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Summary: We describe a novel computational method for genotyping repeats using sequence 
graphs. This method addresses the long-standing need to accurately genotype medically 
important loci containing repeats adjacent to other variants or imperfect DNA repeats such as 
polyalanine repeats. Here we introduce a new version of our repeat genotyping software, 
ExpansionHunter, that uses this method to perform targeted genotyping of a broad class of such 
loci. 
 
Availability and implementation: ExpansionHunter is implemented in C++ and is available 
under the Apache License Version 2.0. The source code, documentation, and Linux/macOS 
binaries are available at https://github.com/Illumina/ExpansionHunter/. 
 
Contact: meberle@illumina.com 

Introduction 
 
Short tandem repeats (STRs) are ubiquitous throughout the human genome. Although our 
understanding of STR biology is far from complete, emerging evidence suggests that STRs play 
an important role in basic cellular processes (Hannan 2018; Gymrek et al. 2016). In addition, 
STR expansions are a major cause of over 20 severe neurological disorders including 
amyotrophic lateral sclerosis, Friedreich ataxia (FRDA), and Huntington's disease (HD). 
 
ExpansionHunter was the first computational method for genotyping STRs from short-read 
sequencing data capable of consistently genotyping repeats longer than the read length and, 
hence, detecting pathogenic repeat expansions (Dolzhenko et al. 2017). Since the initial release 
of ExpansionHunter, several other methods have been developed and were shown to 
accurately identify long (greater than read length) repeat expansions (Dashnow et al. 2018; 
Tang et al. 2017; Mousavi, Shleizer-Burko, and Gymrek 2018; Tankard et al. 2018). 
 
Current methods are not designed to handle complex loci that harbor multiple repeats. 
Important examples of such loci include the CAG repeat in the HTT gene that causes HD flanked 

by a CCG repeat, the GAA repeat in FXN that causes FRDA flanked by an adenine homopolymer, 

and the CAG repeat in ATXN8 that causes Spinocerebellar ataxia type 8 (SCA8) flanked by an 

ACT repeat. An even more extreme example is the CAGG repeat in the CNBP gene whose 
expansions cause Myotonic Dystrophy type 2 (DM2). This repeat is adjacent to polymorphic CA 
and CAGA repeats (Liquori et al. 2001) making it particularly difficult to accurately align reads to 
this locus. Another type of complex repeat is the polyalanine repeat which has been associated 
with at least nine disorders to date (Shoubridge and Gecz 2012). Polyalanine repeats consist of 
repetitions of �-amino acid codons GCA, GCC, GCG, or GCT (i.e. GCN). 
 
Clusters of variants can affect alignment and genotyping accuracy (Lincoln et al. 2019). Variants 
adjacent to low complexity polymorphic sequences can be additionally problematic because 
methods for variant discovery can output clusters of inconsistently represented or spurious 
variant calls in such genomic regions. This, in part, is due to the elevated error rates of such 
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regions in sequencing data (Benjamini and Speed 2012; Dolzhenko et al. 2017). One example 
is a single-nucleotide variant (SNV) adjacent to an adenine homopolymer in MSH2 that causes 
Lynch syndrome I (Froggatt et al. 1999). 
 
Here we present a new version (v3.0.0) of ExpansionHunter that was re-implemented to handle 
complex loci such as those described above. The implementation uses sequence graphs 
(Garrison et al. 2018; Paten et al. 2017; Dilthey et al. 2015) as a general and flexible model of 
each target locus. 
 

Implementation 
ExpansionHunter works on a predefined variant catalog containing genomic locations and the 
structure of a series of targeted loci. For each locus, the program extracts relevant reads 
(Dolzhenko et al. 2017) from a binary alignment/map (BAM) file (Li et al. 2009) and realigns 
them using a graph-based model representing the locus structure. The realigned reads are then 
used to genotype each variant at the locus (Figure 1). 
 
The locus structure is specified using a restricted subset of the regular expression syntax. For 
example, the HTT repeat region linked to HD can be defined by expression 
(CAG)*CAACAG(CCG)* that signifies that it harbors variable numbers of the CAG and CCG 
repeats separated by a CAACAG interruption (see supplementary materials); the FXN repeat 
region linked to the FRDA corresponds to expression (A)*(GAA)*; the ATXN8 repeat region 
linked to SCA8 corresponds to (CTA)*(CTG)*; the CNBP repeat region linked to DM2 consists 
of three adjacent repeats is defined by (CAGG)*(CAGA)*(CA)*; the MSH2 SNV adjacent to an 
adenine homopolymer that causes Lynch syndrome I corresponds to (A|T)(A)*. 
 
Additionally, the regular expressions are allowed to contain multi-allelic or “degenerate” base 
symbols that can be specified using the International Union of Pure and Applied Chemistry 
(IUPAC) notation (“Nomenclature for Incompletely Specified Bases in Nucleic Acid Sequences. 
Recommendations 1984. Nomenclature Committee of the International Union of Biochemistry 
(NC-IUB)” 1986). Degenerate bases make it possible to represent certain classes of imperfect 
DNA repeats where, for example, different bases may occur at the same position. Using this 
notation, polyalanine repeats can be encoded by the expression (GCN)* and polyglutamine 
repeats can be encoded by the expression (CAR)*. 
 
ExpansionHunter translates each regular expression into a sequence graph. Informally, a 
sequence graph consists of nodes that correspond to sequences and directed edges that define 
how these sequences can be connected together to assemble different alleles. 
We implemented the basic sequence graph functionality used by ExpansionHunter in the 
GraphTools C++ library (supplementary materials). One of the key features of the library is its 
support for single node loops in contrast to the traditional approaches that use fully acyclic 
graphs (Lee, Grasso, and Sharlow 2002). Single-node loops are the key to representing STRs 
and other sequences that can appear in any number of copies. 
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Genotyping is performed by analyzing the alignment paths associated with the presence or 
absence of each constituent allele. The repeats are genotyped as before (Dolzhenko et al. 
2017) and indels are genotyped using a straightforward Poisson-based model (supplementary 
materials). 
 
 

 
Figure 1: Overview of ExpansionHunter. (a) A locus definition is read from the variant catalog 
file. (b) Sequence graph is constructed according to its specification in the variant catalog. (c) 
Relevant reads are extracted from the input BAM file. (d) Reads are aligned to the graph. (e) 
Alignments are pieced together to genotype each variant. 
 
 

Results and discussion 
We applied the program to a simulated dataset containing a wide range of CAG and CCG 
repeat sizes at the HTT locus. As expected, the accuracy of ExpansionHunter was substantially 
higher when the reads were aligned to a sequence graph containing both repeats compared to 
when both repeats were analyzed independently. We observed similar improvement compared 
to other STR genotyping tools that were not designed to handle loci harboring multiple nearby 
STRs (Supplementary Figure S2). 
 
To demonstrate that ExpansionHunter can genotype degenerate DNA repeats, we analyzed a 
polyalanine repeat in PHOX2B gene in 150 healthy controls and one sample harboring a known 
pathogenic expansion. PHOX2B contains a polyalanine repeat of 20 codons that can expand to  
cause congenital central hypoventilation syndrome. Consistent with what is known about this 
repeat (Amiel et al. 2003), all but a few controls were genotyped 20/20. ExpansionHunter 
accurately genotyped the sole sample with the expansion as 20/27; the correctness of this 
genotype was confirmed by Sanger sequencing. ExpansionHunter also correctly detected the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2019. ; https://doi.org/10.1101/572545doi: bioRxiv preprint 

https://doi.org/10.1101/572545
http://creativecommons.org/licenses/by-nc-nd/4.0/


pathogenic SNV adjacent to an adenine homopolymer in the MSH2 gene in three WGS 
replicates of a sample obtained from SeraCare Life Sciences (see Supplementary Materials).  
 
In summary, we have developed a novel method that addresses the need for more accurate 
genotyping of complex loci. This method can genotype polyalanine repeats and resolve difficult 
regions containing repeats in close proximity to small variants and other repeats. A catalog of 
difficult regions is supplied with the software and can be extended by the user. We expect that 
the flexibility of the sequence graph framework now adopted in ExpansionHunter will enable a 
variety of novel variant calling applications. 
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