial modeling of choices) for the three parameters - delay, number of previously correct 
answers, and set size - and their interactions and the number of events segmented. This analysis 
led to 6 correlations. We adjusted the significance level using Bonferroni correction to 0.0083. 
This analysis was replicated for the three movies. Then, we evaluated a relationship between the 
number of events and working memory capacity and forgetting rate that were extracted by the 
WMRL model using a linear and quadratic model fitting. The models were compared using AIC. 
We report the difference between the linear and quadratic AICs – larger positive difference means 
that the quadratic model was a better fit, despite the increased number of parameters. We 
hypothesized that the number of events would reveal the estimated working memory span. We 
also hypothesized that the undirected noise in the association learning task would predict the 
participants’ general performance, so those with higher noise in RLWM system would 
demonstrate lower performance in the memory test. 

Because we found a U-shaped relationship between the number of segmented events and 
working memory forgetting rate, we ran a post-hoc analysis on the two extreme groups who had 
very large (one standard deviation more than the mean) or very low segmentation numbers (one 
standard deviation less than the mean). We refer to these participants as under- and over-
segmenters. We hypothesized that the under-segmenters and over-segmenters used different 
long-term memory strategies which each led to a fast forgetting rate. We examined the temporal 
order recognition performance for the movie with a strong overarching cliché story (movie 3) to 
determine which group relied on the story structure for memory performance, and we counted the 
number of written words in the free recall task to determine which group recalled more information 
about the movies.  
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4. Results 

4.1. Event segmentation task 

We first examined individual differences in perception of event boundaries. We tested whether 
individual variability in event segmentation holds for movies irrespective of the movie storyline by 
asking participants to segment three different movies (see the Supplementary material for the 
stories). The consistency in segmenting movies was determined using a ranked correlation. The 
number of segmented events (NE) between each pair of movies was strongly correlated (Figure 
2A, Spearman ranked correlation; movie 1 vs. movie 2: r = 0.85, p < 0.001; movie 2 vs. movie 3: 
r = 0.86, p < 0.001; movie 1 vs. movie 3: r = 0.71, p < 0.001). One participant segmented the 
movies more than two standard deviations higher from the average, and we excluded this 
participant’s data from further analysis (included in Figure 2A). However, all results hold when 
including this participant (the estimated working memory forgetting rate was 0.64). On average 
participants segmented movie 1 into 13.45 events (SD = 8.86), movie 2 into 9.78 events (SD = 
5.8), and movie 3 into 11.27 (SD = 8.01).  

Participants accurately recalled the order of movie scenes for all three movies (movie 1: M = 
81.30%, SD = 9.09; movie 2: 68.65%, SD = 8.47; movie 3: M = 81.68%, SD = 7.43; Figure 2B; 
chance was 50%). No one performed below chance, and performance was distributed normally. 
Paired-sample t-tests showed that participants remembered the order of events for the movies 
with overarching storylines (1 and 3) better than the movie without an overarching story (movie 2; 
movie 1 vs 2: t(34) = 7.85, p < 0.001; movie 2 vs 3: t(34) = 10.7, p < 0.001; movie 1 vs 3: t(34) = 
0.32, p = 0.74; Figure 2B). We also examined if the observation, that a linear storyline helped with 
temporal order memory, holds for movie 1 when we split the tests into those with interchangeable 
order (interchanging the order of the epochs does not hurt the overarching story) and those with 
an overarching story. Consistent to the comparison between movie 2 and movie 3, the temporal 
memory for the overarching story of movie 1 (M = 82.18%, SD = 7.29) was better than for 
interchangeable epochs of movie 1 (M = 73.88%, SD = 17.14; t(34) = 3.18, p = 0.003). 

The response time for movies 1, 2 and 3 did not differ (movie 1 vs 2: t(34) = 0.73, p = 0.46; movie 
1 vs 3: t(34) = 1.27, p = 0.21; movie 2 vs 3: t(34) = 0.65, p = 0.51). The tested movie scenes were 
between 1.6 second to 60 seconds apart for movie 1, 1.6 second to 62 seconds for movie 2, and 
1.6 second to 48 seconds for movie 3 (for movie 1: the mean probe distance was 18.84 seconds, 
SD = 18.31; for movie 2: M = 16.66, SD = 17.27; for movie 3: M = 15.02, SD = 13.22). In general, 
the number of segmented events did not predict participants’ accuracy in temporal source 
memory (movie 1: linear regression F(1,34) = 1.1, p = 0.3; movie 2: F(1,34) = 0.38, p = 0.53; 
movie 3: F(1,34) = 0.82, p = 0.37). 
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Figure 2. Event segmentation results: (A) The number of events that participants segmented was 
constant across the movies. Correlation between the number of events for movie 1 and 2 (left), 
for movie 1 and 3 (middle), and for movie 2 and 3 (right). Each dot represents an individual 
participant; r values describe the ranked correlation coefficient. (B) Recall performance was above 
chance for all three movies (left). The performance for movie 2 was less accurate than for movie 
1 and 3 (* p < 0.05). Response times were not different across movies (right). Error bars represent 
the standard error of the mean. 

4.2. Association learning task 

Limitations in working memory affected learning performance as hypothesized. Overall, 
participants learned the stimulus-action associations. For all set sizes, the accuracy of the last 
two iterations was on average more than 90% (M= 93.5%, SD = 3%; Figure 3A); however, the 
accuracy decreased with increasing set size (r = -0.94, p = 0.018). We analyzed the trial-by-trial 
performance with respect both to set size and to maintenance of correct associations across 
intervening trials of a particular stimulus. The result of a logistic regression revealed that 
performance was reduced with increasing set size (t(34) = -10.12, p < 0.001) and delay (the 
number of trials since a correct response to the current stimulus (t(34) = -8, p < 0.001). By 
contrast, performance was improved with increasing total number of previously correct responses 
to the current stimulus (t(34) = 5.95, p < 0.001). The interactions between set size and delay (t(34) 
= -8.29, p < 0.001), set size and previous correct responses (t(34) = 4.19, p < 0.001), and delay 
and previous correct responses (t(34) = 5.18, p < 0.001) also affected the performance (Figure 
3B), consistent with previous studies (Collins et al., 2017). 

The RLWM model provided the best fit to the data, and model simulations with fit parameters 
were able to capture the overall learning pattern (Figure 3A). The AICs of model fitting using RL2, 
RL4, and RLWM models were subtracted and divided by the AIC of RLWM (RL2: M = 7.4, SD = 
1.68 and RL4: M = 0.06, SD = 0.03; note that smaller AIC reflects better fit; Figure 3C). Pairwise 
t-test showed that RL4 was a better model than RL2 (t(34) = -25.99, p < 0.001), and RLWM 
provided the best fit (RL2: t(34) = 25.9, p < 0.001; RL4: (t(34) = 9.63, p = 0.03). 
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Figure 3. Association learning results: (A) Participants’ learning performance (in left) and the 
RLWM simulation (in right). Learning was slower with increasing set size (ranging from 2 to 6). 
(B) The stimulus set size (ns), number of trials since the last correct answer (delay; d), number of 
previously correct responses (pcor), and their paired interactions affected the trial-by-trial 
performance in the learning task. (C) The AIC relative to the RLWM shows that the RLWM is a 
better fit than the RL4 and RL2 models. Error bars represent the standard error of the mean. 

4.3. Cross-task comparison 

We observed a linear correlation between the number of determined events and the beta-value 
for the interaction between set size and previously correct responses (movie 1: ranked r = 0.31, 
p = 0.064; movie 2: ranked r = 0.45, p = 0.006; movie 3: ranked r = 0.32, p = 0.057; Figure S1). 
This interaction indicates that learning is slower with higher set sizes, revealing a working memory 
limitation on association learning. However, the beta value does not clarify what aspect of working 
memory is correlated with the number of segmented events. Using the RLWM model we inferred 
the parameters related to working memory to systematically test for the relationship between 
working memory and number of segmented events. 

We found that the estimated noise in the association learning task correlated with the individual’s 
performance on the movie temporal recognition test. Participants with higher estimated undirected 
noise performed worse in the temporal recognition tests for all the movies (movie 1: r = -0.31, p 
= 0.063; movie 2: r = -0.35, p = 0.034; movie 3: r = -0.43, p = 0.009; Figure 4A). On average, the 
estimated noise was 0.057 (SD = 0.034).   

The results also showed a U-shaped relationship between the number of segmented events and 
WM forgetting rate (Figure 4A). The number of events (NE) in all the movies predicted WM 
forgetting rate. (Figure 4A; for movie 1, the linear component (NE): p = 0.005, the quadratic 
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component (NE2): p = 0.005; movie 2, NE: p = 0.003, NE2: p = 0.004; movie 3: NE: p = 0.014, 
NE2 , p = 0.012; see Table 1 for model statistics), but there was no significant linear relationship 
between NE and forgetting rate without considering the quadratic component (movie 1: p = 0.73; 
movie 2: p = 0.58; movie 3: p = 0.88; Table 1; Figure 4A).  

Table 1. Linear and quadratic model comparisons including all participants. AIC difference 
represents the difference between the linear and quadratic AICs (n = 35). * p-value < 0.05 

All  R2 p-value AIC AIC difference 

Movie 1 Linear -0.026 0.735 -15.07 6.66 

Quadratic   0.173 0.018 *  -21.74 

Movie 2 Linear -0.02 0.581 -15.27 7.149 

Quadratic 0.189 0.013 *  -22.42 

Movie 3 Linear 0.021 0.88 -14.97 4.92 

Quadratic 0.128 0.041 *  -19.90 

We considered whether this effect was driven by participants who had a WM forgetting rate that 
was two standard deviations larger than the mean (∅𝑊𝑊𝑊𝑊 > 0.6) and a problematic model fit (See 
Supplementary Figure 2 for this learning behavior; n = 3): with very high estimated learning rate 
(𝛼𝛼 > 0.9, two standard deviations larger than the mean) and low mixture weight (𝑤𝑤0< 0.6), 
indicating that the working memory module of the model was not functioning in a regime 
representative of cognitive working memory function. Instead, we found that the U-shaped effect 
was stronger when excluding these participants (for all components and movies p < 0.001; Table 
2; Figure 4B). 

Table 2. Linear and quadratic model comparison including 32 participants. ** p-value < 0.001 

Subset  R2 p-value AIC AIC difference 

Movie 1 Linear 0.015 0.23 -68.86 21.59 

Quadratic  0.5237 <0.001 ** -90.46 

Movie 2 Linear -0.015 0.46 -67.91 16.94 

Quadratic 0.429 <0.001 ** -84.86 

Movie 3 Linear -0.033 0.87 -67.36 32.76 

Quadratic 0.651 <0.001 ** -100.12 
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Figure 4. Cross-task results: (A) For all three movies, recognition performance in the movie task 
decreased with an increase in estimated noise in the association learning task. (B) Working 
memory forgetting rate had a U-shaped relationship with the number of determined events (top 
row) for all the movies. This relationship is significant even after discarding 3 participants with a 
very high estimated learning rate (more than 0.9) and a low estimated mixture weight (less than 
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0.6; bottom row). The assumption was that these participants relied more on their RL components 
and their WM forgetting rates may be inaccurate. The excluded participants had a high estimated 
WM forgetting rate. Each dot represents a participant.  

 

Post-hoc analyses were employed to study the recognition and recall performance of participants 
with a high forgetting rate including (1) those who were more than one standard deviation higher 
than the mean number of events (i.e., over-segmenters) and (2) those who were more than one 
standard deviation lower than the mean (i.e., under-segmenters); there were 7 participants in 
each of these two groups. We observed that temporal recognition performance for movie 3 (which 
had a linear storyline) was better for under-segmenters than over-segmenters (two sample t-test 
t(12) = 3.26, p = 0.0068; Figure 5A). However, the over-segmenters wrote more words during the 
free recall task (sum of all movies M = 204.6, SD = 54.8) than the under-segmenters (M = 107.1, 
SD = 70.57; two-sample t-test t(10) = -2.67, p = 0.023; Figure 5B). The quality of stories was the 
same across the movies (see Supplementary material for examples) and this difference was 
observed for all the movies (table S1; movie 1: t(10) = -2.84, p = 0.017; movie 2: t(10) = -2.66, p 
= 0.023; movie 3: t(10) = -1.90, p = 0.085).  

 
Figure 5. Under-segmenters and over-segmenters performed differently on temporal recognition 
and free recall tasks. (A) Under-segmenters performed better at the temporal recognition test for 
movie 3, which had a linear storyline (p < 0.01). (B) Over-segmenters performed better at the free 
recall; they wrote more words about the movies at the recall than under-segmenters (p < 0.05; 
see Supplementary material for examples). Error bars represent the standard error of the mean. 

5. Discussion 

Individuals fluently segment a flow of events into episodes (Zacks and Swallow, 2007; Zacks et 
al., 2007), a process closely linked to working memory (Kurby and Zacks, 2008; Radvansky, 2017; 
Richmond et al., 2017). Here, we examined what aspect of working memory is linked to event-
segmentation, instantiated as the number of determined events. Although participants can 
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adaptively modulate event segmentation to a fine- or course-grain (Speer et al., 2007), across a 
population, individuals vary in terms of the number of determined events (Ben-Yakov and Henson, 
2018; Jafarpour et al., 2018; Zacks et al., 2006). We hypothesized that working memory ability 
would differentiate the individual according to the number of determined events. Two separate 
tasks were administered to a group of healthy participants, a movie segmentation task and an 
association learning task, followed by a surprise free recall memory test about the movies. From 
the movie segmentation task, we assessed the subjective number of determined events (Figure 
2), and from the association learning task we inferred working memory capacity and forgetting 
rate (Figure 3). The cross-task results revealed that the number of determined events had a U-
shaped relationship with working memory forgetting rate, so that participants with a high forgetting 
rate either segment too many or too few events (Figure 4).  

All participants performed well in the association learning task although their working memory 
limitation affected performance (Figure 3). A logistic regression was used to estimate the effect 
of set size (number of stimuli in a block), delay (number of trials since the last correct choice for 
the current stimulus), and previously correct answers (number of correct choices made so far for 
the current stimulus) and their interactions on the trial-by-trial responses in the association 
learning task. The results showed that all these factors, which are relevant to working memory 
limitations, played a role in the responses (Figure 3). Response accuracy decreased with 
increasing set size and delay. By contrast, an increase in the number of previously correct 
answers improved response accuracy. Comparing the beta estimates of these parameters to the 
number of determined events in the movie segmentation task, we observed a correlation between 
the number of determined events and the effect of working memory limitation on learning (Figure 
S1). This effect was further investigated by isolating the working memory component of learning 
using a reinforcement learning and working memory model (RLWM) which successfully simulated 
the learning behavior (Figure 3). The RLWM model provided an estimate of working memory 
capacity and forgetting rate along with six other parameters including the undirected noise.  

The cross-task comparison revealed that the undirected noise correlated with temporal 
recognition accuracy for all the movies (Figure 4A). Participants with higher estimated undirected 
noise in the association learning task had a lower accuracy in the movie recognition memory test. 
Such correlation may reflect the level of attention to the tasks in general. This finding, along with 
the simulation performance and the AIC comparison (Figure 4), validates the RLWM’s 
performance in modeling the learning behavior. Given that attention helps with retaining a similar 
representation of context (Aly and Turk-Browne, 2016), participants with more estimated 
undirected noise may have less consistent representation of context, resulting in less accurate 
memory of temporal order of events (Horner et al., 2016). 

The main cross-task observation, a U-shaped relationship between working memory forgetting 
rate and the number of determined events, was replicated in three novel movies with different 
storylines (Figure 4). One of the movies did not have an overarching story, instead contained 
flows of discrete events that involved similar characters across the events (like a Tom & Jerry 
cartoon; movie 2). Another movie had a linear and overarching story of a pig’s life (movie 3). The 
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third movie was a combination of temporally interchangeable stories and an overarching story of 
a lion falling in love and fighting over a lioness (movie 1). Participants’ rank in the number of 
determined events was consistent across the movies, and they remembered the order of events 
better than the chance for all the movies (Figure 2).  

The U-shaped result indicates that participants with a higher forgetting rate than the norm used 
different strategies for event-segmentation; some participants were under-segmenters and others 
were over-segmenters. Temporal order memory for the under-segmenters was better than for 
over-segmenters when the movie had a linear overarching story, suggesting that these 
participants benefited more from the schema of the movie than the over-segmenters (Figure 5A). 
By contrast, the over-segmenters update the context, e.g., “walk through doorways” (Radvansky 
& Copeland, 2006), more often than under-segmenters. This behavior resulted in a worse 
performance in the temporal recognition task (Hanson and Hirst, 1989). Over-segmenters, 
however, had a better recall performance (Figure 5B), writing more words at free recall compared 
to under-segmenters. In general, participants remember event-boundaries better than other 
events (Newtson and Engquist, 1976) and a fine-grained event segmentation benefits source 
memory but not recognition memory (Hanson and Hirst, 1989, 1991). As also shown by Sargent 
et al. (2013), participants who segmented a movie in fine grain had an accurate recall (also see 
Bailey et al., 2013).  

An outstanding question is the causality of the relationship between working memory and event-
segmentation. One possibility is that working memory is a primary cognitive mechanism and 
event-segmentation is determined by limits in working memory. Accordingly, participants with a 
high forgetting rate determine a high number of events. An alternative possibility is that event-
segmentation is a primary cognitive mechanism (Radvansky, 2017; Richmond et al., 2017). In 
this case, participants who segment more often either lose access to the information from the 
previous events (Ezzyat and Davachi, 2014; Horner et al., 2016) leading to a high forgetting rate, 
or they rely on schematic storylines to keep a track of what happened. A third possibility is that 
both working memory and event segmentation rely on a common cognitive mechanism, such as 
utilizing a schema or script. Utilizing a schema facilitates memory and segmentation (Farag et al., 
2010; Gobet et al., 2015; Sargent et al., 2013; Zacks et al., 2010). For example, utilizing a phone 
number’s schema enables effective segmentation and memory for a 10-digit number (Miller, 
1956). Future research is necessary to clarify the neural mechanisms of these alternatives. 

In conclusion, we observed that the working memory forgetting rate reflects individual differences 
in event-segmentation. A U-shaped relationship between the number of determined events on 
one task and the forgetting rate on another task showed that participants with a high forgetting 
rate used two different strategies for event perception. Memory during conditions of under-
segmentation was benefited more from a linear storyline, while free recall performance benefitted 
from over-segmentation. Taken together, these data suggest that an individual’s forgetting rate 
can be inferred by that individual’s rate of event segmentation.   
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8. Supplementary material 

8.1. Figures 

Supplementary Figure 1. The number of determined events in the movie task correlated with 
working memory span during the association learning task. (A) The estimated beta value for the 
interaction between the number of stimuli and number of previously correct trials correlated with 
the number of determined events in each movie (left: movie 1, ranked r = 0.32, p = 0.064; middle: 
movie 2, ranked r = 0.45, p = 0.005; right: movie 3, r = 0.32, p = 0.056). (B) The probability of 
previously correct trials (pcor) for a small set size (3) and a large set size (5) for the 50% of 
participants with low number of segments (in blue) and with high number of segments (in red) in 
early trials (first 2 trials; top row) and in the later trials (averaged across 3 and more trials; bottom 
row). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 9, 2019. ; https://doi.org/10.1101/571380doi: bioRxiv preprint 

https://doi.org/10.1101/571380


Supplementary Figure 2. Learning behavior of three participants who were excluded from the 
analysis of the relationship between the number of determined events and working memory 
forgetting rate because they had a high WM forgetting rate, more than two standard deviations 
larger than the mean (∅𝑊𝑊𝑊𝑊 > 0.6) and problematic model fits. 

8.2. Tables  

Table S1. The mean and standard deviation (in parentheses) of the number of written words by 
under-and over-segmenters for each of the movies: 

 Movie 1 Movie 2 Movie 3 Total 
Under-segmenter 32.66 (23.14) 26.5 (18.32) 48.0 (32.39) 107.16 (70.57) 
Over-segmenter 64.66 (14.94 57.83 (22.21) 82.16 (29.59) 204.66 (54.80) 

 

8.3. Movie stories 

Movie 1: 

The first animation depicts an overarching cliché love triangle story, along with some temporally 
interchangeable stories. It starts by showing a few animal couples going back and forth in a park. 
Then, there is a small lion that looks heartbroken. The lion sees a lioness, but there is a bigger 
lion that wants to meet the lioness too. The two lions fight for the lioness’s attention through a 
series of matches that have periods with an anticipated flow. For example, after each match, the 
score is shown on board. However, the score is not immediately shown after an eating contest. 
After the bigger lion wins the eating contest, it eats the small lion’s food too. Then the score is 
shown, and the matches continue. The small lion loses the competition and moves on to another 
part of the world. The end of the movie shows that the small lion meets a lioness.  

Movie 2:  
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The second animation is a sequence of independent events that involve crocodiles. It starts by 
showing two zebras listening to music next to a swamp. A crocodile suddenly eats one of them. 
Then, the crocodiles swim in a swamp just below the surface with only the eye visible. One of the 
crocodiles is wearing glasses. This crocodile stands up for a moment to clean its glasses and 
then it continues swimming below the surface. Next, a crocodile attacks a cow that is drinking 
water. The cow is too big for the crocodile so it cannot bite it. The cow, however, beats the 
crocodile in one attempt. Next, a crocodile is eating at a table in the swamp that has birds next to 
it. It puts catchup on the birds and eats them one by one by a fork. A bigger crocodile takes a cow 
into the swamp, but the cow defeats the crocodile and comes out. Next, a goat is swimming away 
from a crocodile, clearly scared. The swamp suddenly dries out. The crocodile cannot walk fast, 
but the goat happily leaves the swamp. Then, a crocodile attacks a cow that is by the swamp, but 
the cow skins the crocodile and takes it for tanning. Next, a crocodile with dental braces is shown 
drinking with a straw. A baby zebra plays by the swamp and bothers the crocodile. After that, a 
crocodile is shown participating in a non-violence resistance group with other animals, holding a 
peace sign. The movie ends with a scene of a very long crocodile on which a bird is happily 
picnicking.  

Movie 3:  

The third movie depicts a linear life story of a pig. It starts by showing a caterpillar on a leaf. Then 
a big sow appears and gives birth to seven piglets. The piglets follow the sow in a line going 
around woods and crossing roads. Two of the pigs suddenly disappear; they were killed on the 
road. The rest of the piglets also disappear one by one, except for one. Then the caterpillar is 
netting a cocoon – showing the passage of time. The piglet grows up to be an ugly boar, and the 
sow is old. The sow dies. The pig meets three gilts. They reject him (depicted as a computer error 
message box) because he does not have money, he is ugly, and one of the gilts is already 
married. The cocoon is now complete, and the boar is still sad and alone. It bumps into a lion that 
was hunting for zebras. The lion gets happy for the catch, but the boar is too smelly. The lion puts 
the boar in a washing machine. It comes out as a red boar which is not desirable to the lion. The 
lion dumps the boar. The boar passes by the gilts again. This time, the one that was interested in 
a good-looking boar is interested and follows him. 

8.4. Example of recalls 

A representative example of an over-segmenter:  

Movie 1:  
giraffe dragging aligator along the ground. the painting was 2D but looked like the 
smaller tiger was flattened into it. smaller tiger takes a long time to eat. lots of 
couples at the beginning. bigger tiger cheats on the test. not sure what that map 
with the arrow meant but some cannon? but somehow smaller tiger crused bigger 
tiger yay 

Movie 2:  
glasses aligator was funny. big bison/ox was hero of the story. wonder why that 
first zebra or animal just dove into the lake. aligator really wants to eat that bison. 
not sure what that wrench looking tool was, but aligator got skinned. part where 
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the aligator puts sauce on the birds just standing there was unexpected but very 
funny 

Movie 3:  
Time passing was kind of conveyed by the worm/caterpillar, which was really cool. 
lots of crisscrossing across the screen. what did the arrow signify? funny how the 
arrow lost the color in the wash and dyed him red. error boxes popping up was 
funny because it was almost like a computer game. not sure what happened to the 
other little babies along the way.... 

A representative example of an under-segmenter:  

Movie 1: 
two different levels of lions competing with each other  
the lower level lion only won the writing test  

Movie 2:  
aligators wants to eat other animals 
some animals sold the aligator skin 

Movie 3:  
the washing machine switched the color of the pig and the color of the arrow 
the female pig fall in love with the male pig after he changed his color 
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