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The development of vision during the first months of life is an ac-
tive process that comprises the learning of appropriate neural rep-
resentations and the learning of accurate eye movements. While it
has long been suspected that the two learning processes are cou-
pled, there is still no widely accepted theoretical framework describ-
ing this joint development. Here we propose a computational model
of the development of active binocular vision to fill this gap. The
model is based on a new formulation of the Active Efficient Coding
theory, which proposes that eye movements, as well as stimulus en-
coding, are jointly adapted to maximize the overall coding efficiency.
Under healthy conditions, the model self-calibrates to perform accu-
rate vergence and accommodation eye movements. It exploits dis-
parity cues to deduce the direction of defocus, which leads to co-
ordinated vergence and accommodation responses. In a simulated
anisometropic case, where the refraction power of the two eyes dif-
fers, an amblyopia-like state develops, in which the foveal region of
one eye is suppressed due to inputs from the other eye. After cor-
recting for refractive errors, the model can only reach healthy perfor-
mance levels if receptive fields are still plastic, in line with findings
on a critical period for binocular vision development. Overall, our
model offers a unifying conceptual framework for understanding the
development of binocular vision.

efficient coding | active perception | amblyopia | vergence | accommoda-

tion

Our brains are responsible for 20% of our energy con-
sumption (1). Therefore, organizing neural circuits to
be energy efficient may provide a substantial evolutionary ad-
vantage. One means of increasing energy efficiency in sensory
systems is to attune neural representations to the statistics
of sensory signals. Based on this Efficient Coding Hypothesis
(2), numerous experimental observations in different sensory
modalities have been explained (3, 4). For instance, it has
been shown that receptive field properties in the early visual
pathway can be explained through models that learn to ef-
ficiently encode natural images (5, 6). These findings have
extended classic results showing that receptive field shapes
in visual cortex are highly malleable and a product of the
organism’s sensory experience (7-10).

Importantly, however, animals can shape the statistics of
their sensory inputs through their behavior (Fig. 1). This
gives them additional degrees of freedom to optimize coding
efficiency by jointly adapting their neural representations and
behavior. This idea has recently been advanced as Active
Efficient Coding (11, 12). It can be understood as a generaliza-
tion of the efficient coding hypothesis (2) to active perception
(13). Along these lines, Active Efficient Coding models have
been able to explain the development of visual receptive fields
and the self-calibration of smooth-pursuit and vergence eye
movements (11, 12). This has been achieved by optimizing
the neural representation of the sensory signal statistics, while

Fig. 1. The action-perception loop in Ac-
tive Efficient Coding. The sensory input is
obtained by sampling input signals from the
environment, e.g., via eye movements. A
percept is formed by neural encoding which
drives the selection of actions and thereby
- shapes the sampling process. Therefore,

perception depends on both, neural encod-

ing and active input sampling. Classic ef-
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simultaneously, via eye movements, optimizing the statistics
of sensory signals themselves, for maximal coding efficiency.

In our formulation of Active Efficient Coding, we maximize
coding efficiency as measured by the Shannon mutual infor-
mation I(R,C) between the retinal stimulus represented by
retinal ganglion cell activity R and its cortical representation
C under a limited resource constraint. The mutual information
can be decomposed as:

I(R,C) = H(R) — H(R|C), (1]

where H(R) is the entropy of the retinal response and H(R|C)
its conditional entropy given the cortical representation.
Prior formulations focused on minimizing the conditional
entropy H(R|C) only (6). H(R|C) is a measure of the informa-
tion that is lost, i.e., not represented in the cortical encoding.
The limitation of this prior formulation is that this quantity
can be minimized by simply reducing H(R), the entropy of
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the retinal response, since H(R|C) < H(R). Thus, an active
agent could minimize H(R|C) by, e.g., defocusing or closing
the eyes altogether. In the free-energy and predictive pro-
cessing literature, this is known as the “dark room problem”
(14, 15). In our formulation, maximizing I(R, C) is achieved
by maximizing H(R) and minimizing H(R|C) simultaneously,
thus avoiding this problem. We demonstrate this approach
through a concrete model of the development of binocular
vision including the simultaneous calibration of vergence and
accommodation control.

Indeed, newborns have difficulties bringing objects into fo-
cus and cannot yet verge their eyes properly (16). How infants
manage to self-calibrate their control mechanisms while in-
teracting with their visual environment is currently unknown.
Additionally, in certain medical conditions, the calibration of
vergence and accommodation control is impaired. For exam-
ple, anisometropia describes a difference in the refractive error
between the eyes. If not corrected early during development,
this can evoke amblyopia: a disorder of the developing visual
system that is characterized by an interocular difference in
visual acuity that is not immediately resolved by refractive
correction. Amblyopia can be associated with a loss of stere-
opsis and in severe cases leads to monocular blindness (17).
Furthermore, vergence and accommodation eye movements
are either less accurate or completely absent (18, 19).

Although there have been recent advances in the treatment
of amblyopia (20, 21), existing treatment methods do not lead
to satisfactory outcomes in all patients. This is aggravated by
the fact that treatment success strongly depends on the stage
of neural circuit maturation (20). When young patients are
still in a critical period of visual cortex plasticity (10), they
often recover after refractive errors are corrected, while adults
mostly remain impeded (22, 23).

The above findings are all readily explained by our model.
Under healthy conditions, our model develops accurate ver-
gence and accommodation eye movements. When the model
is impaired due to strong monocular hyperopia, we observe
that an amblyopia-like state develops. We show that this
is due to the abnormal development of binocular receptive
fields in the model and demonstrate that healthy binocular
vision is regained as the receptive fields readapt after refrac-
tion correction. However, if the sensory encoding is no longer
plastic and does not adapt to the changes in the visual input
statistics, suppression prevails. Overall, our model suggests
that coding efficiency may provide a unifying explanation for
the development of binocular vision.

Model Formulation. The Active Efficient Coding model we pro-
pose has a modular structure (Fig. 2). A cortical coding
module models the learning of an efficient representation C'
of the binocular retinal representation R by minimizing the
conditional entropy H(R|C). At the same time, an accommo-
dation reinforcement learning module maximizes H(R) and
a vergence reinforcement learning module minimizes H(R|C)
(see Eq. 1). All three modules are plastic and adjust simulta-
neously in response to changes in the sensory input statistics.
The exact choice of the algorithms is not important for the
model to function. In fact, different cortical coding and rein-
forcement learning models have been successfully applied in
previous Active Efficient Coding models (24, 25).

Our model is presented with a textured planar object. The
object is sampled by the two eyes for ten iterations, which
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Fig. 2. Model architecture with solid arrows representing the flow of sensory informa-
tion and dashed arrows representing the flow of control commands. Sampled input
images with given defocus blur and disparity are whitened at the retinal stage R and
contrast adjusted through an interocular suppression mechanism based on the recent
history of cortical activity (left). Thereafter, they are encoded by a set of binocular
neurons which represents the cortical encoding C'. The cortical population activity
serves as input to two reinforcement learning modules (right) that control vergence
and accommodation commands. For details, see Methods.
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Fig. 3. Input sampling from the environment. (A) Object position, eye-focus, and
eye fixation at different distances are represented as different plane positions. (B)
Abstraction of A. The gray horizontal bar indicates the range where objects are
presented during the simulation and also indicates the fixation range, i.e., possible
vergence plane positions. Horizontal axes indicate reachable accommodation plane
positions for the left (light blue) and right (green) eye. Note that when the stimulus
is placed at, e.g., position 0 it cannot be focused by the right eye in this example.
Accommodation and vergence errors are measured as the distance between the
respective planes and the object position, in a.u. (C) Position range of accommodation
and vergence planes under different conditions. Same scheme as in B. (D) Examples
of retinal input images for different plane position configurations. For better visibility,
disparity shifts and defocus blur are increased compared to actual values.

constitute one fixation. After each fixation, a new object is
presented at a new, random distance. The retinal images
are rendered based on the positions of the accommodation,
vergence, and object planes (Fig. 3). The inputs are whitened,
contrast adjusted by an interocular suppression mechanism,
and then binocularly encoded by a population of cortical
neurons. The reinforcement learning modules control the
retinal input of the next iteration by shifting accommodation
and vergence planes along the egocentric axis (Fig. 3).

Cortical Encoding. In our model, the cortical population activity
represents the binocular ‘percept’ based on which behavioral
commands are generated (compare Fig. 1, top). The cortical
encoding comprises two efficient coders: One for fine details
in the foveal region and one for the periphery that receives
a low-pass filtered input. Both are implemented using the
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Fig. 4. The feedback loop of Active Efficient Coding and reward dependencies. (A)
Positive feedback loop of Active Efficient Coding. An efficiently encoded stimulus is
preferred over other stimuli (acting). Therefore, the sensory system is more frequently
exposed to the stimulus and neural circuits adapt to reflect this overrepresentation
(statistical learning) which further increases encoding efficiency (neural coding). (B)
Normalized vergence reward for different disparity distributions and neural popula-
tions. Averaged over 300 textures. The receptive fields of 300 neurons adapted to
different distributions of input disparities with color-coded standard deviations. Gray:
unbiased/uniform, pink & purple: laplacian distributed, dark blue: model trained under
healthy conditions). In each case, stimuli seen at zero disparity produce the highest
vergence reward, i.e., the most efficient encoding. This advantage is even more
pronounced when small disparities have been encountered more frequently, i.e., for
smaller o. (C) Normalized accommodation reward for different whitening filters. Zero
blur input yields the highest accommodation reward, independent of the size of the
whitening filter. However, smaller whitening filters induce a stronger preference for
focused input. The smallest filter (dark blue) was used for the simulation (see Methods
for details).

standard matching pursuit algorithm (26) (see Methods).

To find a set of neurons that best encodes the input, instead
of minimizing the conditional entropy directly, we minimize
an upper bound, i.e., the average of the encoding error ||S||?
(27):

H(R|C) < E[|IR~ R(O) 1] = EllISII*), 2]

where R is an estimate of the input R based on the activities
c; of cortical neurons with receptive fields b; (see Methods for

details):
R = Z Cj bj . [3]
J

In every iteration, both, activities and receptive fields, adjust
online to minimize the encoding error ||S||? (see Methods).
Thus, the receptive fields reflect the stimulus statistics (28)
and resemble those of simple cells in the visual cortex (6) (SI
Appendix, Fig. S1).

Vergence Learning. The vergence reinforcement learner also aims
to minimize the conditional entropy H(R|C), i.e., the encod-
ing error ||S||?. Therefore, vergence movements are favored
that produce visual input that can be most accurately en-
coded with the current set of receptive fields. This leads to
a self-reinforcing feedback cycle (Fig. 4A). If inputs of a cer-
tain disparity can be encoded particularly well, the vergence
learner will try to produce visual input that is dominated by
this disparity. This will cause even more neurons to become
selective for this disparity and make the encoding of this dis-
parity even more efficient (Fig. 4B). Thus, an initial bias for,
say, small disparities can be magnified until the model always
favors input with small disparities and most neurons are tuned
to small disparities.

Accommodation Learning. The entropy of the retinal response
H(R) (Eq. 1) is maximized via the accommodation reinforce-
ment learning module. For this, H(R) is approximated by
the squared activity of the retinal representation ||R||* (see
Methods). We assume the spatial frequency tuning of retinal
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ganglion cells to be static and thus independent of the distri-
bution of spatial frequencies in the retinal input as suggested
by deprivation experiments (9, 29, 30). However, the exact
receptive field shape does not matter for the model to favor
focused input (Fig. 4C).

Suppression Model. Interocular suppression is thought to be a
central mechanism in amblyopia. We employ a basic interocu-
lar suppression model (Fig. 54) to describe dynamic contrast
modulation based on the ocular balance of the input encoding.
If mostly right (left) monocular receptive fields are recruited
during cortical encoding, the contrast of the left(right) eye
input becomes suppressed in subsequent iterations. This is in
agreement with reciprocal excitation of similarly tuned neu-
rons in visual cortex (31, 32). At the same time, the total
input energy is kept balanced to ensure similar activity levels
for monocular and binocular visual experience as observed
experimentally at high contrast levels (33-35) (see Methods).
This leads to a self-reinforcing suppression cycle when left and
right eye inputs are dissimilar (Fig. 5B).

A contrast unit B adaptation towards
input patch eye movements monocular RFs
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Fig. 5. Interocular suppression model. (A) When mostly right(left) monocular neurons
c; are activated to encode an input image patch, the right(left) contrast unit y.(y;) is
excited and the left(right) retinal image is suppressed in subsequent iterations. Color
hue indicates response selectivity for left eye (blue) or right eye (green). Dashed(solid)
lines indicate inhibitory(excitatory) interactions. Connection strength is represented
by line thickness. We model interocular suppression as being scale specific, i.e.,
when the high-resolution foveal region of the left eye is suppressed, the low-resolution
periphery of the left eye may still provide unattenuated input (see Methods). (B) Feed-
back cycle of the suppression model. Disparate inputs to both eyes lead to preferential
recruitment of monocular neurons, which results in interocular suppression inducing
competition between the eyes. This impedes precise vergence eye movements and
exacerbates disparate input (purple, left cycle).On a slower timescale, receptive fields
(RFs) adapt to suppression by becoming more monocular, which makes future sup-
pression more likely (red, right cycle). Dashed lines indicate feedback that affects
future input processing.
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Results

Active Efficient Coding Leads to Self-calibration of Active
Binocular Vision. In the healthy condition without refractive
errors, the model learns to perform precise vergence and accom-
modation eye movements (Fig. 6A & SI Appendix, Fig. S24).
The object is continuously tracked by the eyes (SI Appendix,
Fig. S3A) and most neurons develop binocular receptive fields
(SI Appendix, Fig. S1). This is not due to artificially introduc-
ing a bias for zero disparity during initialization of the model.
When receptive fields are adapted to a uniform input disparity
distribution, the encoding of zero disparity input is still most
efficient (Fig. 4B). Due to the overlap of the left and right eye
visual field, the information contained in the retinal response
H(R) is smallest for zero disparity, when the images projected
onto the two eyes maximally overlap. Thus, even an unbiased
encoder that can encode inputs of all disparities equally well,
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Fig. 6. Model performance. (A) Average absolute vergence and accommodation
errors after training under healthy and anisometropic conditions. The dashed line
indicates the expected average vergence error when accommodation planes are
moved randomly under healthy conditions. (B) Vergence performance of formerly
anisometropic model after correction of all refractive errors at iteration 5 x 10 (vertical
gray line). The (dotted)solid line indicates the model with (non-)plastic receptive fields
(RFs). The initial increase in the vergence error is due to the recalibration of the
reinforcement learning module. (C) Histogram of foveal receptive fields binocularity as
measured by the right monocular dominance d,. .y before and after refractive error
correction (see Methods for details).

will tend to encode zero disparity input more accurately, be-
cause such input contains less information. This bootstraps
the positive feedback loop of Active Efficient Coding (Fig. 44,
SI Appendix Fig. S4).

Accommodation performance becomes highly accurate as
well. This is due to the edge-enhancing nature of retinal
ganglion cell receptive fields. With their center-surround shape,
they are selective for sharp contrasts and respond poorly when
out of focus input is presented (Fig. 4C). For sharper input,
the range of responses across the population, and thus the
response entropy, increases (SI Appendix, Fig. S5 & S6).

Furthermore, accurate accommodation is achieved without
obvious sign cues: in our simplified visual environment, defo-
cus blur is independent of whether an eye focuses behind or in
front of the object. Also, neither chromatic nor other higher-
order aberrations are provided in our model, which could help
to steer focus in the right direction (36, 37). Instead, the
model learns to infer the sign of defocus from disparity cues
(ST Appendix, Fig. S7). We further examined this entangle-
ment under abnormal input conditions, e.g. when simulated
lenses were placed in front of the eyes of an agent trained
under healthy conditions. We find the responses of the model
to qualitatively agree with experimental results (38, 39) (SI
Appendix, Fig. S8).

Anisometropia drives model into amblyopic state. To test how
the model evolves under abnormal rearing conditions, we sim-
ulated an anisometropic case by adding a simulated lens in
front of the right eye such that it became hyperopic and was
unable to focus objects at close distances (Fig. 3C, center).
Therefore, unlike the healthy case, where neither eye is favored
over the other, in the anisometropic case, the impaired eye
receives systematically more defocused input. Cortical recep-
tive fields reflect this imbalance and become more monocular,
favoring the unimpaired eye (compare Fig. 6 C, bottom and
Fig. S1, top, center). The combined effect of imbalanced input
and adapting receptive fields results in a vicious cycle that
drives the model into an amblyopia-like state (Fig. 5B). Foveal
input from the hyperopic eye becomes actively suppressed
(SI Appendix, Fig. S94) while the low-resolution peripheral
input is unaffected and still provides binocular information
such that a coarse control of vergence is maintained (Fig. 64
and SI Appendix, Fig. S2B & S3B). This results in stable
binocular receptive fields in the periphery (Fig. S1, bottom,
center), which provide enough information for coarse stere-

opsis as observed in experiments (40-42). Accommodation
adapts such that the stimulus is continuously tracked with the
unimpaired eye (SI Appendix, Fig. S3).

When both eyes were similarly impaired but with opposite
sign of the refractive error (Fig. 3C, bottom), receptive fields
still become more monocular but no eye is preferred (SI Ap-
pendix, Fig. S1, top, right). As a result, the relatively more
myopic eye is used for near and the relatively less myopic eye
for distant vision (SI Appendix, Fig. S104) and the respective
other, defocused eye is suppressed. At intermediate ranges,
the stimulus history determines which eye gets recruited (SI
Appendix, Fig. S1I0B & (). This configuration is similar to
monovision, which results from a treatment method for pres-
byopia, where the ametropic condition is achieved via optical
lenses or surgery (43).

Early but not late refractive correction rescues binocular vi-
sion. To test if the anisometropic model can recover from
amblyopia upon correction of the refractive error, we first
trained a fully plastic model under anisometropic conditions
until it had converged to the amblyopic state. Then, all re-
fractive errors were corrected. When the receptive fields were
fixed after the refractive error was corrected, receptive fields
remained monocular and the model did not recover from the
amblyopic state. Instead, it maintained a high level of vergence
error (Fig. 6B). In contrast, when receptive fields remained
plastic and could adapt to the changed input statistics, the
vergence error decreased (Fig. 6B) and the strong suppression
of the formerly impaired eye was restored to lower values (SI
Appendix, Fig. S9B). This was due to a shift from monoc-
ular to binocular receptive fields as a result of the changed
input statistics (Fig. 6C'). This is in line with a large body of
evidence suggesting that limited cortical plasticity in adults
prevents recovery from amblyopia after the correction of refrac-
tive errors (10, 20, 21). Furthermore, it predicts that therapies
reinstating visual cortex plasticity should be effective.

Discussion

We have shown how simultaneously optimizing both behavior
and encoding for efficiency leads to the self-calibration of
active binocular vision. Specifically, our model, which is based
on a new formulation of the Active Efficient Coding theory,
accounts for the simultaneous development of vergence and
accommodation.

Previous computational models have focused on either the
development of disparity tuning or the development of ver-
gence and accommodation control, but have failed to capture
their rich interdependence (28, 44-46). For example, a model
by Hunt et al. (28) explained how disparity tuning may emerge
through sparse coding and how alternate rearing conditions
could give rise to systematic differences in receptive field prop-
erties, but their model completely neglected vergence and
accommodation behavior. Conversely, others have presup-
posed populations of cells readily providing error signals for
vergence and accommodation control without explaining their
developmental origin (44, 46). Therefore, previous models
have failed to explain how the visual system solves the funda-
mental ‘chicken and egg’ of disparity tuning and eye movement
control: the development of fine disparity detectors requires
the ability to accurately focus and align the eyes, which in turn
relies on the ability to detect fine disparities. Our Active Effi-

Eckmann et al.


https://doi.org/10.1101/571802
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/571802; this version posted February 27, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

cient Coding model solves this problem through the positive
feedback loop between disparity tuning, which facilitates the
control of eye movements, and improved accommodation and
vergence behavior, which enhances the representation of fine
disparities. In the end, the tuning properties of sensory neu-
rons reflect the image statistics produced by the system’s own
behavior (47). Under healthy conditions, the model develops
accurate vergence and accommodation eye movements. For a
simulated anisometropia, however, where one eye suffers from
a refractive error while the other eye is unaffected, it develops
into an amblyopia-like state with monocular receptive fields
and loss of fine stereopsis. Recovery from this amblyopia-like
state is only possible if receptive fields in the model remain
plastic, matching findings of a critical period for binocular
development (10).

An important mechanism in amblyopia is interocular sup-
pression. The simple logic behind the model’s suppression
mechanism is that every neuron suppresses input that is in-
congruent to its own receptive field (34, 35). This implemen-
tation proved sufficient to account for the development of an
amblyopia-like state, with mostly monocular receptive fields
in the representation of the fovea. More sophisticated suppres-
sion models could be incorporated in the future (48, 49), but
we do not expect them to change the conclusions from the
present model. Future work should focus on understanding
the principles of interocular suppression within the Active
Efficient Coding framework. A topic of current interest is how
suppression develops during disease and treatment, e.g., with
the standard patching method (50). A better understanding
of the role of suppression in amblyopia could lead to improved
therapies in the future.

While we have focused on the development of active binocu-
lar vision including accommodation and vergence control, our
formulation of Active Efficient Coding is very general and could
be applied to many active perception systems across species
and sensory modalities. Active Efficient Coding is rooted in
classic efficient coding ideas (2-6), of which predictive coding
theories are special examples (51-53). Classic efficient coding
does not consider optimizing behavior, however. Friston’s
Active Inference approach does consider the generation of be-
havior in a very general fashion. There, motor commands are
generated to fulfill sensory predictions. In our new formulation
of Active Efficient Coding, motor commands are learned to
maximize the mutual information between the sensory input
and its cortical representation. This implies maximizing the
amount of sensory information sampled from the environment
and avoids the problem of deliberately using accommodation
to defocus the eyes, or closing the eyes altogether, to make
the sensory input easy to encode and/or predict.

Materials and Methods

Input Image Rendering. We used 300 grayscale converted natural
images of the ‘man-made’ category from the McGill Database (54).
One image was presented at a random position (see Fig. 34 and B)
during one fixation, i.e., 10 subsequent iterations, before the next
image and position were randomly selected for the next fixation.
For every distance unit between vergence and object plane,
the left(right) eye image was shifted 1px to the left(right). This
resulted in a disparity of 2 px per distance unit. A Gaussian blur
filter was applied to the left and the right eye image where the
standard deviations depended linearly on the distance between
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object and accommodation planes. 1 a.u. distance equals 0.8 px of
standard deviation (SI Appendix text, Fig. S11 & Fig. S12). Errors
were measured in a.u. as distances to the object plane. For the
foveal(peripheral) scale, two retinal images of size 72 x 72(160 x 160)
pixels were cropped from the center of the original image (see SI
Appendix, Fig. S13).

Input processing. The left and right retinal input images were
whitened as described by Olshausen and Field (6) (see SI Ap-
pendix for details). For each scale, images were cut and merged
into 81 binocular patches of size 2x8x8 px, where the peripheral
scale was downsampled with a Gaussian pyramid by a factor of
4 (see SI Appendix, Fig. S13). The whitened retinal patches R*
were normalized to zero mean intensity and subsequently contrast
adjusted via the interocular suppression mechanism (see below).
The contrast adjusted patches R were encoded with the matching
pursuit algorithm (26).

For each patch, we recruited N = 10 out of 300 cortical neurons
to most efficiently encode the image. The cortical response C' =
(e1,--+ ,c300) was determined via an iterative process, where the
activities of neurons that were not selected for encoding remained
zero. In the first encoding step, n = 1, the neuron whose receptive
field b; was most similar to the retinal input was selected.

in :argmax(|<bj,Sn,1)|), So = R, [4]

J
where the similarity between a receptive field b; and retinal input
R was meassured with the scalar product (b;, R). When selecting

the next neuron, all information that was already encoded by the
first neuron is substraced from the original input R:

S1 = R—ciybiy, ciy = (bi;,50), 5]
Su=R=Y cibi, (6]
k=1

where S is the residual image after the first encoding step and S,
is the generalized residual after the n-th encoding step. Subsequent
neurons are selected based on the similarity of their receptive fields
with the residual according to Eq. 4. By greedily selecting the
neuron with maximum response iy, In each encoding step, the
reconstruction error ||Sx||? is minimized, i.e., coding efficiency is
maximized.

After encoding, all receptive fields were updated through gradient
descent on ||Sx||? and normalized to unit length. Thus, their tuning
reflects the input statistics (SI Appendix, Fig. S1).

bj + Abj

bj — -,
[[bj + Abj|

0
Abj = _77£||SN||2 =2nc;Sn, [7]
J

where 217 = 5 x 1075 is a learning rate. Each patch of the foveal
scale was encoded by a subset of the same 300 neural receptive fields.
For the peripheral scale a separate set of 300 neurons was used for
encoding (see SI Appendix, Fig. S13). At the beginning of each
simulation, all receptive field weights were drawn randomly from a
zero-mean Gaussian distribution and subsequently normalized to
unit norm.

Reinforcement Learning. We used two separate natural actor critic
reinforcement learners (55, 56) with identical architectures to con-
trol the accommodation planes and the vergence plane, respectively.
Possible actions a correspond to shifts in the respective plane posi-
tions: a € {—2,—1,0,1,2} (compare Fig. 3). The state information
vector comprises the patch-averaged squared responses of the corti-

cal neurons:
1 2
fi= E Z C(i’p)v [8]
P

where c(; ) is the activity of neuron i after encoding patch p and
nyp = 81 is the number of patches per scale. Therefore, f; is spatially
invariant, due to averaging over patches, and does not depend on
the polarity of the input, due to the squaring. This is similar to the
properties of complex cells in primary visual cortex (57, 58). After
they were normalized to unit norm, the peripheral and the foveal
scale state vector are concatenated into the combined state vector
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f of size 300 X 2. The next action a is choosen with probability
7o (f) and the state value is estimated as V'(f):

exp(Za)
Mg = =", %a = uqifi, V = vifj. 9
J J
The weights u,; and v; are updated via approximate natural gradi-

ent descent on an approximation of the temporal difference error §
(algorithm 3 in (56)):

§e =re +AV(FO) — v (D), [10]

where r; is the accommodation or vergence reward and v = 0.6 is the
temporal discounting factor. At the beginning of each simulation,
all network weights were initialized randomly.

Approximating Mutual Information. Rewards for the reinforcement
learners are based on the squared response after whitening and
cortical encoding, respectively. Together this can be understood
as an empirical estimate of the mutual information between the
whitened response R and cortical response C"

I(R,C) = H(R) — H(R|C), [11]

where the conditional entropy H(R|C), is upper bounded by the
reconstruction error ||S||? (see Eq. 2 & SI Appendix). Due to the
‘energy conservation’ property of the matching pursuit algorithm
(26), the energy of the residual image is equal to the energy of the
retinal representation minus the energy of the cortical representation
(see SI Appendix), i.e.,

18112 = —(IRI? = [[CI?) = lc1® = IRI>. (2]

Therefore, we take the difference between cortical and retinal re-
sponse energy as the reward for the vergence learner.

For the accommodation learner, we maximize the entropy of the
whitened retinal response H(R). We take each entry of R as an
independent sample of the same underlying random variable and
estimate the entropy of its probability distribution. The distribution
is well approximated by a Laplace distribution, independent of the
level of blur in the input (Fig. S5). Therefore, we approximate H(R)
with the entropy of a Laplace distribution with the same standard

deviation opg:
H(R) =~ In (ew / 2012%) . [13]

Since the expected squared activity of the retinal representation
E(||R||?) is equal to the variance 0%, it is also a monotonic function
of the entropy H(R). More generally, since the retinal response has
bounded support and its probability distribution is unimodal and
Lipschitz-continuous, the variance O’% is a monotonic function of
a lower bound of the entropy(59). Therefore, we use ||R||2, as an
empirical estimate of E(||R||?), for the reward of the accommodation
reinforcement learning module.

As one would expect for the entropy H(R), also ||R||? decreases
for increasing input blur. Under the assumption of a flat frequency
spectrum after whitening, one finds (see SI Appendix):

IIR|[* o 1/a, (14]

where o is the standard deviation of the Gaussian blur filter that is
applied before whitening to simulate defocus blur.

Reward Normalization. Before being passed to the reinforcement
learning agents, the accommodation and the vergence rewards were
normalized online to zero mean and unit variance, i.e.,

r(t) — 7(t
r(t) « =70 [15)
6(t)
where 7 is the exponentially weighted running average of the reward
r and &2 is an online estimate of its variance:

At +1) = (1 — Q)?(t) + ar(t), [16]
Gt+1)2 = (1—a)o(t)? + aff(t) — r(t))?, [17]

where a = 0.001 is an update rate that sets the decay of the
exponential weighting (60).

Suppression Mechanism. There are two separate suppression mod-
ules, one per scale, that adjust the contrast of left and right input
image (see Fig. 5). We introduce a contrast measure z,k € {l,r}
that gives an estimate of the amount of left(right) monocular input
over the previous iterations.

f.
zp(t) = E = |d@uxr . (18]
—~\ > ;1
v t,T
The monocular dominance of each neuron d(; x) is weighted
with its relative patch-averaged squared activation f;/ Zj f;. Here,
(-)¢,~ is the exponential moving average over time with decay con-

stant 7 = 10 (see SI Appendix). The monocular dominance is
defined as:

166,10
iy = | (k) ke{lr}, 19]

DS

where b(; ) is the left/right monocular subfield of neuron i. The
contrast estimate x of the left and right subfield of the input image
is separately processed by two contrast units

e — 0l [20]

y(zk) =

As the contrast estimate xj crosses the threshold 6, the output
y(zr) increases from zero until it saturates at m. We chose the
threshold 8 = 0.6, just above perfect binocular input at x; = 0.5
to provide some margin before the self-reinforcing feedback loop
becomes active (Fig. 5B). Further, we set the saturation m = 0.8 to
prevent total suppression of one eye. Finally, the subsequent input
sub-patches for the cortical coder are adjusted to

Ri(t) = Rp(t) (1 + y(ze(t — 1) —y(apt —1))) . [21]

Note that I(R,C) = I(R*,C), since R is homeomorphic to R*
(61). Therefore, in our theoretical framework, we do not distinguish
between the contrast adjusted and the raw retinal response. For
the model implementation, the contrast adjusted retinal response
R is employed. See SI Appendix for additional detail.

Software and Documentation. Documented MATLAB code of the
model is available in ModelDB under accession number 261483.
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