New Results
Revealing new therapeutic opportunities through drug target prediction via class imbalance-tolerant machine learning
View ORCID ProfileSiqi Liang, Haiyuan Yu
doi: https://doi.org/10.1101/572420
Siqi Liang
1Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, 14853, USA
2Weill Institute for Cell and Molecular Biology, Cornell University, New York, 14853, USA
Haiyuan Yu
1Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, 14853, USA
2Weill Institute for Cell and Molecular Biology, Cornell University, New York, 14853, USA

- Supplementary Figures[supplements/572420_file02.pdf]
- Supplementary Table[supplements/572420_file03.xlsx]
Posted March 09, 2019.
Revealing new therapeutic opportunities through drug target prediction via class imbalance-tolerant machine learning
Siqi Liang, Haiyuan Yu
bioRxiv 572420; doi: https://doi.org/10.1101/572420
Subject Area
Subject Areas
- Biochemistry (13864)
- Bioengineering (10567)
- Bioinformatics (33580)
- Biophysics (17308)
- Cancer Biology (14374)
- Cell Biology (20351)
- Clinical Trials (138)
- Developmental Biology (10969)
- Ecology (16198)
- Epidemiology (2067)
- Evolutionary Biology (20508)
- Genetics (13509)
- Genomics (18801)
- Immunology (13932)
- Microbiology (32465)
- Molecular Biology (13523)
- Neuroscience (70791)
- Paleontology (532)
- Pathology (2222)
- Pharmacology and Toxicology (3778)
- Physiology (5957)
- Plant Biology (12145)
- Synthetic Biology (3401)
- Systems Biology (8234)
- Zoology (1868)