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ABSTRACT 
 
Neuroblastoma is a malignancy of the developing sympathetic nervous system that accounts for 12% of 

childhood cancer deaths. Like many childhood cancers, neuroblastoma exhibits a relative paucity of 

somatic single nucleotide variants (SNVs) and small insertions and deletions (indels) compared to adult 

cancers. Here, we assessed the contribution of somatic structural variation (SV) in neuroblastoma 

using a combination of whole genome sequencing (WGS; n=135) and single nucleotide polymorphism 

(SNP) genotyping (n=914) of matched tumor-normal pairs. Our study design allowed for orthogonal 

validation and replication across platforms. SV frequency, type, and localization varied significantly 

among high-risk tumors. MYCN non-amplified high-risk tumors harbored an increased SV burden 

overall, including a substantial excess of tandem-duplication events across the genome. Genes 

disrupted by SV breakpoints were enriched in neuronal lineages and autism spectrum disorder (ASD). 

The postsynaptic adapter protein-coding gene SHANK2, located on chromosome 11q13, was disrupted 

by SVs in 14% of MYCN non-amplified high-risk tumors based on WGS and 10% in the SNP array 

cohort. Expression of SHANK2 was low across human-derived neuroblastoma cell lines and high-risk 

neuroblastoma tumors. Forced expression of SHANK2 in neuroblastoma cell models resulted in 

significant growth inhibition (P=2.62x10-2 to 3.4x10-5) and accelerated neuronal differentiation following 

treatment with all-trans retinoic acid (P=3.08x10-13 to 2.38x10-30). These data further define the complex 

landscape of structural variation in neuroblastoma and suggest that events leading to deregulation of 

neurodevelopmental processes, such as inactivation of SHANK2, are key mediators of tumorigenesis in 

this childhood cancer. 
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INTRODUCTION 

Neuroblastoma is a cancer of the developing sympathetic nervous system that most commonly affects 

children under five years of age, with a median age at diagnosis of 17 months (Maris 2010). 

Approximately 50% of cases present with disseminated disease at the time of diagnosis. Despite 

intense multi-modal therapy, the survival rate for this high-risk subset remains less than 50% (Maris 

2010). Recent whole genome and exome sequencing studies of neuroblastoma have revealed 

relatively few recurrent protein-coding somatic mutations including single nucleotide variations (SNVs) 

and small (<50b) insertion/deletions (indels) (Cheung et al. 2012; Molenaar et al. 2012; Pugh et al. 

2013; Sausen et al. 2013). Large-scale structural variations (SVs) such as deletions, insertions, 

inversions, tandem duplications and translocations can arise from mutational processes that alter 

chromosome structure and evade innate mechanisms of maintaining genomic stability. These diverse 

SVs are often acquired somatically in cancer and can act as driver mutations(Yang et al. 2013).   

Multiple approaches to detect SVs in large array and sequencing datasets have been applied to 

cancer (Alkan et al. 2011; Yang et al. 2013; Tubio 2015; Macintyre et al. 2016). First, methods to 

identify copy number variations (CNVs) from intensity data (log R ratios) have been applied to single 

nucleotide polymorphism (SNP) genotyping and comparative genomic hybridization (CGH) arrays. 

More recently, these approaches were adapted and applied to read-depth measures from next 

generation sequencing. Numerous segmentation algorithms exist for both array (Carter 2007) and 

sequence-based (Zhao et al. 2013) approaches, with the resulting CNV calls ranging in size from a few 

hundred base-pairs to whole chromosomal alterations. Importantly, these calls are dosage-sensitive, 

allowing for numerical quantification of amplifications and deletions.  

Analysis of CNVs in neuroblastoma primary tumors and matched blood samples led to 

identification of recurrent somatically acquired CNVs. These include focal amplification of MYCN, gain 

of chromosome 17q, and deletion of chromosomes 1p and 11q. These events are associated with an 

undifferentiated phenotype, aggressive disease, and poor survival (Deyell and Attiyeh ; Brodeur et al. 
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1984; Gilbert et al. 1984; Seeger et al. 1985; Gehring et al. 1995; Caron et al. 1996; Plantaz et al. 1997; 

Bown et al. 1999; Guo et al. 1999; Maris et al. 2001; Łastowska et al. 2002; Attiyeh et al. 2005; Michels 

et al. 2007). In addition, focal deletions in the ATRX chromatin remodeler gene (ATRX) result in 

deleterious loss of function (Cheung et al. 2012; Kurihara et al. 2014). ATRX is implicated in the 

alternative lengthening of telomeres (ALT) phenotype. Focal CNVs involving other tumor suppressor 

genes, such as PTPRD (Stallings et al. 2006), ARID1A and ARID1B (Sausen et al. 2013) have also 

been reported. 

While analysis of somatic CNVs has been incredibly useful, next generation sequencing (NGS) 

approaches can profoundly expand our understanding of SVs in cancer (Macintyre et al. 2016). 

Alignment-based methods	 to identify SVs	 focus on reads and read-pairs discordantly aligned to the 

reference genome. As such, these alignment-based approaches do not rely on dosage quantification 

and do not quantify numerical changes of deletions and tandem-duplications. However, they provide 

essential information about inversions, translocations and transposable elements, which are elusive to 

CNV callers. Furthermore, read coverage-based and alignment-based approaches have often been 

combined together to improve accuracy (Qi and Zhao 2011; Zhang and Wu 2011; Jiang et al. 2012); 

these and other available methods have been systematically reviewed (Tattini et al. 2015). 

Recent studies employing alignment-based detection of SVs from WGS of primary 

neuroblastomas revealed structural rearrangements as key oncogenic drivers. These SVs mediate 

enhancer hijacking or focal enhancer amplification, influencing telomere maintenance through 

activation of telomerase reverse transcriptase gene (TERT) (Peifer et al. 2015; Valentijn et al. 2015; 

Kawashima et al. 2016) or deregulating the MYC oncogene (Zimmerman et al. 2018). Despite the 

demonstrated importance of somatic CNVs and other SVs in neuroblastoma, studies systematically 

integrating CNV and alignment based approaches are lacking. Therefore, the global landscape and 

mechanisms of pathogenicity for many of these events remain poorly understood. 

Here, we studied the role of somatic SVs in a large neuroblastoma cohort comprised of 997 

distinct primary neuroblastoma tumor-normal pairs obtained at diagnosis. Specifically, we integrated 
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whole genome sequencing (WGS) from 135 tumor-normal pairs and 914 single nucleotide 

polymorphism (SNP) arrays. Alternative approaches to SV detection were considered for both datasets, 

which overlapped in a subset of 52 cases. As such, this study allowed for cross-platform validation of 

SVs. We further explored the functional impact of SVs by integrating matched transcriptomic and gene 

fusion data from 153 RNA-sequencing samples and 247 HumanExon arrays comprising 361 distinct 

tumor samples. Finally, we performed in vitro studies to assess the functional relevance of SHANK2, a 

newly identified tumor suppressor gene disrupted by SVs. Altogether, the integration of multi-omic 

datasets together with patient clinical profiles and biological experimentation serves to greatly expand 

the mutational landscape of neuroblastoma. 

 
RESULTS 
 

Patient characteristics and multi-omic datasets for the study of structural variations. To establish 

the landscape of SVs in neuroblastoma, we first sequenced the genomes of 135 primary diagnostic 

tumors and matched normal (blood leukocyte) DNA pairs through the Therapeutically Applicable 

Research to Generate Effective Treatments (TARGET) initiative 

(https://ocg.cancer.gov/programs/target). Samples were obtained through the Children’s Oncology 

Group (COG) and included 106 patients with high-risk tumors (29 MYCN-amplified and 77 non-MYCN-

amplified), 14 with intermediate-risk tumors and 15 with low-risk tumors (Fig. 1a, Supplementary 

Tables 1 and 2). Whole genome sequencing (WGS) was performed by Complete Genomics (Drmanac 

et al. 2010) to a median average depth of 76x (Supplementary Fig. 1a) and primary data was 

processed via the Complete Genomics pipeline version 2.0. This pipeline reports small somatic variants 

(SNVs, small indels, and substitutions)(Carnevali et al. 2012), larger (>200bp) SVs, and read-depth 

coverage across the genome used to infer copy number segmentation profiles (Online methods).  

To augment the WGS data, and to provide independent replication, we genotyped and analyzed 

914 patient tumor-normal pairs using Illumina SNP arrays (Fig. 1a, Supplementary Tables 1 and 2). 

This cohort included 696 high-risk (239 MYCN-amplified and 457 non-MYCN-amplified), 70 
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intermediate-risk and 145 low-risk tumor-blood pairs; 488 of these tumor samples were previously 

released (Attiyeh et al. 2009) and reanalyzed here. Copy number segmentation was obtained using the 

SNPrank algorithm implemented by the NEXUS® software platform (Online Methods).  

To further assess the biological relevance of SVs, we integrated additional data types generated 

through the TARGET initiative. These data included transcriptional profiles from RNA sequencing 

(N=153) and Affymetrix HumanExon arrays (HuEx, N=247). Patient clinical covariates were organized 

by the Children’s Oncology Group (COG) (Fig. 1a, Supplementary Table 1 and 2; 

https://ocg.cancer.gov/programs/target/data-matrix). Throughout the study, we examined disease risk 

groups as defined by the COG and the International Neuroblastoma Risk Group (INRG) (Cohn et al. 

2009). Specifically, the following subtypes were considered: LOWR: low-risk neuroblastoma; INTR: 

intermediate-risk neuroblastoma; MNA: high-risk neuroblastomas with amplification of the MYCN 

oncogene, and HR-NA: high-risk neuroblastomas without MYCN amplification.  

 

Identification of novel regions of recurrent DNA copy number gain and loss. WGS-derived copy 

number profiles were compared with those obtained from the larger SNP array dataset. Somatic CNVs 

were visualized with Integrative Genome Viewer (IGV) and confirmed well-established patterns of large 

SCNAs in neuroblastoma that differed between the tumor clinical subtypes (Fig. 1b, c)(Wang et al. 

2006; Michels et al. 2007). We further analyzed CNV segmentation profiles within neuroblastoma 

subtypes using GISTIC2.0 (Mermel et al. 2011). As expected, LOWR and INTR tumors harbored few 

focal and large CNVs, although aneuploidy was observed (Supplementary Fig. 2a, b). The MNA and 

HR-NA subsets shared highly recurrent 17q gains and PTPRD deletions (9p23) and differed in 2p24 

gain (MYCN locus) and prevalence of deletions at 1p, 3p, 4p and 11q (Fig. 1d, e, Supplementary Fig. 

2c-e). We also observed less frequently reported variants in HR-NA group, including deletions at 

16q24.3 (Mosse et al. 2005) and segmental gains of the q-arm of chromosome 7, a region recently 

suggested to exhibit oncogenic potential in neuroblastoma (Bosse et al. 2017) (Fig. 1d, 

Supplementary Fig. 2e). CNV profiles derived from WGS are of higher resolution and returned 
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significant peaks in the HR-NA subset not identified in SNP arrays. These CNVs included focal gains at 

chromosome 5p15.33 (Q-value=1.42 x 10-3) harboring the telomerase reverse transcriptase (TERT) 

gene) (Fig. 1d), intragenic deletions of the ATRX chromatin remodeler gene at Xq21.1, (Q-value=3.76 

x 10-3), and a novel region of recurrent deletion at 10p15.3 (Q-value=6.16 x 10-2, Fig. 1e).	

 

Figure 1: Novel somatic DNA copy number alterations (SCNAs) revealed by whole genome sequencing 
(WGS) of neuroblastoma tumors. (a) Survey of available samples, clinical information and data types used 
throughout this study (See also Supplementary Tables 1 & 2). (b-c) Integrated Genome Viewer (IGV) visualization 
of DNA copy number gains (red) and losses (blue) across neuroblastoma subtypes in the (b) WGS and (c) SNP 
datasets. (d-e) GISTIC q-value plots showing significant regions of (d) gain and (e) deletion in HR-NA samples in 
77 samples derived from WGS dataset.	
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Table 1. Definition of structural variant (SV) breakpoint analysis types.	

 

 

Identification of SV breakpoints using orthogonal approaches: sequence junction (SJ-BP), read-

depth (RD-BP) and copy number breakpoint (CN-BP) analyses. To strengthen our findings, we 

considered three approaches to SV breakpoint identification (Table 1). Specifically, we integrated 

alignment-based SV calls and read-depth CNVs from WGS as well as intensity-based CNV calls from 

genotyping arrays (Table 1, Online Methods). First, we obtained alignment-based SVs reported by the 

CGI somatic pipeline, which provides information about SV boundaries, size, and the type of variant in 

every sample. These included deletions (>500b), tandem-duplications (>40b), inversions (>30b), 

translocations, inversions and complex events (Supplementary Fig. 1c-e). We applied additional filters 

to remove likely artifacts including duplicate junctions across samples and common germline variants 

found in the Database of Genomic Variants (DGV; Online Methods) (MacDonald et al. 2014). This 

resulted in a total of 7,366 (Supplementary Table 3) SV calls distributed heterogeneously across 

neuroblastoma subtypes (Fig. 2a). These SVs were defined by sequence junctions delimited by two 

breakpoints in the genome, and will be referred to as sequence junction breakpoints (SJ-BP). We next 

mapped copy number dosage breakpoints derived from WGS read-depth segmentation profiles, 

hereafter referred to as read-depth breakpoints (RD-BP, Online Methods). A total of 2,836 RD-BPs 

were identified (µ=21) and were unevenly distributed across samples (Fig. 2b). Finally, analogous to 

the RD-BPs, we mapped copy number breakpoints from segmentation profiles derived from the larger 

SNP array cohort, referred to as copy number breakpoints (CN-BP, Online Methods). A total of 6,241 

SV breakpoint 
type Platform 

Number of 
genomic 

breakpoints 
Resolution Specific event types 

Sequence 
Junction  
(SJ-BP)  

WGS 2 x SJ-BP 
1 bp 

(variable coverage) 
SV type: 

translocation, inversion, deletion, 
tandem-duplication 

Read-Depth 
(RD-BP) WGS 1 x RD-BP 2 Kbp 

(variable coverage) Dosage information: gain/amplification 
and loss/deep deletion Copy Number 

(CN-BP) SNP array 1 x CN-BP ~5 Kbp 
(variable probe density) 
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CN-BPs were identified across 914 samples (µ=6.8) (Fig. 2c). We subsequently verified the extent to 

which SV breakpoints overlapped between alternative methods and across WGS and SNP datasets. 

Overall, we observed high concordance, in agreement with benchmarks from other available methods 

(Qi and Zhao 2011; Zhang and Wu 2011; Jiang et al. 2012) (Supplementary Fig. 3, Online Methods). 

As expected from previous reports (Wang et al. 2006; Michels et al. 2007; Schleiermacher et al. 2012), 

we observed substantially more SV events in high-risk compared to intermediate- and low-risk tumors 

when considering SJ-BPs (Fig. 2a), RD-BPs (Fig. 2b) and CN-BP (Fig. 2c).  

 

Patterns of SV mutational burden differ across neuroblastoma high-risk subtypes. Comparison of 

SJ-BPs in MNA and HR-NA tumors revealed these high-risk subsets differed in SV type and genomic 

location (Fig. 2d-g, Supplementary Fig. 4a-d). MNA tumors harbored more SVs on chromosome 2 

(P=1.6 x 10-14; Fig. 2d); however, these were largely confined to complex junctions at the MYCN 

amplicon at chromosome 2p24 (Supplementary Fig. 4a). Nearly all chromosomes displayed a higher 

frequency of SVs in HR-NA than MNA (Fig. 2d). Specifically, HR-NA tumors harbored more tandem-

duplications in all chromosomes except chromosome 2 (P=4.0 x 10-12), in particular, chr7 (P=3.91 x 

10−5), chr5 (P=1.2 x 10-3) and chromosome 4 (P=1.3 x 10-3) (Fig. 2e). Inter-chromosomal events were 

also more frequent in HR-NA tumors and overlapped with regions of known SCNAs other than chr2, 

including chromosome 3p (P=1.8 x 10−3), chromosome 4p (P=9.1 x 10−6) and chromosome 11q (P=1.9 

x 10-8), but not chromosome 1p and 17q (Fig. 2f). In contrast, complex events showed no overall 

differences between high-risk groups with the exception of the aforementioned chr2 (Fig. 2g). Finally, 

RD-BP and CN-BP frequencies followed a similar pattern across chromosomes as that of SJ-BPs; MNA 

tumors harbored increased number of breakpoints in chromosomes 2 (PRD-BP=2.4 x 10-9, Fig. 2h; PCN-

BP=4.2 x 10-83, Fig. 2i) while HR-NA harbored increased frequencies in most other chromosomes and in 

particular, chromosome 11 (PRD-BP=2.0 x 10-8, Fig. 2h; PCN-BP=4.0 x 10-25, Fig. 2i).  
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Figure 2: Somatic structural variation burden differs among neuroblastoma subtypes by quantity, type 
and genomic location. (a) Stacked bar chart of alignment based SV calls by type and neuroblastoma subtype in 
WGS dataset. (b) Bar plot representing the number of read-depth breakpoint (RD-BP) per sample across 
subtypes in the WGS dataset. (c) Bar plot representing the number of copy number breakpoint (CN-BP) per 
sample across subtypes in the SNP dataset. (d) Co-localization of RD-BPs with SJ-BP across WGS dataset 
samples and overall co-localization percentage (right bar). (e) Co-localization of SJ-BPs with RD-BP across WGS 
dataset samples and overall co-localization percentage (right bar). (f-k) By chromosome comparison between 
MNA and HR-NA of the inter-quantile average number of SVs including all SJ-BP variant types (f), duplications 
(g), inter-chromosomal (h), complex (i) as well as RD-BP and CN-BP. A Wilcoxon test is obtained for every 
chromosome and the p-value significance level is represented by asterisk (*** = p < 0.001, ** = P < 0.01, * = P < 
0.05; asterisk color indicates the group with higher IQM, red=MNA and orange=HR-NA). Mutation burden analysis 
plot across neuroblastoma subtypes representing the burden of SNVs (l), SJ-BPs (m), RD-BPs (n) and CN-BP 
(o).	
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We next studied overall differences in mutational burden and chromosomal instability across 

subtypes; we posit that the densities of breakpoints (SJ-BP, RD-BP and CN-BP) throughout the 

genome represent a bona fide measure of chromosomal instability (CIN). We also obtained measures 

of somatic SNV density. In order to avoid skewing of results due to the MYCN amplicon in MNA 

samples and regions exhibiting chromothripsis, we implemented an SNV and SJ-BP tumor burden 

measure robust against outliers. To this end, the genome was divided into 41 sequence mapped 

chromosome arms and the density of SVs per Mb was measured. For each sample, the interquartile 

mean (IQM) was derived from the 41 arm measurements (Supplementary Fig. 4e,f). Similarly, we 

obtained IQM density measurements from RD-BP and CN-BP chromosomal burdens. As expected, 

LOWR and INTR tumors carried very low mutational burden (Fig. 2j-m)(Wang et al. 2006; Michels et al. 

2007). We observed increased CIN (SJ-BP, RD-BP and CN-BP) in HR-NA compared to MNA 

(Wilcoxon rank test: PSJ-BP=4.5 x 10-5, Fig. 2k; PRD-BP=1.3 x 10-2, Fig. 2l; PCN-BP=4.6 x 10-8, Fig. 2m), 

similar to previous reports(Caren et al. 2010). In contrast, no difference was observed in the average 

SNV burden (Wilcoxon rank test: P=0.29, Fig. 2j). These data support the notion that small SNVs and 

SVs arise from different mutational processes.  These results also confirm the observation that HR-NA 

tumors exhibit increased CIN (Wang et al. 2006; Caren et al. 2010), and expand this to include other 

classes of SVs, such as tandem duplication events identified by SJ-BP analysis.  

 

Chromothripsis associates with major neuroblastoma oncogenic mechanisms. Previous studies 

have reported chromothripsis to occur in up to 18% of high-risk neuroblastomas (Molenaar et al. 2012) 

and identified associations between chromothripsis and key neuroblastoma oncogenes MYCN and 

TERT (Peifer et al. 2015; Valentijn et al. 2015). We therefore sought to leverage our large dataset to 

further explore the oncogenic associations of chromothripsis in neuroblastoma. We first identified 

alterations of major neuroblastoma oncogenes (MYCN, TERT and ALK) in our WGS and SNP cohorts. 

Rearrangements near the TERT locus were confirmed in 23 HR-NA samples and 2 MNA from the WGS 

dataset as well as 15 cases (14 HR-NA and 1 MNA) from the SNP dataset, one sample (PAPUTN) was 
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present in both datasets (Supplementary Fig 5a). TERT expression was increased in these samples 

as well as in MNA tumors in accordance with previous reports (Supplementary Fig. 5b,c) (Peifer et al. 

2015; Valentijn et al. 2015). Eleven cases from the WGS set with available DNA were validated using 

Sanger sequencing (Supplementary Fig. 6). In addition, CN-BPs were identified near TERT in fifteen 

HR-NA samples from the SNP array dataset (Supplementary Fig 5a), highlighting the ability of SNP 

arrays to detect these events using the CN-BP approach implemented in this study. MYCN 

amplification was determined diagnostically by FISH experiments in 29 samples from the WGS dataset 

(Supplementary Table 2); IGV visualization of segmentation data of 7Mb region surrounding MYCN 

confirmed these records (Supplementary Fig. 7a). We also explored events affecting the ALK gene. 

Two out of four rearrangements found near ALK also involved MYCN, (Supplementary Fig. 7b); these 

events were validated via Sanger sequencing (Supplementary Fig. 7c).   

Next, chromothripsis was characterized based on clustered somatic rearrangements and 

alternating copy number states in defined chromosome regions (Maher and Wilson 2012). We identified 

candidate chromothripsis events at chromosome arms with unusual high breakpoint densities (> 2σ 

above the average of each sample’s breakpoint burden distribution) and a minimum of 6 breakpoints 

(both SJ-BPs and RD-BPs) in 27 regions (Online Methods, Supplementary Table. 4) involving 20 

distinct high-risk tumors (19%). Chromothripsis was observed on chromosome 2 in a total of eight 

samples (Table 2; Supplementary Fig. 8); those samples showed enrichment in tumors harboring 

MYCN amplification (MNA) (7/8 samples, Binomial test P =7.4 x 10-4). Among them, two samples 

(PARETE and PATESI) involved co-amplification of ALK with MYCN (Supplementary Fig. 8). In 

addition, nine tumors harbored shattered chromosome 5p with strong enrichment in samples with 

rearrangements near TERT (8/9, Binomial test P = 7.3 x 10-5) (Table 2; Supplementary Fig. 9). Two 

samples (PAPSRJ and PAPUTN, Supplementary Fig. 8) included inter-chromosomal events involving 

the MYCN and TERT gene loci and co-amplification of both oncogenes. Other chromosomes involved 

in chromothripsis events included chromosome 1, 10, 11 and X in a female sample (Supplementary 

Fig. 10). Chromothripsis in most cases (15/20) was localized to a single chromosome involving either 
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the whole chromosome (i.e. PATBMM, Supplementary Fig. 9) or local regions (i.e. PATESI, 

Supplementary Fig. 8). Multiple chromosomes were involved in 5/20 (25%) of cases with 

chromothripsis. One sample (PARIRD) harbored an event involving chromosomes 2, 17 and 22, while 

PANRVJ involved large regions of chromosomes 1 and 2 (Supplementary Fig. 8).  

We next sought further confirmation of our results in the larger SNP array dataset. In the 

absence of sequence junction information, we focused on unusual high density (>2σ above average) of 

CN-BPs (Table 2).  We observed high-breakpoint density on chromosome 2 enriched in MNA samples 

(46/46, P ~ 0). We also detected enrichment of high breakpoint density on chromosome 5 involving 

cases harboring rearrangements or CN-BPs near TERT (7/11, P = 3.01 x 10-8). In addition, high 

breakpoint density on chromosome X was enriched in female patients (6/7, P = 4.7 x 10-2), although no 

specific oncogenic associations were determined. Overall, SNP array analysis of high CN-BP density 

supported and replicated observations from the WGS analysis.  

 

Table 2. Incidence of chromothripsis by chromosome across 135 WGS samples and incidence of high 
breakpoint density by chromosome across 914 SNP array samples. 
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* Squared cells indicates association with clinical groups (red: P binomial test < 0.001; green: P binomial test < 0.05) 
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Identification of genes recurrently altered by SVs in high-risk neuroblastomas.  In order to identify 

genes affected by recurrent somatic SVs in neuroblastoma, we generalized the approach described 

previously for TERT, MYCN and ALK genes. SVs were assigned to different categories according to 

the inferred impact on the exonic sequence of known RefSeq genes (Fig. 3a,b). Sequence junction 

breakpoints (SJ-BPs) provide more detailed information, including the type of SV and the two genomic 

breakpoint locations involved. With this knowledge, we classified SVs into: a) “coding” SVs that modify 

the exonic sequence of known genes including whole gene copy number alterations (duplications and 

deletions, size up to 2Mb), or b) “non-coding” SVs that do not modify the exonic sequences but might 

have an impact on regulatory regions proximal to known genes (100Kb upstream and 25Kb 

downstream) or intronic regions (Fig. 3a). In contrast to SJ-BP junctions obtained from discordantly 

aligned mate read pairs, dosage-based breakpoints (RD-BP and CN-BP) cannot identify their 

counterpart location in the genome. Therefore, events such as translocations and inversions cannot be 

defined. However, read-depth and array intensity based copy number inform about dosage gains and 

losses. With this in mind, we assumed the impact as a) “coding”: breakpoints within the transcription 

start and end positions of known genes, or b) “non-coding”, breakpoints located on proximal upstream 

and downstream regions (Fig. 3b). In addition, we localized CNVs involving amplification (CNWGS > 8; 

CNSNP>4.5, Online Methods) and deep deletions (CNWGS < 0.5; CNSNP < 0.9, Online Methods) (Fig. 

3b).  

Based on the aforementioned definitions, we ranked recurrently altered genes according to the 

number of samples harboring “coding” and “non-coding” SVs for each of the 3 alternative breakpoint 

analyses (SJ-BPs, RD-BPs and CN-BPs; Fig. 3c-h and Supplementary Table 5). Overall, recurrently 

altered genes by ‘coding’ and ‘non-coding’ events return highly concordant results across the three 

approaches, with MYCN, TERT, and their neighbor genes at chr2.p24 and chr5.p15 (Fig. 3c-g) 

occupying top ranks.  These were followed by known neuroblastoma altered genes PTPRD and ATRX. 

Notably, several top-ranked genes were novel, including SHANK2 and DLG2 located at chr11.q13 and 
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chr11.q14 respectively, and others such as AUTS2 at chr7.q11 and CACNA2D3 at chr3.p14 (Fig. 

3c,e,g). These analyses also reflect the long tail of altered genes of unknown pathogenicity (Fig. 3c-g). 

 

	

 

Figure 3: Identification of recurrently altered genes in neuroblastoma by breakpoint analyses. (a) 
Schematic representation of SVs derived from junction breakpoints (SJ-BPs) ) classified according to their impact 
on known genes. (b) Schematic representation of read-depth and copy number breakpoints (RD-BPs, CN-BPs) 
classified according to their impact on known genes. (c-h) Recurrently altered genes rankings based on different 
breakpoint analyses and mode of impact: (c) gene coding sequences with recurrent SJ-BPs, (d) gene proximal 
and intronic sequences with recurrent SJ-BPs, (e) gene proximal sequences with recurrent RD-BPs (f) gene 
coding sequences with recurrent RD-BPs, (g) gene coding sequences with recurrent CN-BPs and (h) gene 
proximal sequences with recurrent CN-BPs. (i) Oncoprint based on the WGS dataset recurrently altered genes by 
SVs detected through orthogonal approaches (SJ-BP and RD-BP) as depicted in bar plot (right). The oncoprint 
aggregates three tracks per gene representing different BP analysis (upper =SJ-BP, center=RD-BP) and 
recurrent pathogenic SNVs (lower). 
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In order to provide an integrated overview of the landscape of altered genes, we combined 

WGS based methods (SJ-BP and RD-BP) into a ranking of recurrently altered genes with co-localizing 

breakpoints, hence orthogonally validated. A total of 77 genes have at least 1 co-localizing SJ-BP and 

RD-BP breakpoint (Fig. 3i, Supplementary Table 6); in addition, we annotated likely pathogenic SNV 

calls (Supplementary Table 7). Many altered genes clustered in specific regions associated with 

known oncogenes such as chr2.p24 near MYCN (11 genes) and chr5.p15 near TERT (7 genes).  The 

ranking was led by MYCN with 37 samples harboring variants. Orthogonal validation was obtained in 

26 of these cases by co-localizing SJ-BP and RD-BP; these included 29 MNA and 8 HR-NA tumors. 

Interestingly, 11 HR-NA samples harbor alterations of MYCN (8 SVs and 3 SNVs) supporting the 

pathogenic role of MYCN in non-amplified tumors. TERT rearrangements were identified in 25 samples; 

orthogonal validation of breakpoints was observed in 12 cases (Supplementary Fig. 5a). PTPRD was 

altered in 20 samples, 11 of which were orthogonally validated (Supplementary Fig. 11a) (Stallings et 

al. 2006; Clark et al. 2012). We identified 12 ATRX intragenic deletions (5 orthogonally validated) and 

one tandem-duplication in HR-NA tumors (Supplementary Fig. 11b)(Cheung et al. 2012). Other genes 

with a known role in neuroblastoma and cancer were altered by SVs. Specifically, the ALK gene 

harbored SV rearrangements in five samples (Supplementary Fig. 7b). Another 18 samples exhibited 

somatic SNVs in ALK, resulting in a combined set of 23 samples being affected (17% of all 

neuroblastomas).  

Genes lacking a well-established role in neuroblastoma were also disrupted by recurrent SVs in 

this study. Specifically, the SHANK2 gene was disrupted in 11 HR-NA tumors; three samples involved 

gene fusions that did not appear in frame. DLG2, a newly described tumor suppressor in osteosarcoma 

(Smida et al. 2017; Shao et al. 2019), was disrupted in 10 samples based on SJ-BP and 14 samples 

based on RD-BP analyses, two of which involved gene fusion events. Both SHANK2 and DLG2 are 

located on chromosome 11q and play a role in the formation of postsynaptic density (PSD)(Kaizuka 

and Takumi 2018). Other novel candidate altered genes included AUTS2 with frequent intragenic 

deletions at chr7q (North=3; Ntot=18, Supplementary Fig. 12a) and the calcium channel CACNA2D3 
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(North=4; Ntot=11), which corresponded to a deletion breakpoint at chr3.p14.3 (Supplementary Fig. 

12b). A region proximal to the LINC00910 long non-coding RNA (lncRNA) on chromosome 17 suffered 

rearrangements in 13 tumors (Supplementary Fig. 13a). Finally, CDKN2A and CDKN2B focal 

deletions were identified in three tumors (Supplementary Fig. 13b). 

 

Sanger sequencing validation of SVs in high-risk neuroblastoma tumors. In addition to orthogonal 

validation by breakpoint analyses, we validated SV junctions by Sanger sequencing when samples had 

sufficient DNA available in our tumor bank (Supplementary Table 8). This validation effort focused on 

key genes and included twelve proximal TERT SVs (Supplementary Fig. 6), four ATRX deletions 

(Supplementary Fig. 14), four proximal ALK variants (Supplementary Fig. 7c), eleven SHANK2 

translocation events, nine of which involved chromosome 17q (Supplementary Fig. 15), and twelve 

DLG2 variants (Supplementary Fig. 16). In total, we validated 45 SVs (Supplementary Table 8). The 

original CGI cancer pipeline classifies SVs into high and low confidence variants depending on the 

number of read pairs supporting the evidence (Nreads threshold = 10). Our pipeline rescued many cases 

classified as low-confidence by CGI. Specifically, six out of 45 SVs evaluated (13.3%, 3 ATRX and 3 

DLG2) had low coverage (< 10 reads), but were confirmed by Sanger sequencing. 

 

SVs have a regional transcriptional effect in neuroblastoma tumors. To gain further understanding 

of the functional relevance of SVs, we performed an expression quantitative trait loci (eQTL) analysis 

for each of the recurrent SV-associated genes (Supplementary Fig. 17a). The analysis, which was 

replicated in the two available transcriptional datasets (RNA-seq and HuEx array), reported consistent 

up-regulation of MYCN and TERT including their neighbor genes in association with SVs. We also 

observed up-regulation of the lncRNA LINC00910 (PRNA = 7.0 x 10-3) at chr17.q21, a region with 

frequent inter-chromosomal translocations. In contrast, CDKN2A was down-regulated (PHuEx= 4.7 x 10-

2; Pboth = 2.5 x 10-2) by focal deletions and PLXDC1 at chr17.q12 was down-regulated (PHuEx= 4.7 x 10-2; 

Pboth = 2.5 x 10-2) in association with 17q gain breakpoints.  
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In addition to changes in overall gene expression by eQTL, translocations may lead to the 

expression of gene fusion transcripts. We explored RNA-seq samples with three available gene fusion 

methods (STAR-fusion(Dobin et al. 2013), fusionCATCHER(Daniel Nicorici 2014) and 

DeFUSE(McPherson et al. 2011) (Supplementary Table 9). The three methods return a wide range of 

fusion events (NSTAR-fusion=24,837, NfusionCATCHER=6,898, NDeFUSE=22,837), and overlapped in only 68 

events (0.1%, Supplementary Fig 17b). Notably, the subset of fusion events with matching 

translocation from WGS comprised 66 events (NSTAR-fusion=45, NfusionCATCHER=36, NDeFUSE=44), with the 

three methods overlapping in 26 events (40%, Supplementary Fig 17c). These data show that 

DNA/RNA combined evidence verification returns high precision gene fusion events. The most frequent 

gene fusion event with both RNA and DNA evidence involved SHANK2; the three SHANK2 fusion 

events involved 17q genes: EFTUD2, MED1 and FBXL20. DLG2 exhibited gene fusion events in two 

samples involving SEMA6C and MYCBP2 at chromosomes 12 and 13 respectively. However, none of 

the SHANK2 and DLG2 fusion transcripts appeared to be in-frame, suggesting the fusion transcripts 

may not be biologically relevant and that these are more likely loss of function events. Conversely, we 

observed an in-frame fusion transcript and translocation involving FOXR1:DDX6, where oncogenic 

fusion events have previously been described in neuroblastoma (Santo et al. 2012). 

 

Neurodevelopmental genes are recurrently disrupted by SVs in neuroblastoma. In order to 

identify pathways targeted by SVs, we considered recurrently altered genes from each of the coding 

(N>2) and non-coding (N>3) altered gene lists (#genes: SJ-BPcoding=109, SJ-BPnon-coding=36, RD-

BPcoding=76, RD-BPnon-coding=27, CN-BPcoding=77 And CN-BPnon-coding=88, Fig. 3c-h). We tested each 

gene list for enrichment across Gene Ontology, pathway, and disease gene classes using ToppGene 

(Chen et al. 2009) (Supplementary Table 10). Genes with coding sequences altered showed 

consistent results across the three breakpoint mappings, and revealed strong enrichment in genes 

involved in autism spectrum disorder (ASD) susceptibility (PSJ-BP = 2.8 x 10-9; PRD-BP = 2.9 x 10-5; PCN-BP= 

2.7 x 10-9) and other neurodevelopmental disorders (NDD) as well as protein localization to synapse 
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(PSJ-BP = 1.2 x 10-5; PRD-BP = 1.1 x 10-7; PCN-BP= 2.4 x 10-6) and other neuronal related classes (Fig. 4a-c; 

Supplementary Table 10). The gene sets with ‘non-coding’ alterations were more variable across the 

alternative breakpoint analyses, but were dominated by events involving MYCN and TERT in 

association with the disease class “stage, neuroblastoma” (PSJ-BP = 1.9 x 10-6; PRD-BP = 2.5 x 10-5; PCN-BP 

= 9.2 x 10-5, Supplementary Fig. 18). 

	

Figure 4: Neurodevelopmental genes are recurrently targeted by structural variations in neuroblastoma.  
(a-c) Function enrichment analysis bar plots for genes recurrently altered based on breakpoint analyses of (a) SJ-
BPs, (b) RD-BPs and (c) CN-BPs. Analysis includes gene sets associated with diseases (green), Gene Ontology 
(purple) and Pathways (red). (d-e) Gene Set Enrichment Analysis across the signature of high- versus low-risk 
tumors from the HumanExon array show enrichment of (d) neuronal and synapse part and (e) autism disorder 
predisposition genes. (f) Volcano plot showing differential expression between high- and low-risk highlighting 
genes with recurrent SVs and their functional classification (g) Subtype specific high- versus low-risk differential 
expression analysis of 77 recurrently altered genes from Fig 4i shown as scatter plot (MNA = x-axis, HR-NA = y 
axis). (d-g) Analysis replicated in two datasets: HuEx arrays (here) and RNA-seq (Supplementary Fig. 19a-d). 
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Recurrently disrupted neurodevelopmental genes are down-regulated in high-risk 

neuroblastoma. To further characterize the clinical relevance of recurrently altered genes in 

neuroblastoma, we studied their differential expression between high-risk subtypes and low-risk (Stage 

1 and 4s) groups (Fig. 4d,e). We first used gene set enrichment analysis (GSEA)(Subramanian et al. 

2005) to confirm the directionality of the regulation of gene classes enriched in recurrently altered 

genes. We observed down-regulation of neuronal and synaptic genes (PHuEx= 1.09 x 10-9) and autism 

disorder susceptibility genes (PHuEx= 6.38 x 10-7) in high-risk tumors when compared to stage 1 low-risk 

tumors (Fig. 4d-f). We then focused on differential expression of genes with recurrent SVs in high-risk 

subtypes (Fig. 4g). Known oncogenes including TERT and ALK were up-regulated in both MNA and 

HR-NA while MYCN was up-regulated only in MNA tumors. Known neuroblastoma tumor suppressor 

genes including CAMTA1 and RERE from the 1p chromosome region and PTPRD were down-

regulated in both subtypes. Most genes with a role in ASD predisposition, and those involved in neuron 

and synapse formation, were down-regulated in both high-risk subtypes. In particular, expression was 

significantly reduced for SHANK2 (PMNA = 2.15 x 10-11; PHR-NA= 1.05 x 10-8) and DLG2 (PMNA = 2.1 x 10-

8;PHR-NA= 4.86 x 10-8) in high-risk compared with stage 1 low-risk tumors and compared to stage 4S low-

risk tumors (PMNA = 1.41 x 10-3;PHR-NA= 1.82 x 10-5 and PMNA = 1.09 x 10-4; PHR-NA= 2.72 x 10-4 

respectively).  These results replicated using RNA-sequencing data (Supplementary Fig. 19a-d). 

 

Neurodevelopmental genes SHANK2 and DLG2 are frequently disrupted by chromosome 11 

translocation events. High-risk neuroblastomas without MYCN amplification frequently exhibit deletion 

of chromosome 11q and this event is associated with a poor outcome (Guo et al. 1999; Attiyeh et al. 

2005; Caren et al. 2010). The most frequent breakpoints observed in this study were located at 

chromosome 11q.13 and 11q.14 and disrupted the SHANK2 and DLG2 gene loci respectively (Fig 

5a,b; Supplementary Fig. 20). SHANK2 translocation partners involved chromosome 17q in 10/11 

WGS cases, in addition we identified 49 samples from the SNP dataset (10.7%) with breakpoints in 
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SHANK2 (Fig 5a). DLG2 translocation partners included multiple chromosomes. DLG2 breakpoints 

were also identified in 28 samples from the SNP array dataset (Fig 5b).  

SHANK2 is a scaffold protein in the postsynaptic density (PSD) with two known coding isoforms 

(long: NM_012309; short: NM_133266). We therefore studied the expression pattern of SHANK2 at the 

exon level using both RNA-seq (Fig. 5c) and HumanExon arrays (Supplementary Fig. 21a,b) data. 

Clustering analysis of SHANK2 exon expression revealed two distinct clusters corresponding to the two 

known coding isoforms. Expression of the long isoform (NM_012309) was decreased in high-risk 

tumors compared to INTR and LOWR as observed from RNA-seq (Fig. 5c) and HuEx expression 

analysis (Supplementary Fig. 21a,b). Finally, in a large independent RNA-Seq cohort (Wang et al. 

2014a), reduced expression of the long isoform (NM_012309) was associated with increased tumor 

stage (P=1.62 x 10-22, Supplementary Fig. 21c) and poor overall survival (P=7.21 x 10-13, 

Supplementary Fig. 21d). Notably, the association with poor survival remained significant even within 

the low- and intermediate-risk subsets of neuroblastoma that typically have favorable outcomes 

(P=2.22 x 10-5, Supplementary Fig. 21e). Consistent with the SHANK2 expression pattern, we 

observed decreased activation of PSD genes based on GSEA in high-risk compared to low-risk 

neuroblastomas in multiple prognostic signatures (Supplementary Fig. 22). We decided to further 

study the long isoform of SHANK2 (NM_012309) given that nearly all SVs uniquely disrupt this splice 

variant, leaving the short isoform (NM_133266) intact. 
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Figure 5: Neuronal genes SHANK2 and DLG2 are frequently disrupted by translocation events involving 
chromosome 11. (a-b) Copy number, breakpoint location and types of SVs at genomic regions harboring 
rearrangements that span (a) SHANK2 and (b) DLG2 loci; ‘S’ at the left of the panel indicates positive validation 
by Sanger sequencing for SHANK2 (Supplementary Fig. 15) and DLG2 (Supplementary Fig 16).  Associated 
gene fusion events obtained from RNA-seq indicated in purple text. (c) Clustering analysis of SHANK2 exon level 
FPKM from RNA-seq data. The heatmap (left) shows higher exon expression level in S4s compared to MNA and 
HR-NA samples. The correlation matrix (right) shows two well-defined clusters associated with the two known 
coding isoforms of the gene. Exons are color coded according to their isoform span.  
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SHANK2 expression inhibits cell growth and viability of neuroblastoma cells. To further elucidate 

the role of SHANK2 in neuroblastoma, three neuroblastoma cell lines with low or no endogenous 

SHANK2 expression (Supplementary Fig. 23) were selected. These included SY5Y (MYCN Non-

amplified), Be(2)C (MYCN amplified), and NGP (MYCN amplified). Cells were stably transduced to 

constitutively overexpress SHANK2 long isoform or an empty vector control. SHANK2 expression was 

confirmed by Western blot (Fig. 6a-c). When maintained in selection media and grown alongside empty 

vector controls, the SHANK2-expressing cells consistently exhibited decreased cell growth and viability 

as measured by RT-CES cell index (Fig. 6d-f) as well as CellTiter Glo assay (Fig. 6g-i). For SY5Y, 

when control reached confluence, the comparable cell indexes of the SHANK2 overexpressing lines 

were reduced by 75% (P=3.4 x 10-5; Fig. 6d), Be(2)C cell index reduced by 62% (P=3.16 x 10-4; Fig. 

6e), and NGP showed a 14% reduction (P=2.62 x 10-2; Fig. 6f). We also observed decreased cell 

viability in SHANK2-expressing cells at both 4- and 7-day endpoints using an ATP-dependent CellTiter 

Glo assay. Specifically, viability of SY5Y SHANK2-expressing cells was reduced to 65.51% (P=1.34 x 

10-18) and 52.64% (P=4.72 x 10-26) of controls (Fig. 6g). This was reinforced in the similar results for 

Be(2)C SHANK2-expressing cells (49.21% and 44.26%, P=5.76 x 10-28 and 5.74 x 10-15; Fig. 6h) and 

NGP (90.63% and 74.01%, P=5.11 x 10-3 and 6.01 x 10-13) (Fig. 6i).  

 

SHANK2 expression accelerates differentiation of neuroblastoma cells exposed to all-trans 

retinoic acid (ATRA). We next investigated the role of SHANK2 in neuronal differentiation in Be(2)C 

and SY5Y cells exposed to ATRA. In the presence of ATRA, overexpression of SHANK2 accelerated 

differentiation as measured by presence and length of neurites compared to cell body (Fig 6j-o; 

Supplementary Fig. 24a-f). While decreases in growth can be measured even without drug 

application, once ATRA is applied, cells overexpressing SHANK2 developed neurites more quickly, and 

those neurites extended further than observed in empty vector controls (Supplementary Fig. 24c,d). In 

Be(2)C cells, a significant difference in neurite outgrowth normalized to cell-body area was seen at 72 

hours post treatment with 1 uM ATRA (Fig. 6j-l), with SHANK2 cells exhibiting a 1.6-fold increase over 
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controls (P=3.09 x 10-13); the difference increased to 2.76-fold at 96 hours (P=2.37 x 10-30). Even with 

vehicle alone, SHANK2 cells had more neurite outgrowth per cell body compared to their empty vector 

counterparts at both 72 and 96 hours post treatment (P=1.02 x 10-5, P=1.25 x 10-13, respectively).  In 

SY5Y, though differentiation took longer and both SHANK2 cells and controls eventually reach 100% 

confluence with vehicle alone, SHANK2 overexpression still decreased confluence (P=1.69 x 10-6, 

Supplementary Fig. 24b). In analyzing total neurite outgrowth without normalization for cell body area, 

SY5Y ATRA-treated SHANK2 cells outpaced controls starting at hour 144 post-treatment and 

continued to lead until the experiment ended, with a total neurite measurement increased 1.55-fold over 

controls (P=1.62 x 10-35; Supplementary Fig. 24d). Once normalized, SHANK2 cells have higher 

measured outgrowth starting at 75 hours post treatment through hour 96, and maintain from there. At 

195 hours past treatment, SHANK2 cells treated with 5uM ATRA displayed neurites at 1.71-fold 

increase over their empty vector controls (P=2.36 x 10-17; Fig. 6m-o). Taken together, these data 

suggest SHANK2 is a newly identified haplo-insufficient tumor suppressor in high-risk neuroblastoma 

that is disrupted by recurrent somatic structural variation in the MYCN non-amplified subset of cases.  
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Figure 6: SHANK2 reduces cell growth and promotes differentiation in neuroblastoma cell line models. (a-
c) Western blots confirming overexpression of SHANK2 in all tested neuroblastoma cells: (a) SY5Y, (b) Be(2)C 
and (c) NGP. (d-f) Decreased proliferation in all 3 lines overexpressing SHANK2 (red) compared to controls 
(green), as measured by RT-CES. (h-i) Decreased viability in SHANK2 overexpressing cells (red) versus controls 
(green) as measured by ATP-dependent CellTiter Glo Assay. (j,k) Incucyte images Be(2)C cells for (j) vector 
control and (k) SHANK2 expressing cells at 78 hours post treatment with 1 uM ATRA. Neurite extensions masked 
in pink; cell bodies masked in blue. (l) Neurite length normalized to cell body area starting immediately after ATRA 
application corresponding to Be(2)C cells images at different time points. (m, n) SY5Y images from Incucyte at 
day 9 post ATRA treatment (5uM). (o) Neurite outgrowth normalized to cell body area in corresponding to SY5Y 
cells images at different time points. 
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DISCUSSION 

Sequencing studies of neuroblastoma tumors have revealed a relatively low SNV burden and 

limited mutational landscape (Cheung et al. 2012; Molenaar et al. 2012; Pugh et al. 2013; Sausen et al. 

2013), leaving aneuploidy and large segmental chromosomal alterations as the main candidate driver 

mutations in many tumors. Structural variations (insertions, deletions, duplications and translocations, 

and inversions) can also function as potent cancer drivers, as demonstrated with the discovery of 

rearrangements near the TERT gene driving aberrant telomerase expression in many high-risk 

neuroblastomas (Peifer et al. 2015; Valentijn et al. 2015). Here, we expand the landscape and 

understanding of structural variation in neuroblastoma through an integrative genomic analysis of a 

large cohort of patient samples profiled by whole genome sequencing and SNP arrays together with 

additional transcriptional data. To the best of our knowledge, this study represents the largest 

integrated genome-wide survey of structural variation in neuroblastoma including alignment based (SJ-

BP) and copy number based (RD-BP and CN-BP) structural variation breakpoint analyses. 

Structural variation complexity was most evident in high-risk tumors without amplification of 

MYCN (HR-NA). This observation is consistent with other reports of increased chromosomal instability 

in this high-risk subset (Caren et al. 2010). The current study strengthens and extends previous reports 

of chromosomal instability by including additional structural variation types and breakpoint burden 

analyses. Specifically, we observed significantly more tandem-duplications HR-NA tumors. These 

affected nearly every chromosome, except for chromosome 2, which contains the MCYN amplicon. HR-

NA tumors harbored more SVs in known cancer genes as well as novel genes. In contrast, the SNV 

burden was very similar between MNA and HR-NA groups. As suggested by pan-cancer studies, the 

underlying mechanisms potentiating chromosomal instability and somatic SNV burden may differ 

(Ciriello et al. 2013). The mechanism leading to the observed increase in chromosomal instability in 

HR-NA tumors remains unknown.  Pan-cancer studies have reported TP53 mutations as a major driver 

of chromosomal instability; however, TP53 loss of function is rarely observed in neuroblastoma at 

diagnosis.  
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Chromothripsis has been reported in as many as 18% of high-stage neuroblastomas (Molenaar 

et al. 2012). Similarly, in the current study, 19% of high-risk tumors from the TARGET cohort exhibit 

chromothripsis (N=20/105), involving a total of 27 chromosomal regions. These events largely overlap 

with amplification of MYCN (as well as some ALK cases) on chromosome 2p and TERT on 

chromosome 5p, suggesting an important role of chromothripsis followed by purifying selection as an 

underlying cause of those alterations. We also observed high-breakpoint density in the X chromosome 

of females based on the SNP array data, which could be explained by higher tolerance to 

chromothripsis in diploid regions. Future studies are required to determine whether the oncogenic role 

of chromothripsis represents an opportunity for therapeutic intervention. 

Along this study, we report a shared repertoire of genes altered in neuroblastoma and 

neurodevelopmental disorders (NDD), including autism spectrum disorder. A link between cancer and 

autism has been previously established in PTEN-associated germline syndromes (Goffin et al. 2001), 

and multiple autism susceptibility genes also have a known role in cancer (Crawley et al. 2016). 

Moreover, certain germline deletions associated with NDD, such as 10p15 (DeScipio et al. 2012) and 

16p24.3 (Willemsen et al. 2010), are reported here to occur somatically in neuroblastoma. 

Transcriptomic analyses have shown that neural lineage pathways are commonly down-regulated in 

high-risk neuroblastomas compared to low-risk signatures (Fredlund et al. 2008). Here, we show that 

structural variation preferentially disrupts neurodevelopmental genes in neuroblastoma. We 

hypothesize that structural variations in SHANK2 and other coding proteins of the postsynaptic density 

(PSD) comprise novel neuroblastoma candidate tumor suppressors involved in neuronal differentiation. 

Additional candidate genes identified here with a proposed role in neurotransmission and synapsis and 

involvement in autism include DLG2, AUTS2, CNTNAP2, NRXN1, CTNND2(Gai et al. 2012). Structural 

variants affecting these genes are more prevalent in high-risk neuroblastomas without amplification of 

MYCN, which is itself a potent driver of dedifferentiation(Westermark et al. 2011).  

We propose that disruption and deregulation of SHANK2 promotes the undifferentiated state of 

neuroblastoma cells, and that other synaptic genes may play a similar role in this childhood cancer. 
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Synaptogenesis is a key process in neuronal differentiation and mutations in the SHANK family of 

proteins are frequently implicated in NDD (also termed shankopathies), offering potential therapeutic 

opportunities for these disorders (Wang et al. 2014b). In the current study, we show that SHANK2 is 

disrupted by recurrent somatic SVs in HR-NA tumors and that SHANK2 expression is low across high-

risk tumors. The mechanism driving low SHANK2 levels in the MNA high-risk tumors remains to be 

identified. We further demonstrate that decreased SHANK2 expression is associated with poor survival 

in neuroblastoma, even within the low- and intermediate-risk subsets of patients that typically have 

good outcomes. This suggests that SHANK2 expression, or the undifferentiated cell state, may serve 

as a biomarker for non-high-risk tumors requiring more aggressive treatment. Our in vitro studies 

demonstrate that forced expression of SHANK2 reduces cell growth and increases neurite outgrowth 

(indicative of differentiation) in human derived neuroblastoma cell lines exposed to ATRA. Given that 

retinoids are currently utilized as maintenance therapy in high-risk neuroblastoma standard of care 

(Matthay et al. 1999; Matthay et al. 2009), the sensitizing effect of SHANK2 expression to ATRA 

treatment underscores the importance of understanding the mechanisms driving and maintaining the 

undifferentiated phenotype of high-risk neuroblastoma. Subsequent studies with larger cohorts should 

evaluate the role of mutated and deregulated neurodevelopmental genes in retinoic acid treatment 

response. Taken together, we depict a substantially expanded landscape of structural variation in 

neuroblastoma and provide mechanistic insight into the aberrant neuronal development hallmark of the 

high-risk form of this childhood cancer. 
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METHODS AND DATA ACCESS 

Datasets and data availability  

The primary dataset in this study is comprised of 135 whole genome sequenced tumor-blood matched 

pairs (Complete Genomics (CGI)) and 914 SNP-array profiled tumor-blood pairs (Illumina SNP arrays).  

CGI short read sequencing uses commercial software for processing, aligning to reference genome 

(hg19) and variant calling (Cancer Pipeline 2.0; 

http://www.completegenomics.com/documents/DataFileFormats_Cancer_Pipeline_2.0.pdf). Matched 

RNA sequencing (n=153) and Affymetrix HumanExon array data (n=247) were analyzed to assess the 

influence of SVs on mRNA expression. Whole genome and RNA-sequencing data are available from 

dbGaP (https://www.ncbi.nlm.nih.gov/gap) with study-id phs000218 and accession number phs000467. 

The SNP array data generated for this study has been uploaded to Gene Expression Omnibus 

(GSE131189). Processed data from CGI whole genome sequencing (including SV and SNV calls) and 

the HumanExon arrays are available from the TARGET data NCI data matrix (https://target-

data.nci.nih.gov/). The SEQC neuroblastoma RNA-seq dataset used for survival analyses is available 

from Gene Expression Omnibus (GSE62564). Additional genomic profiles from neuroblastoma cell 

lines are available as follows: SNP genotyping arrays (Gene Expression Omnibus: GSE89968) and 

RNA-seq (Gene Expression Omnibus: GSE89413)(Harenza et al. 2017). 

Copy number segmentation, visualization (IGV) and recurrence analysis 

CGI “somaticCnvDetailsDiploidBeta” (https://target-data.nci.nih.gov/Controlled/NBL/WGS/CGI/) files 

provide information on estimated ploidy and tumor/blood coverage ratio for every 2-kb along the 

genome. We used custom scripts to reformat coverage data to be processed with “copynumber” R 

bioconductor pakage(Nilsen et al. 2012). We then utilized Winsorization (winsorize) data smoothing 

and segmentation with piecewise constant segmentation (pcf) algorithm with attributes kmin=2 and 

gamma=1000. Segmented data was visualized with IGV and further used as input to 

GISTIC2.0(Mermel et al. 2011). GISTIC attributes were as follows: -v 30 -refgene hg19 -genegistic 1 -
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smallmem 1 -broad 1 -twoside 1 -brlen 0.98 -conf 0.90 -armpeel 1 -savegene 1 -gcm extreme -js 2 -rx 

0. 

Filtering of CGI SV calls  

The CGI Cancer Pipeline 2.0 produces a full report including quality control, variant calling and CNV 

analyses. The “somaticAllJunctionsBeta” files provide information for individual junctions detected in a 

tumor genome that were absent in the corresponding normal genome. The 

“highConfidenceJunctionsBeta” files contain a filtered subset of the junctions reported in 

“somaticAllJunctionsBeta” file. This subset includes junctions that likely resulted from a true physical 

connection between the left and right sections of the junctions. A detailed description of the approach 

followed by the vendor (CGI) is available in the Data File Formats description 

(http://www.completegenomics.com/documents/DataFileFormats_Cancer_Pipeline_2.0.pdf).  Additional 

filtering of high confidence variants was initially applied to the entire TARGET repertoire of tumor 

datasets including ALL, AML, NBL, OS, CCSK and RT in order to remove recurrent junctions consistent 

with common variation. We added additional filters to remove rare/common germline variants that 

passed CGI filters as well as artifacts and low confidence variants. To this end, we used the Database 

of Genomic Variants (DGV v. 2016-05-15, GRCh37) in order to remove SVs which reciprocal overlap 

with DGV annotated common events was higher than 50%. We only filtered variants which type 

matched in both CGI SV set and DGV database.  

 

Mapping and annotation of filtered alignment-based SVs (SJ-BP) 

We used RefSeq gene definitions for hg19 downloaded from UCSC (10/31/2018) in order to map SV 

calls to nearby genes. First, we used two approaches to map variants: numerical changes (tandem-

duplications and deletions size <2Mb) containing whole genes were used to define copy number 

alterations. Second, we mapped breakpoints relative to gene exonic coordinates. SVs were considered 

‘disrupting’ when either one of the breakpoints localized between transcription start and ends of any of 
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isoforms of a gene and ‘proximal’ when localized within 100Kb upstream or 25Kb downstream the most 

distal isoform of each gene; a graphical description is represented in Figure 4b. In addition, we 

considered ‘intronic’ SVs as those in which both breakpoints mapped to the same intron.  

 

Processing DNA copy number segmentation from WGS 

We processed ‘cnvDetailsDiploidBeta’ files from the Cancer Pipeline 2.0 (CGI©) containing average 

normalized read-depth coverage values at every 2-Kb sliding window throughout the genome. Then, 

tumor/blood normalized ratios were subject to piecewise constant segmentation algorithm(Nilsen et al. 

2012) implemented in the ‘copynumber’ R package. The processed segmentation file is available 

through the TARGET data matrix (https://target-data.nci.nih.gov/). 

 

Generating DNA copy number segmentation from SNP arrays 

We genotyped 914 matched patient tumor and normal samples using Illumina SNP arrays. This cohort 

included 488 samples which were previously reported(Attiyeh et al. 2009) and reanalyzed here. The 

complete dataset comprised three different genotyping architectures from Illumina: HumanHap550, 

Human610-Quad, and HumanOmniExpress. The common set of 316,210 SNPs were processed for 

tumor DNA segmentation using the SNPrank algorithm implemented by the NEXUS® software platform. 

The generated segmentation data for is 914 unique samples is available through the TARGET data 

matrix (https://target-data.nci.nih.gov/). 

 

Mapping and annotation of DNA amplifications, deep deletions and copy number breakpoints 

from WGS (RD-BP) and SNP arrays (CN-BP)  

Breakpoints were called from segmentation profiles. Due to artifacts observed at subtelomeric and 

pericentromeric regions, these regions were excluded. For the rest of the genome, a breakpoint was 

called when the absolute value of the copy number log-ratio difference between contiguous segments 

is higher than 0.152 for SNP arrays and 0.304 for WGS; both cutoffs account for 10% and 20% copy 
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number change respectively (i.e for diploid regions, ΔCN = 0.2 and ΔCN = 0.4 respectively). For the 

WGS dataset, we called amplifications when CN >=8 and deep deletions when CN <= 0.5. For SNP 

arrays, we used less stringent cutoffs for amplification (CN >= 4.5) and deep deletions (CN <= 0.9). 

These relaxed criteria were selected due to SNP arrays having a narrower dynamic range and lower 

resolution. We used RefSeq gene definitions for hg19 downloaded from UCSC (October 31st, 2018 

version) to map copy number alterations and breakpoints to nearby genes. Genes were considered 

amplified or deep deleted when all isoforms were contained within the altered segment boundaries. 

Breakpoints were considered ‘disrupting’ when the breakpoint localized between transcription start and 

ends of any isoform of a gene and proximal when localized at within 100Kb upstream or 25Kb.  

 

Co-localization of breakpoints derived from WGS (SJ-BP & RD-BP) and SNP arrays (CN-BP) 

We studied the co-localization of breakpoints derived from alternative measurements. First, we 

compared SJ-BPs and RD-BPs in each of the 135 WGS samples; overall, 30.5% of SJ-BPs co-localize 

with a RD-BPs (Supplementary Fig.3a) whereas 62% RD-BPs matched with SJ-BPs (Supplementary 

Fig. 3b). The lower overlap in SJ-BPs is expected since not all SVs necessarily involve a change in 

copy number dosage (i.e. inversions and translocations). We next evaluated the co-localization of 

breakpoints across WGS and SNP platforms within the subset of 52 overlapping samples. 50.2% of 

CN-BPs from SNP arrays co-localized with SJ-BPs from the WGS dataset (Supplementary Fig.3c) 

whereas only 8.2% of SJ-BPs co-localize with CN-BPs (Supplementary Fig. 3d). Furthermore, when 

comparing dosage based breakpoints across platforms (RD-BP and CN-BP), 23.6% RD-BPs where 

found co-localizing CN-BP (Supplementary Fig. 3e) whereas 66.6% CN-BP co-localized with RD-BPs 

(Supplementary Fig. 3f). Overall, SNP arrays display reduced the number of breakpoints compared 

read-depth based profiles; we attribute these differences to a narrower dynamic range and lower probe 

density of the platform. Finally, we performed a randomized test by sample shuffling (Ni=1000) in order 

to evaluate whether each of the co-localization percentages listed above could arise by chance or due 

to recurrence of SVs across samples. All randomized percentage distributions range between 0.7% and 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/572248doi: bioRxiv preprint 

https://doi.org/10.1101/572248


Structural Variation in Neuroblastoma                                                                                                 Lopez, Conkrite, et al. 

Page 33 of 41 

2.3%; in all cases the null hypothesis was discarded (p-value < 0.001, Supplementary Fig. 3g-l). 

Taken together, alternative breakpoint detection methods returned consistent results even when 

derived from different platforms providing means for both orthogonal and cross-platform validation of 

SVs. However, certain types of SVs can only be detected using alignment-based methods. 

Tumor mutational burden analyses 

We obtained measures representative of the burden of different mutation types under study (including 

SNVs, SVs and BPs). To this end, the density of mutations of every type is calculated as the average 

number of mutations in a given sample per sequence window (10Mb for SVs and BPs and 1Mb for 

SNVs). Instead of a single density value per sample we measure mutational densities for each 

chromosomal arm, excluding short arms with very low mappability (13p, 14p, 15p, 21p, 22p and Y 

chromosome). The remaining 41 chromosomal arms in each sample represent single sample 

distributions of mutational densities from which quantiles are obtained. We used the interquartile mean 

(IQM) since it offered a measure robust against outliers while conserving the variability across samples 

even in low-density breakpoint samples. 

Filtering and annotation of likely pathogenic somatic SNVs  

The CGI cancer pipeline 2.0 provides somatic variant calls for SNVs and small indels. Given the 

gapped nature of CGI reads which leads to high noise to signal ratio, we incorporated additional SNV 

filtering. We first annotated CGI SNV calls using Variant Effect Predictor (VEP) pipeline(McLaren et al. 

2016). Our filter follows two steps: 1) collect high quality somatic non-synonymous coding variants 

(Phred like Fisher’s exact test P<0.001) annotated as having a moderate or high functional impact; this 

set of variants was combine with COSMIC catalogue of pathogenic variants (release v84). 2) Hot-spot 

analysis of variants from our combined catalogue (step 1) to identify both clonal and low allele 

frequency pathogenic variants.  
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Gene fusion analysis 

Gene fusion analysis from RNA-seq data was studied using three available tools: (STAR-fusion(Dobin 

et al. 2013), fusionCATCHER(Daniel Nicorici 2014) and DeFUSE (McPherson et al. 2011)). We then 

collected fusion events that matched inter-chromosomal events from the CGI structural variation calls.  

 

Statistical and survival analyses 

All statistics performed with genomic data Wilcoxon rank-sum test, Kruskal-Wallis test and survival 

analyses were done using R programming. For the survival analyses, we used the R ‘survival’ library. In 

order to estimate the association between SHANK long isoform expression and survival we obtained 

the optimal separation (lower log-rank test p-value) from all possible expression thresholds and then 

used Benjamini & Hochberg (false discovery rate) for multiple testing correction and q-value estimation. 

 

Sanger sequence validation 

From alignment and variant calls provided by Complete Genomics, SV breakpoints were mapped and 

junction sequence was assembled using public UCSC Genome browser. The assembled sequence 

was then submitted into Primer3 to engineer PCR primers to bridge the breakpoints. Resultant primers 

were then checked against BLAT as well as an internal algorithm for binding specificity. PCR reactions 

were then carried out on 25 ng of DNA using optimized conditions for each reaction. Products were 

checked via gel electrophoresis for specificity to expected size and uniqueness. If the product had 

multiple bands, the entire remaining sample would be run out then bands of interest excised and the 

DNA extracted using MinElute Gel Extraction Kit from Qiagen. Products with single bands were cleaned 

up and prepared for sequencing using the MinElute PCR Purification Kit (Qiagen). Samples were then 

sequenced at a core facility with 2 picomoles of the same primer used to create amplicon. Resultant 

sequences were then aligned to the expected sequence assembled from CGI results and mapped to 

chromosomes using BLAT at UCSC genome browser. 
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Cell culture 

Cells were grown in RPMI-1640 with HEPES, L-glutamine, and phenol red (cat # 22400-089), 

supplemented with 10% Fetal Bovine Serum, 1% antibiotic-antimycotic (cat # 15240-062), and 1% L-

glutamine (cat # 25-005-CI) in 5% CO2 at 37°C in the dark.  Transduced cells also had the appropriate 

concentration of puromycin in media for selection. 

LentiVirus infection 

Lentiviral vector plasmid for the long isoform of SHANK2 (NM_012309) was obtained commercially 

from GeneCopoeia (EX-H5274-Lv105). Empty vector control plasmid pLv105 was originally from 

GeneCopoeia. Creation of the virus media was accomplished using Lipofectamine 3000 ™ applied to 

293TN cells with packaging plasmid psPAX2, envelope plasmid pMD2.g, and the Lentiviral backbone 

plasmid containing the ORF for NM_012309 or empty vector.  Infectious viral media was pooled over 2 

days then filtered through 0.45µm nitrocellulose and combined with polybrene at 8 µg/mL media and 

applied to cells.  Following infection, transduced cells were selected with puromycin in line-dependent 

concentrations. 

Growth and proliferation assay using RT-CES 

Cells were plated in 96-well RTCES microelectronic sensor arrays (ACEA Biosciences, San Deigo, CA, 

USA). Density measurements were made every hour. Cell densities were normalized to 5 hours post-

plating. 

Cell viability assays 

Cells were plated in clear-bottomed, 96-well plates in 200 µL media and allowed to grow under normal 

conditions for either 4 or 7 days.  Before reading, 100 µL media was replaced with equal volume of 

CellTiter Glo ® reagent and read on a GloMax Multi-detection instrument (Promega). Arbitrary 

luminescence units were normalized to empty vector-transduced controls and results expressed as 

percentages of control levels from the same assay. 
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ATRA-induced differentiation 

Cells were plated in normal media at optimized densities for each parental line in 96-well plates and 

allowed 24-48 hours to firmly attach to plates. Media was then switched for low-serum media containing 

either 1% or 3% FBS and allowed 24 hours to equilibrate, after which it was replaced with low-serum 

media supplemented with varying concentrations of ATRA (all-trans-retinoic-acid, Sigma, R2625) or 

vehicle (DMSO) alone, in volume corresponding to the highest concentration of ATRA for each 

experiment. Plates were then left in normal growth conditions and protected from light. RA media was 

refreshed every 72 hours to prevent oxidation. Plates were placed in an IncuCyte ZOOM™ instrument 

to utilize live cell imaging. Each well was imaged every four hours and the “NeuroTrack” software 

module to quantify neurite outgrowth. 

Protein isolation and Western blotting 

Whole cell lysates were created by applying denaturing lysis buffer containing protease/phosphatase 

inhibitors (Cell Signaling Technology, 5872) to cells on ice and allowing lysis for 30 minutes. The total 

sample was sonicated for 5 seconds and spun at max speed in a microcentrifuge for 15 minutes at 4°C 

before collecting supernatant to clean tube. Quantification of protein was done using the Pierce BCA 

Protein Assay Kit (Thermo, 23227).  Protein was loaded on 4-12% Tris-Glycine gels, transferred to 

PVDF membrane, and probed with antibodies in 5% milk in TBST. Antibody stripping used Restore ™ 

Stripping buffer (Thermo, 21059). Detection of HRP-conjugated secondary antibodies used 

SuperSignal™ West Femto Maximum Sensitivity Substrate (Thermo, 34096). 
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