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Abstract	1	

The	 brain	 constantly	 generates	 predictions	 about	 the	 environment	 to	 guide	 action.	2	

Unexpected	events	lead	to	surprise	and	can	necessitate	the	modification	of	ongoing	behavior.	3	

Surprise	can	occur	for	any	sensory	domain,	but	it	is	not	clear	how	these	separate	surprise	signals	4	

are	 integrated	 to	 affect	motor	 output.	 By	 applying	 a	 trial-to-trial	 Bayesian	 surprise	model	 to	5	

human	 electroencephalography	 data	 recorded	 during	 a	 cross-modal	 oddball	 task,	 we	 tested	6	

whether	there	are	separate	predictive	models	for	different	sensory	modalities	(visual,	auditory),	7	

or	whether	 expectations	 are	 integrated	 across	modalities	 such	 that	 surprise	 in	 one	modality	8	

decreases	 surprise	 for	 a	 subsequent	unexpected	event	 in	 the	other	modality.	We	 found	 that	9	

while	surprise	was	 represented	 in	a	common	 frontal	 signature	across	 sensory	modalities	 (the	10	

fronto-central	 P3	 event-related	 potential),	 the	 single-trial	 amplitudes	 of	 this	 signature	 more	11	

closely	conformed	to	a	model	with	separate	surprise	terms	for	each	sensory	domain.	We	then	12	

investigated	 whether	 surprise-related	 fronto-central	 P3	 activity	 indexes	 the	 rapid	 inhibitory	13	

control	 of	 ongoing	 behavior	 after	 surprise,	 as	 suggested	 by	 recent	 theories.	 Confirming	 this	14	

prediction,	the	fronto-central	P3	amplitude	after	both	auditory	and	visual	unexpected	events	was	15	

highly	 correlated	with	 the	 fronto-central	P3	 found	after	 stop-signals	 (measured	 in	a	 separate	16	

stop-signal	task).	Moreover,	surprise-related	and	stopping-related	activity	loaded	onto	the	same	17	

component	in	a	cross-task	independent	components	analysis.	Together,	these	findings	suggest	18	

that	medial	frontal	cortex	maintains	separate	predictive	models	for	different	sensory	domains,	19	

but	engages	a	common	mechanism	for	inhibitory	control	of	behavior	regardless	of	the	source	of	20	

surprise.	 	21	
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Author	summary	22	

Surprise	 is	 an	 elementary	 cognitive	 computation	 that	 the	 brain	 performs	 to	 guide	23	

behavior.	We	investigated	how	the	brain	tracks	surprise	across	different	senses:	Do	unexpected	24	

sounds	make	subsequent	unexpected	visual	stimuli	less	surprising?	Or	does	the	brain	maintain	25	

separate	 expectations	 of	 environmental	 regularities	 for	 different	 senses?	We	 found	 that	 the	26	

latter	is	the	case.	However,	even	though	surprise	was	separately	tracked	for	auditory	and	visual	27	

events,	it	elicited	a	common	signature	over	frontal	cortex	in	both	sensory	domains.	Importantly,	28	

we	observed	 the	same	neural	 signature	when	actions	had	 to	be	stopped	after	non-surprising	29	

stop-signals	 in	 a	 motor	 inhibition	 task.	 This	 suggests	 that	 this	 signature	 reflects	 a	 rapid	30	

interruption	of	ongoing	behavior	when	our	surroundings	do	not	conform	to	our	expectations.	31	

	 	32	
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1.	Introduction	33	

Surprise	occurs	when	expectations	about	the	multi-sensory	environment	are	violated.	It	34	

provides	an	elementary	cognitive	and	physiological	process	that	 forms	the	backbone	of	many	35	

influential	theories	of	cognitive	processing	and	control	(1-5).	The	rapid	modification	of	ongoing	36	

actions	after	surprise	 is	critical	 for	effective	goal-directed	behaviors	(6,	7).	For	example,	while	37	

eating	berries,	one	needs	to	rapidly	stop	ongoing	actions	when	encountering	a	berry	that	looks,	38	

smells,	or	feels	surprising,	lest	one	eats	a	rotten	berry.	However,	the	manner	in	which	the	brain	39	

tracks	surprise	across	different	sensory	domains	is	not	fully	understood.	40	

Prior	 imaging	 work	 has	 shown	 that	 unexpected	 events,	 regardless	 of	 their	 sensory	41	

modality,	activate	similar	brain	networks	(8-11).	In	line	with	this,	scalp-electroencephalography	42	

(EEG)	shows	that	unexpected	events	are	followed	by	a	modality-independent	fronto-central	P3	43	

event-related	potential	(12,	ERP,	13).	The	canonical	neural	response	to	surprise	across	modalities	44	

could	 indicate	 that	 the	 brain	 integrates	 environmental	 information	 across	 modalities	 and	45	

generates	global	predictions	that	 form	the	basis	of	surprise-processing.	Alternatively,	surprise	46	

might	result	from	separate,	independent	predictions	for	each	sensory	domain.	In	this	latter	case,	47	

the	 modality-independent	 surprise	 response	 could	 index	 a	 common	 set	 of	 downstream	48	

mechanisms	triggered	by	surprise,	regardless	of	sensory	domain.	49	

In	 the	 current	 study,	 we	 tested	 these	 two	 alternatives	 against	 each	 other.	 While	50	

performing	a	cross-modal	oddball	task	(CMO,	14),	human	subjects	were	presented	with	visual	or	51	

auditory	 unexpected	 events.	 Using	 the	 statistics	 of	 the	 trial	 sequence,	 we	 constructed	 two	52	

models	of	Bayesian	surprise	(5).	In	one	model,	surprise-values	were	separately	coded	for	each	53	

sensory	domain	(i.e.,	an	unexpected	sound	did	not	reduce	surprise	of	a	subsequent	unexpected	54	
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visual	event).	In	the	alternative	model,	surprise	was	coded	in	a	common	term	across	modalities	55	

(i.e.,	an	unexpected	sound	reduced	surprise	for	a	subsequent	unexpected	visual	event).	We	fit	56	

both	models	to	the	trial-to-trial	electroencephalographic	response	to	unexpected	events	at	each	57	

of	64	scalp-sites	to	determine	which	model	better	represents	the	neural	surprise	response.	58	

As	mentioned	above,	in	case	this	trial-to-trial	modeling	of	the	neural	surprise	response	59	

suggests	that	surprise-terms	are	computed	separately	for	each	sensory	domain	(i.e.,	surprise	is	60	

not	integrated	into	a	common	model),	the	expected	cross-modal	overlap	in	neural	response	may	61	

be	 explained	 by	 a	 common,	 supra-modal	 control	 mechanism	 that	 is	 triggered	 by	 surprise,	62	

regardless	of	modality.	Therefore,	 in	a	second	step,	we	aimed	to	test	the	hypothesis	that	the	63	

fronto-central	 P3	 after	 unexpected	 events	 indexes	 the	modality-independent	 activation	 of	 a	64	

cognitive	control	mechanism	aimed	at	inhibiting	ongoing	behavior.	This	hypothesis	was	recently	65	

proposed	 in	 a	 theoretical	 framework	 claiming	 that	 surprise	 automatically	 engages	 the	 same	66	

motor	inhibition	mechanism	that	is	recruited	when	ongoing	actions	have	to	be	stopped	(15).	The	67	

activity	of	this	mechanism	can	be	measured	in	the	stop-signal	task	(SST,	16),	where	fronto-central	68	

P3	activity	following	(non-surprising)	stop-signals	indexes	the	speed	of	motor	inhibition	(17,	18).	69	

To	determine	whether	the	fronto-central	P3	after	unexpected	events	in	the	CMO	task	and	the	P3	70	

after	stop-signals	in	the	SST	reflect	the	same	process,	we	first	correlated	their	amplitudes	across	71	

tasks	 and	 subjects.	 We	 hypothesized	 that	 if	 they	 indeed	 reflect	 the	 same	 process,	 their	72	

amplitudes	 should	 be	 positively	 correlated.	 Additionally,	 we	 used	 independent	 component	73	

analysis	 to	 determine	 if	 both	 fronto-central	 waveforms	 load	 onto	 a	 common	 independent	74	

component	(19,	20).	In	doing	so,	we	aimed	to	provide	converging	support	for	the	proposal	that	75	
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surprise-signals	in	frontal	cortex	lead	to	the	automatic	activation	of	a	control	process	that	aims	76	

to	inhibit	ongoing	behavior,	independent	of	the	modality	of	the	unexpected	event.	77	

	78	

2.	Materials	and	Methods	79	

2.1.	Participants	80	

Fifty-five	healthy	young	adult	volunteers	from	the	Iowa	City	community	were	recruited	81	

via	 a	 research-dedicated	 email	 list,	 as	well	 as	 through	 the	University	 of	 Iowa	Department	 of	82	

Psychological	and	Brain	Sciences’	online	subject	recruitment	tool.	The	sample	consisted	of	thirty-83	

one	females	and	twenty-four	males	(mean	age:	20.9	y,	SEM:	0.05,	range	18-31),	eight	of	them	84	

left-handed.	Participants	were	compensated	with	course	credit	or	an	hourly	payment	of	$15.	The	85	

procedure	was	approved	by	the	University	of	Iowa	Institutional	Review	Board	(#201612707).	86	

	87	

2.2.	Materials	88	

Stimuli	 for	 both	 tasks	 were	 presented	 using	 the	 Psychophysics	 toolbox	 (21)	89	

(RRID:SCR_002881)	under	MATLAB	2015b	(TheMathWorks,	Natick,	MA;	RRID:SCR_001622)	on	an	90	

IBM-compatible	 computer	 running	 Fedora	 Linux.	 Visual	 stimuli	 were	 presented	 on	 an	 ASUS	91	

VG278Q	 low-latency	 flat	 screen	monitor,	while	 sounds	were	played	at	conversational	volume	92	

through	 speakers	 positioned	 on	 either	 side	 of	 the	 monitor.	 Responses	 were	 made	 using	 a	93	

standard	QWERTY	USB-keyboard.	94	

	95	

2.3.	Cross-Modal	Oddball	task	96	
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Each	trial	began	with	a	central	white	fixation	cross	on	black	background	(500ms),	which	97	

was	followed	by	an	audio-visual	cue	(Figure	1).	Participants	were	instructed	that	this	cue	would	98	

be	informative	regarding	the	timing	of	a	subsequent	target	stimulus	(a	left-	or	rightward	white	99	

arrow)	 that	 they	would	 have	 to	 respond	 to.	 Participants	were	 instructed	 that	 the	 cue	would	100	

consist	of	a	green	circle	presented	in	place	of	the	fixation	cross	for	200ms,	accompanied	by	a	101	

600Hz	sine	wave	tone	of	200ms	duration.	After	cue	presentation,	the	fixation	cross	reappeared	102	

for	 300ms,	 followed	 by	 the	 target	 (i.e.,	 the	 target	 appeared	 exactly	 500ms	 after	 cue	 onset).	103	

Participants	were	instructed	to	respond	to	the	target	as	fast	as	possible.	Target	responses	were	104	

collected	through	the	keyboard	(q	for	leftward	and	p	for	rightward	arrows)	with	the	index	finger	105	

of	the	respective	hand.	Participants	had	1,000ms	to	respond	to	the	target,	after	which	the	fixation	106	

cross	reappeared	and	the	inter-trial	interval	began.	The	duration	of	the	inter-trial	interval	lasted	107	

until	2,500ms	 from	the	 initial	onset	of	 the	 fixation	cross	 (beginning	of	 the	 trial)	was	 reached.	108	

Furthermore,	to	prevent	predictable	trial	initiation	timing,	a	variable-length	jitter	was	added	to	109	

the	 ITI	 (100	 –	 500ms	 in	 100ms	 increments,	 uniform	distribution),	 resulting	 in	 an	 overall	 trial	110	

duration	ranging	from	2,600ms	to	3,000ms.	111	

After	10	practice	trials	without	any	unexpected	cues,	participants	performed	240	trials,	112	

spread	across	4	blocks.	During	this	experimental	trials,	80%	of	trials	contained	cues	that	were	as	113	

described	above	(hereafter	referred	to	as	standard	cues).	On	10%	of	trials,	the	sine-wave	tone	114	

was	replaced	with	one	of	120	unique	birdsong	segments,	which	were	matched	in	amplitude	and	115	

duration	to	the	sine-wave	tone	(unexpected	auditory	cue).	For	these	auditory	unexpected	cues,	116	

the	visual	part	of	the	cue	remained	the	same	as	for	standard	trials.	On	the	remaining	10%	of	trials,	117	

the	green	circle	was	replaced	by	one	of	seven	different	geometric	shapes	(upwards/downwards	118	
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triangle,	square,	diamond,	cross,	hexagon,	or	a	serifed	“I”-shape)	in	one	of	15	different	non-green	119	

colors	 spread	across	 the	RGB	spectrum	 (unexpected	visual	 cue,	 cf.	 Figure	1).	 For	 these	visual	120	

unexpected	cues,	the	auditory	part	of	the	cue	remained	the	same	as	for	standard	trials.	Trials	121	

were	presented	in	pseudorandom	order,	with	the	following	constraints:	the	three	first	trials	of	122	

each	block	had	to	contain	standard	cues;	no	two	consecutive	unexpected-cue	trials	were	allowed	123	

to	occur;	and	each	block	had	to	have	the	same	number	of	unexpected	auditory	and	visual	cues.	124	

	125	

2.4.	Stop-signal	task	126	

	 Trials	began	with	a	white	fixation	cross	on	a	gray	background	(500ms	duration),	followed	127	

by	a	white	leftward-	or	rightward-pointing	arrow	(go-signal).	Participants	had	to	respond	as	fast	128	

and	accurately	as	possible	to	the	arrow	by	using	their	left	or	right	index	finger	as	indicated	by	the	129	

direction	of	the	arrow	(the	respective	response-buttons	were	q	and	p	on	the	QWERTY	keyboard).	130	

On	33%	of	trials,	a	stop-signal	occurred	(the	arrow	turned	from	white	to	red)	at	a	delay	after	the	131	

go-stimulus	(stop-signal	delay,	SSD).	The	SSD,	which	was	initially	set	to	200ms,	was	dynamically	132	

adjusted	 in	 50ms	 increments	 to	 achieve	 a	 p(stop)	 of	 .5:	 after	 successful	 stops,	 the	 SSD	was	133	

increased;	after	 failed	stops,	 it	was	decreased.	This	was	done	 independently	 for	 leftward	and	134	

rightward	go-stimuli:	SSD	started	at	200ms	for	both	left-	and	right-arrow	trials.	Then,	if	a	stop-135	

trial	 with	 a	 leftward	 arrow	 lead	 to	 a	 failed	 stop,	 the	 SSD	 for	 the	 next	 leftward	 arrow	 was	136	

decreased	by	50ms,	whereas	the	SSD	for	the	next	rightward	response	remained	unchanged.	This	137	

way,	 the	 SSD	 was	 allowed	 to	 vary	 independently	 for	 each	 arrow/response	 direction.	 Trial	138	

duration	was	fixed	at	3000ms.	Six	blocks	of	50	trials	were	performed	(200	go,	100	stop).	Before	139	

the	main	experiment,	subjects	practiced	the	task	for	24	trials	(16	go,	8	stop).	140	
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	141	

	142	

Figure	1.	Cross-modal	oddball	task	diagram.	The	top	row	depicts	the	trial	timing.	The	gray	box	143	

attached	to	the	cue	illustrates	the	different	cue	properties	by	trial	type.	Each	cue	consisted	of	a	144	

visual	 and	 an	 auditory	 component.	 Standard	 visual	 cues	 consisted	 of	 a	 green	 circle,	whereas	145	

unexpected	visual	cues	were	one	of	seven	non-circular	shapes	shown	in	one	of	fourteen	non-green	146	

colors.	Standard	auditory	cues	consisted	of	a	600Hz	sine	wave,	whereas	unexpected	auditory	cues	147	

were	one	of	120	individual	unique	birdsong	segments.	On	a	trial	that	contained	an	unexpected	148	

cue	in	one	domain,	the	part	of	the	cue	always	contained	the	standard	component.	149	

	150	

2.5.	Code	availability	151	
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	 All	analysis	code,	as	well	as	the	task	code,	can	be	downloaded	alongside	the	raw	data	at	152	

the	following	URL:	[to	be	inserted	upon	acceptance].	153	

	154	

2.6.	Behavioral	analysis	155	

	 For	the	CMO	task,	we	quantified	mean	reaction	time	(RT),	mean	error	rate	(wrong	button	156	

pressed),	and	mean	miss	rate	(no	response	made	within	1,000ms	after	target	onset)	for	each	of	157	

the	 three	 trial	 types	 (standard	 cue,	 unexpected	 auditory	 cue,	 unexpected	 visual	 cue).	 We	158	

analyzed	these	dependent	variables	using	a	3	x	4	repeated-measures	ANOVA	with	the	factors	159	

TRIAL	TYPE	(1-3)	and	BLOCK	(1-4).	In	case	of	a	significant	interaction,	we	performed	follow-up	160	

paired-samples	t-tests	that	compared	each	of	the	two	unexpected	cue	conditions	to	the	standard	161	

cue	condition	separately	for	each	of	the	four	blocks,	resulting	in	eight	total	tests.	The	alpha-level	162	

for	 these	 comparisons	 was	 corrected	 using	 the	 Bonferroni	 correction	 to	 a	 corrected	 alpha	163	

of	.0063	(i.e.,	p	=	.05	/	8).	164	

	 For	the	stop-signal	task,	we	examined	the	following	measures:	mean	Go-trial	RT,	mean	165	

failed-stop	 trial	 RT,	 and	mean	 stop-signal	 RT	 (SSRT;	 computed	 using	 the	 integration	method,	166	

Verbruggen	&	Logan,	2009;	Boehler	et	al.,	2014).	167	

	168	

2.7.	EEG	recording	169	

EEG	was	recorded	using	a	62-channel	electrode	cap	connected	to	two	BrainVision	MRplus	170	

amplifiers	 (BrainProducts,	Garching,	Germany).	Two	additional	electrodes	were	placed	on	the	171	

left	canthus	(over	the	lateral	part	of	the	orbital	bone	of	the	left	eye)	and	over	the	part	of	the	172	
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orbital	bone	directly	below	the	left	eye.	The	ground	was	placed	at	electrode	Fz,	and	the	reference	173	

was	placed	at	electrode	Pz.	EEG	was	digitized	at	a	sampling	rate	of	500	Hz.	174	

	175	

2.8.	EEG	preprocessing	176	

	 The	 CMO	 and	 SST	 datasets	 were	 preprocessed	 separately,	 using	 custom	 routines	 in	177	

MATLAB,	 incorporating	 functions	 from	 the	 EEGLAB	 toolbox	 (22).	 The	 channel	 *	 time-series	178	

matrices	for	each	task	were	imported	into	MATLAB	and	then	filtered	using	symmetric	two-way	179	

least-squares	finite	impulse	response	filters	(high-pass	cutoff:	.3	Hz,	low-pass	cutoff:	30	Hz).	Non-180	

stereotyped	artifacts	were	automatically	removed	from	further	analysis	using	segment	statistics	181	

applied	to	consecutive	one-second	segments	of	data	(joint	probability	and	joint	kurtosis,	with	182	

both	cutoffs	set	to	5	SD,	cf.,	23).	After	removal	of	non-stereotypic	artifacts,	the	data	were	then	183	

re-referenced	 to	 common	 average	 and	 subjected	 to	 a	 temporal	 infomax	 ICA	 decomposition	184	

algorithm	(24),	with	extension	to	subgaussian	sources	(25).	The	resulting	component	matrix	was	185	

screened	 for	 components	 representing	 eye-movement	 and	 electrode	 artifacts	 using	 outlier	186	

statistics	and	non-dipolar	components	(residual	variance	cutoff	at	15%,		26),	which	were	removed	187	

from	the	data.	The	remaining	components	(an	average	of	17.1	per	subject)	were	subjected	to	188	

further	analyses.	189	

	190	

2.9.	Experimental	design	and	statistical	tests	(EEG	analysis)	191	

2.9.1.	Hypothesis	1	–	Cross-modal	representation	of	surprise	192	

	 To	investigate	whether	surprise	is	represented	separately	for	each	sensory	domain,	we	193	

constructed	two	Bayesian	surprise	terms	on	a	trial-by-trial	basis,	based	on	the	trial	sequences	for	194	
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each	subject	(cf.	Figure	2).	For	both	terms,	the	surprise	value	associated	with	an	unexpected	cue	195	

on	a	particular	trial	was	based	on	the	following	equation:	196	

𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒( = 𝑙𝑜𝑔-
𝑝./01203405_3.0 1… 𝑖

𝑝./01203405_3.0 1… 𝑖 − 1
	197	

	 This	equation	corresponds	to	the	trial-wise	Kullback-Leibler	divergence	between	the	prior	198	

probability	of	an	unexpected	cue	(denominator)	and	the	posterior	probability	of	an	unexpected	199	

cue	 (numerator).	 This	 value	 is	 bounded	 between	 0	 (posterior	 =	 prior	 ->	 no	 surprise)	 and	 1	200	

(maximum	surprise).	Since	this	value	is	not	defined	on	the	first	occurrence	of	an	unexpected	cue	201	

(where	the	prior	is	zero,	leading	to	a	division	by	0),	the	surprise	value	for	that	trial	was	set	to	1	202	

(maximum	surprise).	203	

	 Based	on	this	equation,	we	generated	two	different	models.	In	Model	1	(separate	surprise	204	

terms,	Figure	2A),	values	for	each	sensory	domain	were	calculated	separately.	In	other	words,	205	

the	 first	 time	 the	 subject	encountered	an	unexpected	auditory	 cue	 in	 the	 trial	 sequence,	 the	206	

surprise	for	that	trial	was	1.	Subsequent	unexpected	auditory	cues	then	produced	lower	surprise	207	

values	as	the	posterior	and	prior	probabilities	of	unexpected	auditory	cues	converge	on	the	same	208	

value	(i.e.,	as	the	ratio	approaches	1,	the	log	approaches	0)	with	increasing	numbers	of	previous	209	

unexpected	auditory	cues.	Critically,	these	prior	and	posterior	probabilities	for	auditory	cues	are	210	

calculated	without	reference	to	the	number	of	prior	unexpected	visual	cues.	Thus,	once	a	subject	211	

encounters	the	first	unexpected	visual	cue,	the	surprise	value	for	that	trial	is	again	1	(maximum	212	

surprise).	 Hence,	 the	 prior	 for	 each	 sensory	 domain	 is	 unaffected	 by	 the	 occurrence	 of	213	

unexpected	cues	in	the	other	sensory	domain.1		214	

																																																								
1	This	formulation	of	Model	1	assumes	statistical	independence	in	calculating	these	probabilities.	However,	the	two	
kinds	 of	 unexpected	 cues	 were	 not	 statistically	 independent	 in	 the	 experimental	 design,	 as	 no	 trial	 included	
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	 In	contrast	to	Model	1,	Model	2	(common	surprise	term,	Figure	2B)	extracted	a	combined	215	

surprise	value,	calculated	without	reference	to	sensory	domain.	 In	other	words,	the	prior	and	216	

posterior	probabilities	are	based	on	the	number	of	unexpected	cues,	regardless	of	whether	those	217	

cues	were	visual	or	auditory.		218	

	219	

Figure	2.	Single-subject	example	of	surprise-term	construction	for	each	model.	Top:	Model	1	uses	220	

separate	surprise	terms	for	each	sensory	domain.	In	effect,	the	presence	of	a	surprising	event	in	221	

one	sensory	domain	does	not	inform	the	prior	in	the	other	sensory	domain.	Bottom:	Model	2	uses	222	

																																																								
unexpected	cues	for	both	sensory	domains.	To	address	this,	we	investigated	an	alternative	formulation	of	Model	1	
that	 respected	 this	mutual	exclusivity	 inherent	 in	 the	experimental	design.	 For	example,	upon	 realizing	 that	 the	
current	trial	contained	an	expected	visual	cue,	this	increases	the	prior	probability	for	an	unexpected	auditory	cue.	It	
is	not	clear	whether	subjects	could	have	reasonably	learned	this	mutual	exclusivity.	Regardless	of	the	formulation	
of	Model	 1,	 the	 first	 unexpected	 event	 for	 either	modality	 is	maximally	 surprising	 (as	 a	 result,	 this	 alternative	
formulation	of	Model	1	was	nearly	identical	to	the	reported	version,	which	assumed	statistical	independence).	
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a	combined	surprise	 term	across	both	domains.	 In	effect,	all	unexpected	events,	 regardless	of	223	

domain,	influence	the	construction	of	the	prior.	224	

	225	

These	 values	were	 then	 used	 to	model	 the	whole-brain	 event-related	 single-trial	 EEG	226	

response	on	all	trials	that	contained	unexpected	cues.	This	was	done	using	procedures	reported	227	

by	Fischer	and	Ullsperger	(27).	For	each	subject,	sixty-four	matrices	(one	for	each	EEG	channel)	228	

were	generated	that	contained	the	event-related	EEG	response	for	each	individual	trial	with	an	229	

unexpected	cue	(24	auditory,	24	visual	=	48),	measured	in	10	consecutive	time	windows	covering	230	

the	entire	cue-target	interval	(500ms,	Figure	3).	The	time	windows	were	centered	around	time	231	

points	 ranging	 from	50	to	500ms	and	were	48ms	 long	 (24ms	before	and	after	 the	exact	 time	232	

point).	EEG	activity	within	each	time	window	was	averaged	for	each	trial	(prior	to	averaging,	the	233	

single-trial	data	were	baseline-corrected	by	subtracting	the	activity	ranging	from	100ms	–	0ms	234	

relative	 to	 the	cue).	Hence,	 this	 resulted	 in	a	matrix	of	48	 (trials)	*	10	 (time	points)	 for	each	235	

channel	(unless	trials	were	excluded	because	of	artifacts);	cf.	the	blue	matrix	in	Figure	3.	Both	of	236	

the	two	candidate	surprise	models	constructed	from	the	Bayesian	equation	were	then	applied	to	237	

these	EEG	matrices.	In	applying	the	models,	both	the	surprise	terms	and	EEG	response	were	z-238	

scored	(to	standardize	the	resulting	beta	weights)	and	the	model	terms	were	regressed	onto	each	239	

time-window	 vector	 of	 the	 trial	 by	 time	 window	 EEG	 response	matrix.	 This	 was	 done	 using	240	

MATLAB’s	robustfit()	function,	which	performs	a	linear	regression	that	is	robust	to	outliers.	241	

	 The	resulting	matrix	of	beta	values	was	tested	against	0	(using	paired-samples	t-tests	for	242	

the	beta	values,	with	subject	as	the	random	factor)	at	each	channel	and	time	point	separately.	243	

This	identified	channels	and	time	periods	at	which	the	respective	model	surprise	terms	reliably	244	
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captured	variability	in	the	EEG	signal.	This	resulted	in	two	sets	of	64	(channels)	*	10	(time	points)	245	

=	640	individual	tests	(one	set	for	each	model).	To	test	which	model	provided	a	superior	fit	of	the	246	

neural	data	at	each	channel	and	time-point,	 the	resulting	beta	weights	 from	each	model	also	247	

tested	against	each	other,	producing	a	third	set	of	640	paired-samples	t-test	(again	with	subject	248	

as	the	random	factor).	249	

To	correct	for	multiple	comparisons	across	these	three	sets	of	640	t-tests,	we	adjusted	250	

the	alpha-level	using	the	false	discovery	rate	correction	procedure	(FDR,	28)	based	on	a	family-251	

wise	alpha-level	of	.01.	This	resulted	in	an	adjusted	alpha-level	of	p	=	.00044.	A	detailed	graphical	252	

illustration	of	this	overall	analysis	strategy	can	be	found	in	Figure	3.	253	

	254	
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Figure	 3.	 Schematic	 overview	 of	 the	 single-subject,	 single-trial	 robust	 regression	 analysis,	255	

mapping	surprise	terms	from	two	models	onto	the	whole	brain	EEG	response	to	unexpected	cues	256	

(as	well	 as	 performing	 a	model	 comparison).	 Clockwise	 from	 the	 top-left:	 For	 each	 individual	257	

channel,	 the	 trial-by-trial	 event-related	 response	 was	 averaged	 within	 10	 consecutive	 time	258	

windows	following	onset	of	an	unexpected	cue.	This	resulted	in	a	matrix	of	48	trials	by	10	time	259	

windows	of	EEG	amplitude	values	for	each	subject	(one	for	each	channel;	blue	brackets).	Each	260	

subject’s	individual	model	terms	for	both	models	(pink	and	green	brackets	on	the	top	right)	were	261	

then	 correlated	 with	 each	 of	 the	 trial-vectors	 for	 each	 time	 window	 using	 robust	 regression	262	

(orange	line).	The	resulting	beta	values	were	stored	in	one	channel	by	time	window	matrix	for	263	

each	 subject	 and	 model	 (bottom	 right).	 These	 beta	 weights	 were	 subjected	 to	 group-level	264	

analyses	 across	 subjects	 (bottom	 left),	 with	 each	 channel	 by	 time	 window	 combination	 (640	265	

unique	combinations	per	model)	tested	against	0	for	each	model	separately	(purple	box),	with	266	

paired	samples	t-tests	using	subject	as	the	random	factor.	267	

	268	

In	 a	 separate	 exploratory	 analysis	 of	 the	 trial-to-trial	 reaction	 times,	 we	 similarly	269	

regressed	 the	 surprise	 terms	 from	 each	 model	 onto	 the	 response	 latencies	 for	 each	 target	270	

stimulus	to	assess	whether	surprise,	according	to	each	model,	predicted	slower	responses.	271	

	272	

2.9.2.	Hypothesis	2	–	Surprise-related	frontal	cortex	activity	reflects	inhibitory	control	273	

	 In	addition	to	our	above-described	test	of	whether	surprise	is	represented	in	the	brain	274	

separately	for	each	sensory	domain,	we	also	tested	whether	the	predicted	fronto-central	neural	275	

response	to	unexpected	cues	(i.e.,	the	P3)	reflects	an	inhibitory	control	signal	aimed	at	inhibiting	276	
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ongoing	behavior	during	surprise.	To	this	end,	we	employed	cross-task	comparisons	between	the	277	

fronto-central	 P3	 extracted	 for	 each	 subject	 from	 the	 CMO	 task	 and	 a	 separate	 ‘functional	278	

localizer’	task	–	the	stop-signal	task	–	which	all	subjects	performed	after	the	CMO	task	(subjects	279	

performed	the	SST	after	the	CMO	task	so	they	were	not	biased	to	use	inhibitory	control	in	the	280	

CMO	 task).	 We	 used	 two	 different	 approaches	 to	 compare	 activity	 across	 tasks:	 amplitude	281	

correlations	and	indepdendent	component	analysis	(ICA).	282	

	283	

2.9.2.1.	Amplitude	correlations	(Approach	1).	284	

In	 the	 first	 approach,	we	 assessed	 correlations	 between	 EEG	 amplitudes	 across	 tasks.	285	

More	specifically,	if	the	fronto-central	signals	from	each	task	reflect	the	same	brain	process,	they	286	

should	be	positively	correlated	(e.g.,	a	subject	with	a	more	pronounced	stop-signal	P3	should	also	287	

show	a	larger	P3	to	unexpected	cues	in	the	CMO	task).	However,	positive	correlations	might	arise	288	

from	a	variety	of	nuisance	variables	(e.g.,	better	signal-to-noise	ratio	for	some	subjects	compared	289	

to	others),	and	these	alternatives	were	addressed	by	comparing	these	correlations	with	various	290	

control	correlations.	291	

To	perform	our	correlation	analyses,	 for	each	subject,	we	extracted	 the	amplitudes	of	292	

several	trial-averaged	event-related	potentials	(ERPs)	from	both	tasks,	all	of	which	were	averaged	293	

from	-100	to	700ms	with	respect	to	the	time-locking	event	(and	baseline	corrected	from	-100	to	294	

0ms):	295	

	296	

1.	ERPs	of	interest:	297	

- Fronto-central	P3	following	the	stop-signal	on	successful	stop-trials	in	the	SST	298	
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- Fronto-central	P3	following	visual	or	auditory	unexpected	cues	in	the	CMO	task.	299	

	300	

2.	Control	ERPs:	301	

- posterior	occipital	(visual)	N1	to	the	arrow	stimuli	in	both	tasks	(i.e.,	to	the	Go-signal	302	

in	the	SST	and	to	the	target-arrow	in	the	CMO	task).	303	

- Fronto-central	P3	following	standard	cues	in	the	CMO	task.	304	

	305	

For	all	P3	ERPs,	amplitudes	were	extracted	by	measuring	the	largest	positive	deflection	in	306	

the	 trial-average	during	 the	 time-window	ranging	 from	250-500ms	 following	 the	 time-locking	307	

event	(measured	at	fronto-central	electrodes	FCz	and	Cz).	For	both	N1	ERPs,	amplitudes	were	308	

extracted	 by	measuring	 the	 largest	 negative	 deflection	 in	 the	 trial	 average	 during	 the	 time-309	

window	 ranging	 from	 100-300ms	 following	 the	 time-locking	 event	 (measured	 at	 occipital	310	

electrodes	Oz,	O1,	and	O2).	311	

	312	

We	ran	the	following	correlation	analyses	using	the	Pearson	correlation	coefficient:	313	

	314	

Main	hypothesis:	If	the	fronto-central	P3	during	surprise	and	after	stop-signals	signify	the	315	

same	process,	there	should	be	a	positive	correlation	between	the	stop-signal	P3	in	the	stop-signal	316	

task	and	both	the	visual	and	auditory	unexpected-cue	P3	in	the	cross-modal	oddball	task.	317	

Control	analysis	1:	It	is	widely	accepted	that	the	occipital	N1	is	a	visual	perception	process.	318	

Hence,	there	should	be	a	positive	correlation	between	the	posterior-occipital	N1	to	the	go-signal	319	

arrow	in	the	SST	task	and	the	N1	to	the	target-arrow	stimuli	in	the	CMO	task.	Both	stimuli	were	320	
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visually	identical	and	had	the	same	meaning	in	both	tasks	(they	instructed	a	motor	response	in	321	

the	according	direction	of	the	arrow).	This	control	analysis	was	run	to	demonstrate	that	if	two	322	

ERPs	reflect	the	same	process	across	tasks,	their	amplitudes	will	be	correlated.	323	

Control	analysis	2:	The	correlation	between	the	stop-signal	P3	and	the	occipital	N1	to	the	324	

go-signa	arrow	l	in	the	SST	was	examined	to	rule	out	the	possibility	that	subjects	show	similar	325	

amplitudes	for	ERPs	within	the	same	task,	even	when	they	reflect	different	processes.	326	

Control	analysis	3:	The	correlation	between	the	stop-signal	P3	in	the	SST	and	the	occipital	327	

N1	to	the	target-arrow	in	the	CMO	task	was	examined	to	rule	out	the	possibility	that	subjects	328	

show	similar	amplitudes	for	different	ERPs	regardless	of	task	and	/	or	process.	329	

Control	analysis	4:	The	correlation	between	the	stop-signal	P3	in	the	SST	and	the	fronto-330	

central	P3	to	standard	cues	in	the	CMO	task	was	examined	to	rule	out	the	possibility	that	the	331	

stop-signal	P3	is	positively	correlated	with	the	fronto-central	P3	to	any	meaningful	task	cue,	even	332	

when	that	cue	is	not	surprising.	333	

	334	

Correlation	comparison.	We	predicted	that	our	main	hypothesis,	as	well	as	our	control	335	

analysis	1,	would	yield	significant	positive	correlations.	We	also	predicted	that	our	other	control	336	

analyses	(2-4)	would	not	yield	significant	correlations.	Hence,	the	latter	control	analyses	involve	337	

null	hypothesis	tests,	with	unknown	statistical	power.	338	

Therefore,	 in	addition	to	performing	these	control	analyses,	we	directly	compared	the	339	

magnitude	of	all	control	correlations	against	the	magnitude	of	the	correlations	between	the	stop-340	

signal	 P3	 and	 the	 fronto-central	 P3s	 to	 unexpected	 cues	 in	 the	 CMO	 task.	 This	 tested	 the	341	

alternative	hypotheses	that	the	predicted	positive	correlation	would	be	significantly	larger	than	342	
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the	nuisance	correlations,	thereby	providing	a	direct	test	of	our	hypotheses.	To	do	so,	we	used	a	343	

bootstrapping	approach.	First,	we	inverted	the	N1	amplitudes	so	that	correlations	between	any	344	

of	the	six	amplitude	measures	(the	four	P3s	and	the	two	N1s)	could	be	interpreted	with	the	same	345	

directionality.	There	were	two	correlations	that	were	expected	to	be	significant	(the	stop-signal	346	

P3	 versus	 the	 CMO	 P3	 and	 the	 stop-signal	 N1	 versus	 the	 CMO	N1)	 and	 each	 of	 these	were	347	

compared	with	the	three	correlations	that	were	expected	to	be	null	(control	analyses	2-4	above),	348	

resulting	 in	six	correlation	differences.	To	test	whether	 these	differences	were	significant,	we	349	

repeated	 the	 same	 analysis	 5000	 times,	 but	 instead	 of	 assigning	 each	 data	 point	 to	 the	350	

appropriate	 subject	 within	 each	 type	 of	 measure,	 the	measures	 were	 randomly	 assigned	 to	351	

subjects	before	 the	 correlations	were	 calculated.	 This	 generated	an	empirical	 null	 hypothesis	352	

distribution	of	possible	differences	for	each	of	the	six	pairs	of	correlations.	A	p-value	for	each	353	

correlation	difference	was	then	generated	by	calculating	the	proportion	of	these	empirical	null	354	

distribution	values	 that	were	as	 large	 (or	 larger)	 than	 the	difference	 that	was	 found	with	 the	355	

actual	(unscrambled)	data.	Each	of	these	6	correlation	differences	were	deemed	reliable	if	this	356	

proportion	was	less	than	.05	(one-sided).			357	

	358	

Partial	 correlations.	 Finally,	 an	 alternative	 to	 comparing	 correlations	 is	 to	 perform	 a	359	

multiple	 regression	 analysis	 that	 includes	 the	 nuisance	 variables	 within	 the	 same	 model.	360	

Therefore,	we	also	fit	linear	models	whose	predictors	included	both	the	stop-signal	P3	and	each	361	

one	of	the	nuisance	ERP	amplitudes	as	predictors,	with	fronto-central	P3	to	unexpected	cues	in	362	

the	CMO	task	serving	as	the	criterion	variable.	This	produced	a	partial	regression	coefficient	for	363	
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the	hypothesized	correlations	between	the	stop-signal	and	surprise-related	P3	amplitudes,	with	364	

the	influence	of	the	nuisance	process	(reflected	in	the	control	ERP	amplitude)	factored	out.	365	

	366	

2.9.2.2.	Independent	Component	Analysis	(Approach	2).	367	

Our	second,	complementary	approach	to	test	whether	the	stop-signal	P3	and	the	fronto-368	

central	P3	to	unexpected	cues	reflect	overlapping	neural	processes	used	ICA.	369	

Overview.	In	all	of	the	analyses	above	(for	both	Approach	1	to	Hypothesis	2	and	for	the	370	

analyses	conducted	to	test	Hypothesis	1),	the	SST	and	CMO	task	data	were	analyzed	separately	371	

to	avoid	any	potential	bias	 towards	 finding	a	 relationship	between	them.	 In	contrast,	 for	 this	372	

analysis,	 the	 stop-signal	 and	 cross-modal	 oddball	 data	were	 subjected	 to	 the	 same	 ICA.	 This	373	

allowed	us	to	reanalyze	the	surprise	analyses	under	Hypothesis	1	with	re-constructed	data	that	374	

factored	out	the	signal	associated	with	the	stop-signal	P3.	In	this	manner,	we	tested	whether	the	375	

association	between	the	surprise	term	and	fronto-central	EEG	activity	in	the	cross-modal	oddball	376	

task	relies	on	the	stop-signal	IC	(suggesting	a	commonality	between	processes,	19,	20,	29,	30),	or	377	

whether	processes	captured	by	other	ICs	explain	the	surprise-related	response	in	the	CMO	task	378	

(which	would	suggest	that	surprise-processing	and	action-stopping	do	not	involve	overlapping	379	

processes).	380	

First,	we	used	the	SST	portion	of	the	data	as	a	functional	localizer,	extracting	one	(and	381	

only	one)	independent	component	(IC)	for	each	subject	that	best	reflected	the	properties	of	the	382	

fronto-central	stop-signal	P3.	We	then	generated	two	different	datasets	for	the	CMO	task	for	383	

each	subject:	one	dataset	in	which	the	EEG	channel	data	were	reconstructed	using	only	the	one	384	

IC	 that	 reflected	 the	 stop-signal	 P3,	 and	 one	 dataset	 in	 which	 the	 channel	 data	 were	385	
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reconstructed	by	back-projecting	all	ICs	except	the	stop-signal	P3	IC	(thereby	effectively	removing	386	

this	 IC’s	 contribution	 from	 the	 channel	 data,	 similar	 to	 ICA-based	 eye-movement	 artifact	387	

rejection).	We	 then	 re-ran	 the	 single-trial	modeling	 analyses	 performed	 under	 Hypothesis	 1,	388	

exactly	as	described	above,	separately	on	both	datasets.		389	

	 Stop-signal	P3	IC	selection.	Automated	selection	of	the	stop-signal	IC	from	the	SST	portion	390	

of	the	merged	data	was	done	using	a	two-step	spatiotemporal	selection	procedure	(31).	First,	391	

each	subject’s	component	matrix	was	scanned	for	components	that	showed	a	fronto-centrally	392	

distributed	positivity	on	stop-	compared	 to	go-trials	 in	 the	 time	window	250ms	 following	 the	393	

respective	signal.	To	this	end,	the	scalp	montage	was	divided	into	9	ROIs	(an	anterior-posterior	394	

dimension	 and	 a	 lateral	 dimension	 with	 3	 levels	 each).	 Components	 whose	 back-projected	395	

channel-space	topography	for	that	difference	wave	showed	a	maximum	in	the	fronto-central	ROI	396	

(consisting	of	electrodes	FCz,	Cz,	FC1,	FC2,	C1,	and	C2)	were	selected.	From	all	components	that	397	

matched	this	criterion,	we	then	selected	the	one	component	whose	average	time-course	across	398	

that	ROI	showed	the	highest	correlation	to	the	original	channel-space	ERP	in	the	same	ROI	and	399	

time	window	(i.e.,	the	ERP	extracted	from	a	back-projection	of	all	non-artifact	components).	400	

Stop-signal	P3	validation.	We	reconstructed	the	channel-space	data	for	both	tasks	using	401	

only	 the	 selected	component,	and	 tested	 for	 the	 following	effects	on	 the	SST	portion	of	 that	402	

dataset	to	validate	that	we	had	successfully	selected	the	stop-signal	P3	IC.	These	tests	are	direct	403	

replications	of	prior	work	that	established	the	stop-signal	P3	as	an	index	of	motor	inhibition	in	404	

the	SST	(17,	18):	405	

1)	The	onset	of	the	stop-signal	P3	should	occur	earlier	on	successful	vs.	failed	stop-trials	406	

(as	predicted	by	the	race-model	of	motor	inhibition;	Logan	et	al.,	1984)	407	
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2)	The	onset	of	the	stop-signal	P3	should	be	positively	correlated	with	SSRT,	reflecting	its	408	

association	with	the	speed	of	the	stopping	process.	409	

For	these	tests,	the	onset	of	the	stop-signal	P3	was	quantified	as	in	Wessel	&	Aron	(2015)	410	

based	 on	 the	 difference	wave	 between	 stop-	 and	 go-trials	 (this	was	 done	 independently	 for	411	

successful	and	failed	stop	trials).	The	time	at	which	the	P3	difference	wave	was	largest	in	the	time	412	

period	200-400ms	 following	 the	stop-signal	was	 identified.	The	analysis	worked	backwards	 in	413	

time	from	this	maximum	difference,	with	each	step	backwards	occurring	only	if	that	step	was	414	

also	significantly	greater	than	0	(at	p	<	.05).	Once	a	non-significant	difference	was	reached,	this	415	

determined	the	time	of	the	P3	onset.	The	onset	times	of	the	successful	and	failed	stop-trials	were	416	

then	 compared	 using	 a	 paired-samples	 t-test	 (prediction	 #1	 above).	 Next,	 the	 relationship	417	

between	the	successful	stop	onset	and	the	SSRT	across	participants	was	assessed	with	Pearson’s	418	

correlation	coefficient	(prediction	#2	above).	419	

Main	analysis.	We	then	repeated	the	model-based	single-trial	analysis	of	the	CMO	task	420	

data	that	was	described	above	for	Hypothesis	1,	but	only	on	the	portion	of	the	EEG	data	that	was	421	

explained	 by	 the	 stop-signal	 P3.	 In	 essence,	 instead	 of	 looking	 at	 the	 entire	 EEG	 signal,	 we	422	

reconstructed	the	channel-space	signal	of	the	merged	EEG	data	from	both	tasks	by	only	back-423	

projecting	 the	 activity	 accounted	 for	 by	 the	 stop-signal	 P3	 IC.	We	 then	 investigated	 the	 task	424	

portion	of	the	merged,	component-restricted	dataset	using	the	same	model-fitting	procedure	as	425	

for	Hypothesis	1	above.	Only	the	winning	model	from	Hypothesis	1	was	fit	to	the	data.	If	the	stop-426	

signal	P3	and	the	surprise-related	P3	reflect	overlapping	neural	processes,	the	model	fit	should	427	

be	preserved	in	that	dataset.	428	
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Additionally,	we	also	reconstructed	a	version	of	the	merged	dataset	that	consisted	of	the	429	

back-projection	of	all	original	ICs	with	the	exception	of	the	stop-signal	P3	component	(essentially,	430	

the	inverse	of	the	above	dataset).	Since	participants	averaged	17.1	(SEM:	.87)	components,	these	431	

data	were	reconstructed	based	on	the	activity	of	16.1	independent	components.	Just	as	for	the	432	

single-component	dataset	that	included	just	the	stop-signal	P3,	we	again	fit	the	Bayesian	model.	433	

As	in	Hypothesis	1,	this	resulted	in	640	tests	per	set	(640	for	the	single-IC	dataset	and	640	434	

for	the	other-ICs	dataset).	As	before,	the	p-values	for	these	tests	were	corrected	across	both	sets	435	

of	tests	to	an	alpha-level	of	.01.	This	resulted	in	a	corrected	alpha-level	of	p	=	.00027.	436	

	437	

3.	Results	438	

3.1.	Behavior	439	

Stop-signal	behavior	was	as	expected	for	a	sample	of	healthy	young	adults.	Mean	Go-RT	440	

was	520ms	(SEM:	15.2),	mean	failed-stop	RT	was	444.3ms	(SEM:13.2).	Mean	SSRT	was	252.4ms	441	

(SEM:	8).	Mean	error	and	miss	rates	were	low	(1%	and	2.6%,	respectively).	Mean	stopping	success	442	

was	 51.4%	 (SEM:	 .45,	 range:	 46-59%),	 demonstrating	 the	 effectiveness	 of	 the	 adaptive	 stop-443	

signal	delay	algorithm.	444	

In	the	cross-modal	oddball	task,	correct	trial	RTs	showed	the	expected	pattern	as	well:	445	

There	was	a	main	effect	of	TRIAL	TYPE	(F(2/108)	=	25.3,	p	=	9.74*10-10,	partial-eta^2	=	.32),	a	446	

main	 effect	 of	 BLOCK	 (F(3/162)	 =	 7.64,	 p	 =	 8.2567*10-5,	 p-eta^2	 =	 .12),	 and	 a	 significant	447	

INTERACTION	(F(6/324)	=	9.78,	p	=	6.51*10-10,	p-eta^2	=	.15).	Individual	comparisons	revealed	448	

that	in	Block	1,	both	visual	and	auditory	unexpected-cue	RTs	were	significantly	longer	compared	449	

to	standard-cue	RTs	(t(54)	=	9.41,	p	=	5.48*10-13,	d	=	.75	for	visual	and	t(54)	=	3.14,	p	=	.0028,	d	450	
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=	.29	for	auditory,	respectively).	Furthermore,	in	Blocks	2	and	4,	visual	unexpected-cue	RTs	were	451	

also	longer	compared	to	standard-cue	RTs	(t(54)	=	4.45,	p	=	4.3*10-5,	d	=	.33	and	3.5,	p	=	.00094,	452	

d	=	.26,	respectively).	No	other	comparisons	survived	corrections	for	multiple	comparisons.	Taken	453	

together,	 the	 data	 indicate	 the	 presence	 of	 an	 initial	 slowing	 of	 reaction	 times	 following	454	

unexpected	cues	in	both	modalities,	which	wore	off	over	the	course	of	the	experiment	(Figure	4).	455	

With	regards	to	error	rates,	there	was	a	significant	main	effect	of	TRIAL	TYPE	(F(2/108)	=	456	

3.89,	p	=	.023,	p-eta^2	=	.067),	with	no	main	effect	of	BLOCK	(F(3/162)	=	.4096,	p	=	.74631,	p-457	

eta^2	=	.0075),	and	no	INTERACTION	(F(6/324)	=	.7,	p	=	.65,	p-eta^2	=	.013).	The	main	effect	was	458	

accounted	 for	 by	 lower	 error	 rates	 on	 both	 types	 of	 unexpected-cue	 trials	 compared	 to	 the	459	

standard-cue	trials,	which	persisted	throughout	the	task.	460	

With	regards	to	miss	rates,	there	was	no	significant	main	effect	or	interaction	(all	p	>	.14).	461	

	462	

	463	
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Figure	 4.	 Reaction	 time	 data	 from	 the	 cross-modal	 oddball	 task.	 Significant	 individual	464	

comparisons	 (Bonferroni-corrected)	 are	 highlighted	 in	 red.	 For	 both	 unexpected	 auditory	 and	465	

unexpected	visual	cues,	reaction	times	were	slower	compared	to	standard	cues	in	Block	1.	This	466	

effect	wore	off	over	time.	467	

	468	

3.2.	Hypothesis	1:	Frontal	cortex	independently	tracks	surprise	depending	on	sensory	domain	469	

3.2.1.	Single-trial	EEG	model	fitting	470	

	 Our	single-trial	EEG	analysis	showed	that	both	models	significantly	fit	the	data	in	the	time	471	

windows	centered	on	300	and	350ms	post-cue	 (Figure	5).	Both	model	 terms	show	significant	472	

positive	correlations	with	fronto-central	electrodes,	as	hypothesized.	Positive	correlations	that	473	

exceeded	the	significance	threshold	of	p	=	.00044	for	Model	1	(separate	surprise	terms)	were	474	

found	at	electrodes	Fz,	Cz,	FCz,	FC1,	FC2,	F1,	F2,	C1,	C2,	FC3,	and	FC4	in	the	300ms	time	window	475	

and	at	electrodes	F3,	F4,	Fz,	Cz,	FCz,	FC1,	FC2,	F1,	F2,	C1,	C2,	FC3,	and	FC4	in	the	350ms	time	476	

window.	For	Model	2	 (common	surprise	term),	significant	positive	correlations	were	found	at	477	

electrodes	Fz,	FCz,	FC1,	FC2,	F1,	F2,	C1,	C2,	and	FC3	in	the	300ms	time	window	and	at	electrodes	478	

F4,	Fz,	Cz,	FCz,	FC1,	FC2,	F1,	F2,	FC3,	and	FC4	in	the	350ms	time	window.	479	

While	both	models	fit	the	data	well	at	a	similar	cluster	of	fronto-central	electrodes	(which	480	

is	to	be	expected,	considering	that	the	surprise	terms	from	each	model	are	largely	similar),	direct	481	

model	comparisons	showed	that	Model	1	(separate	terms)	fit	the	data	significantly	better	than	482	

Model	2	 (common	term).	While	Model	1	provided	numerically	better	 fits	at	all	 fronto-central	483	

electrodes,	the	difference	was	statistically	significant	at	p	<	.00044	in	the	350ms	time	window	at	484	

electrodes	Cz,	FC2,	C1,	and	C2	(Figure	5C).	485	
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	486	

	487	

Figure	5.	Results	 from	the	whole-brain	single-trial	model	 fitting	analysis	described	 in	Figure	3.	488	

Each	 topography	 depicts	 the	 averaged	 standardized	 beta	 coefficient	 at	 each	 channel	 in	 the	489	

respective	 time	 window	 (x-axis)	 and	 model	 (plots	 A	 and	 B),	 as	 well	 as	 the	 M1-M2	 model	490	

comparison	 (plot	 C).	White	 areas	 denote	 channels	 at	which	 the	 fit	 within	 the	 depicted	 time-491	

window	 was	 non-significant	 (p	 <	 .00044).	 In	 A	 and	 B,	 red	 areas	 denote	 significant	 positive	492	

correlations	 between	 the	 respective	 model	 and	 the	 EEG	 data,	 blue	 areas	 denote	 significant	493	

negative	correlations.	In	C,	red	areas	denote	higher	correlations	between	Model	1	and	the	data	494	

compared	to	Model	2.	495	

	496	

For	illustrative	purposes,	Figure	6	depicts	the	trial-averaged	time-course	of	the	ERP	for	all	497	

three	cue	types	 in	a	non-windowed	fashion	at	these	fronto-central	electrodes.	As	seen	 in	the	498	

figure,	 the	 time	 window	 in	 which	 the	 surprise-model	 significantly	 fit	 the	 single-trial	 data	499	

(highlighted	in	beige),	both	unexpected	cues	yield	a	P3	waveform,	with	the	auditory	condition	500	

producing	a	noticeably	larger	deflection.	501	
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	502	

Figure	6.	Average	channel	event-related	response	to	the	three	different	cue	types,	plotted	at	the	503	

channels	 in	which	the	winning	model	(separate	surprise	terms;	Model	1)	provided	significantly	504	

better	 fit	 than	 the	 losing	model	 (common	 surprise	 term).	Beige	highlighting	denotes	 the	 time	505	

window	 in	 which	 the	 winning	 model	 significantly	 fit	 the	 single-trial	 EEG	 response.	 This	 trial	506	

average	 illustrates	 that	 the	 time	window	 in	which	 the	 fit	was	 significant	 contains	 the	 fronto-507	

central	P3	ERP	to	both	unexpected	auditory	and	visual	cues.	508	

	 	509	

To	 illustrate	that	neither	sensory	domain	accounted	for	the	significant	model	 fit	on	 its	510	

own,	we	also	plotted	the	model	fits	separately	for	each	trial	type	(rather	than	using	one	variable	511	

to	model	both	trials	types	as	in	the	main	analysis	above).	Figure	7	shows	the	model	fits	for	the	512	

separate	surprise	term	(the	winning	model	from	the	main	analysis),	split	by	sensory	domain.	This	513	

revealed	that	both	auditory	and	visual	surprise	terms	significantly	fit	the	single-trial	EEG	response	514	

to	their	respective	trial	type	during	the	same	time	period	and	at	the	same	fronto-central	scalp	515	
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sites	as	the	overall	fit.	This	also	rules	out	that	the	auditory	P3,	which	had	a	larger	amplitude	than	516	

the	visual	P3,	would	solely	account	for	the	model	fits.	517	

	518	

	519	

Figure	 7.	 Split	 model	 fits	 of	 the	 within-domain	 surprise	 values,	 individually	 for	 each	 sensory	520	

domain.	Scaling	and	significance	threshold	is	the	same	as	in	Figure	5	(p	<	.00044).	This	plot	shows	521	

that	both	the	auditory	and	visual	unexpected	cues	contribute	to	the	significant	single-trial	fit	of	522	

the	separate	surprise-terms	model	in	Figure	5A.	523	

	524	

3.2.2.	Exploratory	model-fitting	of	reaction	time	latencies	525	

	 We	buttressed	our	EEG	analysis	of	Hypothesis	1	with	an	exploratory	analysis	of	the	fit	526	

between	both	model	terms	and	each	participant’s	single-trial	reaction	times	to	the	target-arrow	527	

that	followed	the	cue.	Both	model	terms	provided	a	positive	fit	with	the	RT	data	(i.e.,	slower	RT	528	

with	surprise),	with	Model	1	showing	a	better	fit	overall,	but	neither	fit	was	significant	at	the	529	

group	level	(Model	1:	p	=	.23,	Model	2:	p	=	.84).	When	this	analysis	was	restricted	to	the	first	half	530	

of	 the	experiment	 (i.e.,	 the	part	of	 the	experiment	 in	which	 the	RT	effect	of	 the	unexpected	531	

events	had	not	fully	worn	off,	cf.	behavioral	results	section),	both	models	showed	again	positive	532	

fits	between	the	model	terms	and	RT.	For	Model	1,	the	fit	was	highly	significant	(t(54)	=	3.98,	p	533	

=	.00021),	whereas	the	fit	for	Model	2	only	bordered	significance	(t(54)	=	1.88,	p	=	.066).	Just	like	534	
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for	the	single-trial	EEG	data,	Model	1	(separate	terms)	fit	RT	better	than	Model	2	(combined	term);	535	

t(54)	 =	 3.71,	 p	 =	 .00049.	 While	 this	 analysis	 has	 to	 be	 interpreted	 with	 caution,	 given	 its	536	

exploratory	nature,	it	does	lend	complementary	support	to	the	idea	that	–	just	like	the	neural	537	

response	–	the	effect	of	the	unexpected	cues	on	behavior	is	better	described	by	Model	1.	538	

	539	

3.3.	Hypothesis	2:	Fronto-central	neural	activity	after	surprise	indexes	inhibitory	control	540	

3.3.1.	Approach	1:	Cross-task	ERP	amplitude	correlations	541	

Figure	8	depicts	 the	correlations	between	 the	ERPs	across	both	 tasks.	 In	 line	with	our	542	

hypothesis	that	action-stopping	and	surprise-processing	share	a	fronto-central	neural	process,	543	

there	was	a	significantly	positive	correlation	between	the	amplitudes	of	the	fronto-central	stop-544	

signal	P3	in	the	SST	and	the	fronto-central	P3	ERP	to	unexpected	auditory	(r	=	0.35,	p	=	.0079)	545	

and	visual	(r	=	0.35,	p	=	.0087)	cues	in	the	CMO.	546	

The	control	analyses	also	conformed	to	our	predictions:	The	posterior	visual	N1	ERPs	to	547	

the	arrow	go-signal	in	the	SST	correlated	with	the	visual	N1	ERPs	to	the	arrow	target	in	the	CMO	548	

(r	=	.55,	p	=	.00001),	demonstrating	that	the	same	process	as	occurring	in	each	task	can	produce	549	

a	positive	ERP	correlation.	Moreover,	there	was	no	significant	correlation	in	any	of	the	control	550	

analyses	designed	to	rule	out	various	alternative	explanations	of	the	positive	correlation	between	551	

the	SST	P3	and	the	CMO	P3	(Control	analyses	2-4).	Specifically,	the	amplitude	of	stop-signal	P3	552	

was	not	reliably	correlated	with	the	amplitude	of	the	N1	to	the	Go-signal	within	the	same	task	(r	553	

=	 -.11,	 p	 =	 .41),	 demonstrating	 that	 individual	 differences	 failed	 to	 produce	 a	 spurious	 ERP	554	

correlation	within	a	task.	Similarly,	the	stop-signal	P3	amplitude	was	not	reliably	correlated	with	555	

the	 visual	 N1	 to	 the	 arrow	 (target)	 within	 the	 cross-modal	 oddball	 task	 (r	 =	 .009,	 p	 =	 .95),	556	
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demonstrating	 that	 individual	differences	 failed	 to	produce	a	 spurious	ERP	 correlation	across	557	

tasks.	 Finally,	 stop-signal	 P3	 amplitude	was	not	 reliably	 correlated	with	 the	 fronto-central	 P3	558	

amplitude	to	standard,	non-surprising	cues	in	the	CMO	task	(r	=	.073,	p	=	.6),	demonstrating	that	559	

individual	differences	failed	to	produce	a	spurious	ERP	correlation	for	the	same	ERP	component.	560	

In	 addition	 to	 these	 significance	 tests	 on	 the	 correlations,	 our	 bootstrapping	 analysis	561	

found	that	 the	positive	correlations	between	the	stop-signal	P3	and	the	 fronto-central	P3s	 to	562	

unexpected	cues	in	the	CMO	task	were	significantly	larger	than	all	of	the	non-significant	control	563	

analyses.	More	specifically,	the	correlation	between	the	stop-signal	P3	and	the	fronto-central	P3	564	

to	 auditory	 cues	 was	 significantly	 larger	 than	 the	 stop-signal	 P3	 to	 target-N1	 correlation	 (p	565	

=	 .0136),	 the	 stop-signal	P3	 to	go-signal	N1	correlation	 (p	=	 .0482),	and	 the	 stop-signal	P3	 to	566	

standard-cue	P3	correlation	(p	=	.0348).	The	corresponding	p-values	for	the	correlation	between	567	

the	stop-signal	P3	and	the	fronto-central	P3	to	unexpected	visual	cues,	as	compared	to	the	three	568	

control	correlations	were	.0144,	.0468,	and	.0373.	569	

Finally,	the	partial	correlation	analyses	confirmed	that	the	positive	correlation	between	570	

the	stop-signal	P3	and	the	fronto-central	P3	to	unexpected	cues	in	the	CMO	task	could	not	be	571	

accounted	 for	 by	 the	 amplitude	 of	 any	 of	 the	 control	 ERPs.	 For	 unexpected	 visual	 cues,	 the	572	

correlation	between	the	fronto-central	P3	and	the	stop-signal	P3	was	still	significant	when	the	573	

model	partialed	out	the	Go-signal	N1	(partial	model	fit:	t(52)	=	2.69,	p	=	.0095),	the	N1	to	the	574	

target/arrow	in	the	CMO	task	(t(52)	=	2.7,	p	=	.0094),	and	the	fronto-central	P3	to	standard	cues	575	

in	the	CMO	task	(t(52)	=	3.47,	p	=	.001).	The	same	was	true	for	the	correlations	between	the	stop-576	

signal	P3	and	the	fronto-central	P3	to	unexpected	auditory	cues	(Go-signal	N1	partialed	out:	t(52)	577	
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=	2.69,	p	=	.0097;	N1	to	the	arrow/target	in	the	CMO	task	partialed	out:	t(52)	=	2.83,	p	=	.0067;	578	

fronto-central	P3	to	standard	cues	partialed	out:	t(52)	=	2.7,	p	=	.0094).	579	

	 	580	

	581	

Figure	8.	Cross-task	correlations	between	fronto-central	activity	during	surprise	processing	and	582	

action-stopping.	A)	The	amplitude	of	the	stop-signal	P3	in	the	SST	was	positively	correlated	with	583	

the	surprise-related	P3	in	the	CMO	task;	this	was	the	case	for	both	for	auditory	(left)	and	visual	584	

(right)	unexpected	cues.	B)	Control	analyses	show	that	ERP	amplitudes	of	similar	processes	are	585	

indeed	positively	correlated	across	tasks	(illustrated	by	the	posterior	visual	N1	to	the	imperative	586	

arrow	stimuli	in	both	tasks	–	i.e.,	the	Go-signal	in	the	SST	and	the	target	in	the	CMO	task).	Ruling	587	

out	 alternative	 explanations,	 there	 was	 no	 reliable	 correlation	 for	 different	 waveforms	 from	588	

different	 tasks	 (middle	 left;	 Target	 visual	N1	 to	 stop-signal	P3),	different	waveforms	 from	 the	589	
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same	task	 (right;	go-signal	visual	N1	 to	stop-signal	P3),	or	 the	same	waveform	from	different	590	

tasks	(middle	right;	standard	cue	P3	to	stop-signal	P3).	These	control	analyses	demonstrate	that	591	

there	is	no	general	relationship	between	ERP	amplitudes	within	or	across	the	same	task	or	within	592	

the	same	region	of	cortex,	unless	related	processes	are	active.	593	

	594	

3.3.2.	Approach	2:	ICA	595	

The	results	from	Approach	1	to	Hypothesis	2	suggest	that	action-stopping	and	surprise-596	

processing	 involve	 overlapping	 neural	 processes.	 Providing	 converging	 support	 for	 this	597	

conclusion,	 we	 used	 ICA	 to	 investigate	 whether	 the	 trial-by-trial	 relationship	 between	 the	598	

Bayesian	 model	 surprise	 terms	 and	 the	 fronto-central	 activity	 found	 in	 the	 CMO	 task	 was	599	

accounted	for	by	the	independent	component	that	reflected	the	stop-signal	P3.	600	

We	 first	 checked	whether	 the	 IC	 that	was	algorithmically	 selected	 to	 reflect	 the	 stop-601	

signal	P3	showed	the	predicted	functional	properties	in	the	SST	(Figure	9).	Indeed,	the	onset	of	602	

the	P3	extracted	from	that	IC	occurred	significantly	earlier	on	successful	stop-trials	compared	to	603	

failed	stop-trials	(t(54)	=	2.4,	p	=	.02,	d	=	.33),	and	there	was	a	significantly	positive	correlation	604	

between	SSRT	and	P3	onset	on	successful	stop-trials	(r	=	032,	p	=	 .019).	Both	properties	have	605	

been	previously	reported	in	studies	of	the	SST	(e.g.,	Wessel	&	Aron,	2015).	Hence,	we	conclude	606	

that	the	selected	IC	accurately	reflected	a	process	that	indexes	the	speed	of	the	motor	inhibition	607	

process	in	the	SST.	608	

	609	
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	610	

Figure	9.	Properties	of	the	independent	component	selected	to	reflect	the	stop-signal	P3	in	the	611	

SST	from	the	merged	dataset	analysis.	The	left	plot	shows	that	the	morphology	of	the	stop-signal	612	

P3	 based	 on	 all	 non-artifact	 components	 (i.e.,	 the	 standard	 channel	 ERP)	 can	 be	 entirely	613	

reproduced	using	just	one	IC.	This	shows	that	the	selection	algorithm	identified	the	appropriate	614	

component,	 accounting	 for	 the	 activity	 of	 the	 stop-signal	 P3.	 Furthermore,	 this	 IC	 shows	 the	615	

classic	features	demonstrated	for	the	stop-signal	P3	in	the	SST.	Namely,	the	onset	of	the	P3	was	616	

earlier	on	successful	vs.	failed	stop	trials	(inlay	on	left	plot),	and	was	positively	correlated	with	617	

SSRT	across	subjects	(right	plot).	618	

	619	

	 We	then	repeated	our	model-fitting	analysis	(Hypothesis	1)	of	the	CMO	task	portion	of	620	

the	combined	EEG	data,	when	that	data	was	reconstructed	using	only	the	selected	stop-signal	P3	621	

IC	for	each	subject.	We	found	that	the	winning	model	from	Hypothesis	1	(separate	surprise	terms)	622	

retained	 its	 significantly	 positive	 fit	 with	 fronto-central	 electrodes	 (significant	 positive	623	

correlations	found	in	the	300ms	time	window	at	electrodes	Fz,	Cz,	FCz,	FC1,	FC2,	CP2,	F1,	F2,	C1,	624	

C2,	FC4,	and	C4	and	in	the	350ms	time	window	at	electrodes	C4	and	F1)	when	the	EEG	signal	was	625	

solely	reproduced	by	back-projecting	the	stop-signal	P3	into	channel-space.	In	other	words,	the	626	
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same	independent	component	that	 indexes	successful	motor	 inhibition	 in	the	stop-signal	task	627	

showed	the	same	positive	association	with	the	surprise	term	in	the	CMO	task	that	was	reported	628	

for	the	full	channel-space	reconstruction	(based	on	all	ICs)	in	Hypothesis	1	(Figure	10A).	629	

In	contrast,	the	remainder	of	the	signal	(i.e.,	the	portion	of	the	CMO	task	EEG	data	that	630	

was	reconstructed	based	on	all	independent	components	that	were	left	over	after	the	stop-signal	631	

P3	independent	component	was	removed)	did	not	show	a	significant	positive	association	with	632	

the	surprise	term	(Figure	10B).	633	

Therefore,	 we	 conclude	 that	 the	 same	 independent	 component	 captures	 stopping-634	

related	activity	in	the	SST	and	surprise-related	activity	in	the	CMO	task.	This	confirms	the	findings	635	

of	 our	 ERP	amplitude	analysis	 in	Approach	1	 –	 i.e.,	 that	 there	 is	 overlap	between	 the	neural	636	

processes	 following	 stop-signals	 (which	 are	not	 surprising)	 and	 surprising	 cues	 (which	do	not	637	

instruct	the	subject	to	stop).	638	

	639	

	640	

Figure	10.	A)	A	reanalysis	of	the	single-trial	model	fitting	analysis	for	the	winning	model	(separate	641	

surprise	terms	cf.	Figure	5A)	using	just	the	one	IC	that	was	selected	to	reflect	the	stop-signal	P3	642	

in	the	merged	dataset.	The	significant	association	between	fronto-central	EEG	activity	following	643	

unexpected	 cues	 in	 the	 CMO	 task	 and	 the	 surprise	 model	 is	 retained	 when	 the	 data	 is	644	

reconstructed	solely	using	that	one	ICA	(out	of	~17.1	overall	ICs	that	were	extracted	per	subject	645	
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on	 average).	 B)	 For	 comparison,	 no	 significant	 association	 was	 found	 when	 the	 data	 were	646	

reconstructed	based	on	the	~16.1	ICs	that	did	not	reflect	the	stop-signal	P3.	647	

	648	

4.	Discussion	649	

In	the	current	study,	we	tested	two	hypotheses	about	the	nature	of	surprise	processing	650	

in	human	frontal	cortex.	First,	we	found	that	fronto-central	event-related	activity	at	roughly	275-651	

375ms	following	the	appearance	of	unexpected	cues	 tracks	surprise	 for	each	sensory	domain	652	

separately.	 Rather	 than	 incorporating	 surprise	 into	 a	 common	 cross-modal	 term,	 the	 neural	653	

response	was	better	characterized	by	a	model	 in	which	surprise	was	tracked	for	each	domain	654	

separately.	 The	 time	 range	 and	 topographical	 extent	 of	 this	 activity	 overlaps	 with	 the	 well-655	

characterized	P3	trial-average	ERP,	which	is	in	line	with	classic	averaging-based	ERP	studies	of	656	

surprise	(1,	12,	32).	Our	single-trial	approach	was	able	to	disentangle	two	competing	explanations	657	

for	the	common	activity	found	for	unexpected	events	across	sensory	domains,	thereby	providing	658	

novel	 insights	 into	 how	 frontal	 cortex	 constructs	 and	 updates	 models	 of	 the	 multi-sensory	659	

environment.	660	

We	then	tested	whether	the	modality-independent	fronto-central	neural	activity	during	661	

surprise	 indexes	 a	 rapid	 inhibition	of	 ongoing	motor	 activity	 –	 i.e.,	whether	 the	 convergence	662	

between	 neural	 signals	 following	 unexpected	 events,	 regardless	 of	 sensory	 domain,	 can	 be	663	

explained	by	a	common	control	mechanism	that	is	downstream	from	surprise.	This	hypothesis	is	664	

relatively	new	(15,	33-35),	as	most	previous	studies	of	surprise	focused	on	its	cognitive	effects	665	

(12,	14,	36,	37).	The	comparatively	large	sample	size	of	our	study	allowed	us	to	take	the	novel	666	

approach	of	correlating	electrophysiological	signal	amplitudes	across	different	tasks,	revealing	667	
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that	the	P3	amplitude	following	stop-signals	in	the	stop-signal	task	reliably	correlated	with	the	668	

fronto-central	 P3	 found	during	multi-modal	 surprise.	Our	 control	 analyses	 indicated	 that	 this	669	

correlation	 reflects	 a	 common	 process	 rather	 nuisance	 variables	 (such	 as	 non-specific	670	

correlations	of	ERP	amplitudes	within	or	across	tasks).	Moreover,	both	ERPs	reflected	the	same	671	

component	when	submitted	to	a	joint	independent	components	analysis.	672	

We	conclude	that	 the	same	process	 that	 is	underlying	the	stop-signal	P3	 is	also	active	673	

during	cross-modal	surprise.	However,	what	is	that	process?	The	most	parsimonious	explanation	674	

is	that	this	signal	reflects	cognitive	control	within	frontal	cortex	aimed	at	inhibiting	ongoing	motor	675	

activity.	In	the	case	of	stop-signals,	this	stops	the	planned	motor	action,	whereas	in	response	to	676	

surprise,	 it	 produces	 a	 ‘pause’,	which	purchases	 time	 for	 the	 cognitive	 system	 to	update	 the	677	

model	 of	 the	 environment	 without	 continuing	 an	 action	 that	 may	 have	 been	 rendered	678	

inappropriate	 by	 the	 unexpected	 change	 in	 environmental	 demand.	 This	 pause	 can	 also	 be	679	

observed	in	the	reaction	time	times	to	the	subsequent	target.	Alternatively,	the	common	process	680	

might	reflect	model	updating	or	surprise	(as	operationalized	in	the	CMO).	However,	in	the	SST,	681	

stop-signals	are	explicitly	part	of	the	task	(and	are	introduced	during	pre-task	practice).	In	other	682	

words,	participants	are	expecting	and	planning	for	stop-signals,	and	their	occurrence	should	not	683	

produce	surprise.	Indeed,	if	stop-signals	were	surprising,	one	would	expect	the	amplitude	of	the	684	

stop-signal	 P3	 to	 decrease	 as	 the	 task	 progressed	 (i.e.,	 as	 the	 priors	 become	 stable	 and	 the	685	

surprise	terms	become	smaller	and	smaller,	which	is	what	occurred	for	the	fronto-central	P3	in	686	

the	CMO	task).	However,	as	the	auxiliary	plot	in	Figure	11	shows,	the	amplitude	of	the	stop-signal	687	

P3,	 unlike	 the	 P3	 to	 unexpected	 cues	 in	 the	 CMO	 task,	 remained	 constant	 throughout	 the	688	
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experiment.	 This	 is	 incommensurate	 with	 explanations	 that	 seek	 to	 attribute	 the	 cross-task	689	

commonalities	in	neural	processing	to	surprise,	infrequency,	orienting,	or	model	updating.	690	

	691	

Figure	11.	Stop-signal	P3	split	by	phase	of	the	SST	experiment.	If	the	process	underlying	the	stop-692	

signal	P3	was	stop-signal-induced	surprise,	its	amplitude	should	decrease	in	the	second	half	of	the	693	

experiment.	Instead,	the	stop-signal	P3	is	nearly	identical	across	the	two	halves	of	the	experiment.	694	

	695	

Our	 preferred	 interpretation	 of	 the	 common	 process	 in	 terms	 of	 motor	 control	 is	696	

supported	by	recent	studies,	which	found	that	unexpected	perceptual	events	lead	to	a	broad,	697	

reactive	suppression	of	the	motor	system,	as	measured	using	transcranial	magnetic	stimulation	698	

(35,	38).	Additionally,	measurements	of	isometrically	exerted	force	have	shown	that	unexpected	699	

events	 lead	 to	 a	 rapid,	 reactive	 reduction	 of	 such	 steadily	 exerted	 motor	 activity	 (34).	700	

Furthermore,	 unexpected	 events	 have	 been	 found	 to	 interrupt	 ongoing	 finger-tapping	 (39).	701	

Finally,	studies	using	optogenetics	have	shown	that	when	regions	of	the	subcortical	network	that	702	

cause	inhibition	of	motor	activity	are	experimentally	inactivated,	unexpected	events	no	longer	703	
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yield	interruptive	effects	on	motor	behavior	(40).	All	these	studies	show	that	surprise,	in	addition	704	

to	its	prominent	cognitive	effects,	also	lead	to	interruption	of	ongoing	motor	activity.	705	

The	interpretation	that	the	common	process	between	the	stop-signal	and	CMO	tasks	is	706	

motor	control	is	also	supported	by	some	features	of	our	data.	Specifically,	our	behavioral	data	707	

indicated	an	incidental	slowing	of	reaction	times	to	the	target	in	the	CMO	task	when	that	target	708	

was	preceded	by	unexpected	cues,	which	 is	 in	 line	with	prior	behavioral	 studies	 (41-43).	Our	709	

exploratory	analysis	showed	that	during	the	task	period	in	which	this	RT	effect	was	present,	the	710	

surprise	model	(specifically,	the	separate-term	model	that	also	provided	the	best	fit	to	the	neural	711	

data)	was	positively	 related	 to	 the	RT	data:	 trials	with	more	surprising	cues,	according	 to	 the	712	

Bayesian	model,	yielded	longer	reaction	times	to	the	subsequent	target.	We	propose	that	this	713	

extra	time	reflects	a	momentary	suppression	of	the	motor	system	produced	by	the	unexpected	714	

event.	Supporting	this	claim	that	this	‘pause’	is	an	adaptive	process,	accuracy	was	also	increased	715	

following	unexpected	cues	(i.e.,	a	speed-accuracy	tradeoff	was	enacted	after	unexpected	cues,	716	

which	may	be	enabled	by	the	transient	pause	in	the	motor	system	that	we	purport	to	be	reflected	717	

in	the	fronto-central	P3).	In	that	vein,	one	notable	observation	is	that	while	the	surprise	term	fit	718	

the	neural	 data	 for	both	domains	 to	 similar	degrees	 (Figure	7),	 the	 trial-average	 response	 to	719	

unexpected	auditory	cues	in	our	current	study	appeared	to	be	larger	in	amplitude	compared	to	720	

unexpected	visual	cues	(Figure	6).	 Interestingly,	the	reverse	was	the	case	 in	the	reaction	time	721	

pattern,	where	visual	unexpected	cues	seemed	to	have	larger	effects	(Figure	4).	While	we	are	722	

hesitant	to	make	strong	conclusions	based	on	the	trial-average	data,	it	is	notable	that	the	timing	723	

of	the	P3	to	the	different	stimuli	also	differs	in	latency,	which	likely	reflects	the	fact	that	early	724	

auditory	processing	is	faster	than	visual	processing	(44).	Since	the	increase	in	trial-averaged	P3	725	
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response	to	unexpected	visual	cues	extends	to	a	time	period	much	closer	to	target	presentation	726	

(compared	to	the	P3	to	auditory	unexpected	cues,	cf.	Figure	6),	it	is	tempting	to	assume	that	this	727	

may	explain	the	difference	in	RT	effects.	However,	further	studies	are	necessary	to	explicitly	test	728	

this	hypothesis.	729	

There	is	some	debate	in	the	literature	about	the	interpretation	of	the	surprise	term	used	730	

in	our	model	comparison	analysis.	We	followed	the	nomenclature	of	Itti	and	Baldi	(2010),	who	731	

termed	the	calculation	of	the	Kullback-Leibler	divergence	of	the	posterior	and	prior	probability	732	

distributions	(Equation	1)	‘Bayesian	surprise’.	However,	other	authors	have	interpreted	this	term	733	

as	 ‘model	updating’,	 rather	 than	surprise	 (45).	 Instead	of	KL	divergence,	 they	 favor	Shannon-734	

based	information	theoretical	quantifications	of	surprise	(i.e.,	surprise	is	quantified	as	the	inverse	735	

of	the	log-scaled	prior	expectation	of	a	given	stimulus,	46).	In	past	EEG	studies,	such	Shannon-736	

based	surprise	has	been	related	to	the	amplitude	centro-parietal	P3	ERP	(47,	48),	rather	than	the	737	

fronto-central	 P3.	 This	 is	 in	 line	 with	 BOLD	 activation	 of	 parietal	 cortex,	 which	 tracks	 such	738	

Shannon-surprise	 in	 fMRI	 (45).	 Conversely,	 trial-by-trial	 indices	 of	 Bayesian	 surprise	 are	739	

associated	with	the	fronto-central	P3	(48),	which	is	in	line	with	the	current	study,	as	well	as	with	740	

fMRI	work	 showing	 that	 BOLD	 activity	 in	medial	 frontal	 cortex	 tracks	 Bayesian	 surprise	 (45).	741	

Collectively,	these	results	underscore	that	Shannon-surprise	and	Bayesian	surprise	are	not	only	742	

different	computational	terms	but	that	they	may	be	related	to	different	neural	signals.		743	

However,	in	terms	of	the	theoretical	distinction	between	Bayesian	surprise	and	Shannon	744	

surprise,	it	is	important	to	note	that	both	concepts	are	closely	related	in	most	circumstances	–	745	

i.e.,	whenever	there	is	surprise,	it	will	lead	to	the	updating	of	internal	models	of	the	environment.	746	

This	is	also	reflected	in	a	high	correlation	between	Shannon-	and	Bayesian	surprise	that	is	present	747	
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in	most	experimental	circumstances	(including	the	current	one).	Under	some	circumstances,	it	is	748	

possible	to	untangle	surprise	and	model	updating	by	introducing	different	degrees	of	volatility	749	

into	 the	environment	 (49)	or	 by	 explicitly	 instructing	participants	 that	 certain	 surprising	 cues	750	

should	not	be	used	to	update	the	internal	model	of	the	task	(45).	However,	in	studies	like	the	751	

current	one,	the	two	terms	are	largely	identical,	with	the	exception	being	trials	in	which	in	an	752	

unexpected	 cue	 follows	 a	 prolonged	 sequence	 of	 expected	 cues.	 (Such	 trials	 introduce	 non-753	

monotonous	 upticks	 in	 the	 Shannon	 surprise	 term,	 whereas	 the	 Bayesian	 surprise	 /	 model	754	

updating	term	is	always	monotonically	decreasing).	Perhaps	most	relevant	is	the	question	which	755	

term	better	reflects	the	commonplace	meaning	of	‘surprise’	 in	the	everyday	world,	outside	of	756	

the	laboratory,	and	which	term	better	reflects	the	participants’	approach	to	the	experiment.	If	757	

subjects	 place	 strong	 emphasis	 on	 the	 recent	 trial	 sequence	 and	 dynamically	 adapt	 to	 the	758	

changing	local	probabilities	of	unexpected	cues,	then	the	Shannon	term	may	provide	a	better	759	

characterization	 of	 surprise.	 This	 would	 be	 the	 case	 if	 participants	 assume	 that	 the	 current	760	

environment	 constantly	 changes	 (i.e.,	 high	 volatility).	 However,	 if	 subjects	 approach	 the	761	

experimental	task	as	a	specific,	unchanging	environment	that	they	need	to	adapt	to	by	learning	762	

the	 base	 rates	 of	 occurrence,	 then	 the	 Bayesian	 surprise	 term	 may	 provide	 a	 better	763	

characterization	of	surprise.	In	the	current	study	we	assumed	that	the	latter	is	the	case	(indeed,	764	

the	experimental	design	involved	a	stable	procedure	for	each	task),	and	as	such,	‘surprise’	and	765	

‘model	updating’	are	essentially	synonymous	in	our	study.	766	

Taken	 together,	 our	 study	 suggests	 that	 when	 an	 environmental	 model	 is	 updated	767	

because	of	an	unexpected	cue,	this	leads	to	surprise,	which	is	accompanied	by	inhibitory	control	768	

of	the	motor	system.	From	a	real-world	perspective,	it	makes	sense	for	the	cognitive	apparatus	769	
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to	operate	this	way.		Because	we	interact	with	the	environment	by	executing	motor	commands,	770	

it	is	important	that	we	interrupt	ongoing	motor	behavior	while	the	model	of	the	environment	is	771	

updated;	 ongoing	 actions	 need	 to	 be	 re-evaluated	 in	 light	 of	 changing	 environmental	772	

contingencies.	We	hypothesize	that	motor	inhibition	prevents	the	execution	of	actions	that	were	773	

appropriate	 under	 the	 old,	 now	 outdated	model,	 and	may	 also	 free	 up	 resources	 to	 rapidly	774	

initiate	appropriate	new	actions.	This	interpretation	of	the	medial	frontal	cortex	is	in	line	with	775	

prior	findings	regarding	its	role	in	the	control	of	behavior	(2,	50,	51).	Here,	we	propose	a	specific	776	

neural	mechanism	by	which	such	control	of	behavior	is	achieved	during	surprise.	777	

In	 conclusion,	 we	 found	 that	 surprise-based	 model	 updating	 in	 frontal	 cortex	 occurs	778	

separately	 for	 each	 sensory	domain,	 but	 shares	 a	 supra-model	 control	mechanism	 that	 likely	779	

involves	the	inhibitory	control	of	behavior.	These	results	suggest	a	specific	control	mechanism	780	

that	is	rapidly	deployed	when	the	model	of	the	environment	unexpectedly	changes.		781	

	 	782	
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