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Abstract

In precision oncology, genomic evidence is used to determine the optimal treatment for
each patient. However, identification of somatic mutations from genome sequencing
data is often technically difficult and functional significance of somatic mutations is
inconclusive in many cases. In this paper, to seek for an alternative approach, we tackle
the problem of predicting functional mutations from transcriptome sequencing data.
Focusing on SF3B1, a key splicing factor gene, we develop SF3B1ness score for
classifying functional mutation status using a combination of Naive Bayes classifier and
zero-inflated beta-binomial modeling (R package is available at
(https://github.com/friend1ws/SF3B1ness). Using 8,992 TCGA exome and RNA
sequencing data for evaluation, we show that the classifier based on SF3B1ness score is
able to (1) attain very high precision (>93%) and sensitivity (>95%), (2) rescue several
somatic mutations not identified by exome sequence analysis especially due to low
variant allele frequencies, and (3) successfully measure functional importance for
somatic mutation whose significance has been unknown. Furthermore, to demonstrate
that the SF3B1ness score is highly robust and can be extensible to the cohorts outside
training data, we performed a functional SF3B1 mutation screening on 51,577
additional transcriptome sequencing data. We have detected 135 samples with putative
SF3B1 functional mutations including those that are rarely registered in the somatic
mutation database (e.g., G664C, L747W, and R775G). Moreover, we could identify two
cases with SF3B1 mutations from normal tissues, implying that SF3B1ness score can be
used for detecting clonal hematopoiesis.

Introduction

Advances in high throughput sequencing technology are bringing about revolutions in
medicine. By sequencing each patient’s cancer genomes, clinicians can discover
appropriate treatment specifically targeted to the detected somatic variants. On the
other hand, somatic mutations profiled via genome sequencing is usually far from
perfect. It is still difficult to identify somatic mutations with complex forms [25, 27] and
low variant allele frequencies [21]. In addition, although a vast number of cancer
genome studies revealed a huge number of novel cancer-driving genes, the functional
significance of variant for each position is still uninvestigated even for established cancer
genes such as BRCA1/2 [2] and EGFR [11].
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Figure 1. Overview of the study. A, The process of evaluating SF3B1ness classifier and screening functional SF3B1
mutations. B, Illustration of SF3B1MUT associated alternative 3’SS and its corresponding normal splicing identified by
split-aligned short reads. C, An example of supporting read counts of alternative 3’SS (chr1:100477090-100480840) and
its corresponding normal splicing (chr1:100477090-100480857). Each point shows the counts of an individual. D, The
generative model of assumed in this paper. The counts of SF3B1MUT associated alternative 3’SS supporting reads are
conditionally independent given the SF3B1 mutation status.

Using RNA sequencing together with genome sequencing often help complementing
somatic mutation discovery and measuring the effect of a genomic mutation on
transcriptomes such as expression and splicing changes. Here, we would tackle the
problem of classifying ”functional” mutation status based on transcriptome using
statistical machine learning approaches.

In this paper, we would like to focus on SF3B1 gene, which encodes a core
component of the RNA splicing machinery. SF3B1 is recurrently mutated in blood
cancers [29] and other solid tumors [7,17]. The somatic mutations periodically cluster to
positions within C-terminal HEAT repeat domains (HDs) with several major hotspots
including p.R625, p.K666, p.K700 [20]. Although previous studies have clarified the
functional significance for a few prominent positions [1], and the other sites that are less
frequently but recurrently mutated are little investigated.

Figure 1A illustrates the outline of this study. We first develop a novel statistical
approach that can effectively capture the characteristics of splicing changes induced by
SF3B1 mutations using zero-inflated beta-binomial distribution naive Bayes classifier.
Then, applying the proposed method to TCGA transcriptome sequencing data, we fit
and evaluate the model on samples across 31 cancer types. Through that process, we
provide a novel measure, SF3B1ness score, that quantifies transcriptional abnormalities
caused by SF3B1 functional mutations in a unified way. Then, through the use of
SF3B1ness score on about 60,000 publicly available transcriptome sequencing data, we
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perform large scale screening of SF3B1 functional mutations.

Result

Method overview

It has been known that functional SF3B1 mutations generate hundreds to thousands of
genome-wide aberrant splicing events and these are mostly alternative 3’SS (splice site),
where one end of splicing junction is at the annotated splicing donor site and the other
end is distantly located from the annotated splicing acceptor site (see Figure 1B).
Therefore, we first collected the set of these SF3B1MUT associated alternative 3’SS
events from two previous studies [1, 4], and use the quantification of these events (the
numbers of short sequence reads spanning the target splicing junction [14,23]) as the
features for the classification problem. In addition, the count of the corresponding
normal splicing event for each alternative 3’SS is also used for measuring the ratio of
alternative 3’SS (see Material Method for detail). In the end, we could extract 710 pairs
of SF3B1MUT associated alternative 3’SS and corresponding normal splicing.

Calculations of splicing junction events require downloading and alignment of raw
sequencing data and thus needs considerable storage and computational cost. However,
there is an excellent resource, the recount2 [3], which provides already well-processed
transcriptome data including splicing junction counts for ≥ 70,000 samples from ≥
2,000 different studies including The Cancer Genome Atlas (TCGA) and The
Genotype-Tissue Expression (GTEx) project. Therefore, to quantify SF3B1MUT

associated alternative 3’SS, we just downloaded the splicing junction data from the
recount2 for each study and extracted those matching the SF3B1MUT associated
alternative 3’SS and their corresponding normal splicing.

For typical SF3B1MUT associated alternative 3’SS loci, aberrant read counts are
zeros in most SF3B1WT samples, whereas some samples have a decent amount of
aberrant read counts (see Figure 1C). Even though the ratios of aberrant read counts
significantly increase for many SF3B1MUT samples, still a certain number of samples
have zero counts. In fact, these excess zero-count situations cannot be not effectively
captured by common probabilistic distributions such as binomial distribution, and
zero-inflated models (mixtures of probability mass at zero and other distributions) have
been used in many biological data analysis such as single-cell transcriptome [10,19] and
microbiome [8, 18,26]. In this paper, we assume that the counts of SF3B1MUT

associated alternative 3’SS and corresponding normal splicing are generated by
zero-inflated beta-binomial distribution (see Material Method for detail).

For constructing the classifier on SF3B1 mutation status from alternative 3’SS count
data, we adopt naive Bayes classifier (see Figure 1D), The detailed procedure is as
follows (see Material Method for detail):

1. We divide the samples into SF3B1WT and SF3B1MUT groups. Then, for each
group and each SF3B1MUT associated alternative 3’SS, we estimate the
parameters of zero-inflated beta-binomial model.

2. Assuming the conditional independence among the SF3B1MUT associated
alternative 3’SS events, we calculate the posterior probabilities of SF3B1WT and
SF3B1MUT based on the parameters estimated above

3. By taking the difference of the log probabilities of SF3B1MUT, which we define as
”SF3B1ness” score, we predict the SF3B1 mutation status (positive if and only if
the SF3B1ness score is above a threshold).
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Application to TCGA data

To evaluate the effectiveness of SF3B1ness classifier, we applied the proposed approach
to TCGA data set. We selected the set of 8,992 primary cancer samples from 31 types
and determined the somatic mutation status for SF3B1 as described in the previous
study [23]. In this section, referring to past literature, we consider the SF3B1 hotspot
mutations as those occurring at E622, R625, N626, H662, K666, K700, G740, K741,
G742. Then, there are 63 samples with SF3B1 hotspot mutations in total. The cancer
types with frequent SF3B1 hotspot mutations are breast invasive carcinoma (BRCA, 14
/ 826), skin cutaneous melanoma (SKCM, 8 / 469), and uveal melanoma (UVM, 17 /
80). Besides, there are other cancer types with SF3B1 hotspot mutations albeit the
frequencies is low including bladder urothelial carcinoma, kidney renal clear cell
carcinoma, lung adenocarcinoma, prostate adenocarcinoma, and so on.

We divided 8,992 samples into two datasets and used one dataset (training data) for
fitting the parameters of SF3B1ness classifier and obtained the SF3B1ness score for
each sample in the other data set (test data). Then, we performed the same procedure
exchanging the training and test data. When training the parameters, samples with well
known SF3B1 hotspot are categorized as positive cases (zi = 1), and those without any
SF3B1 mutations are categorized as negative cases (zi = 0). Note that samples with
non-hotspot SF3B1 mutations are removed in the training phases because these
biological functions remain to be investigated and only used in test phases. Importantly,
we used samples from all the 31 cancer types together without any distinction.
Although the amount of expression of each SF3B1MUT associated alternative 3’SS
varied according to cancer types, we believe that our model is sufficiently robust to
these variations. The key to this robustness is that we take not only the absolute count
of SF3B1MUT associated alternative 3’SS but also the fraction to its normal splicing
into account via beta-binomial distribution. Furthermore, the adoption of zero-inflated
components makes the probabilistic model tolerant of other disturbing factors such as
outliers and mislabeling.

First, the mutation status could be very accurately predicted by the proposed
method. Most of the samples with high SF3B1ness score actually had SF3B1 hotspot
mutations (see Figure 2A and S1 Table). Among 63 samples with known SF3B1 hotspot
mutations, 60 samples had positive SF3B1ness score, indicating that the sensitivity of
SF3B1 score is more than 95%.

There were 13 samples with positive SF3B1 score even without hotspot SF3B1
mutations (see Table 1). Those samples are categorized into the following three classes.

1. Four samples had non-hotspot SF3B1 mutations (such as T663P, Q699E, R775L,
and D781E). Although many of them have been comparably rarely detected in
cancer genome studies, decent amounts of SF3B1ness score suggest that they have
similar functions to hotspot mutations on genome-wide splicing aberrations.

2. For other four samples, after manually investigating the exome and RNA
sequencing data, we could detect a number of short reads supporting SF3B1
hotspot somatic mutation even though the variant allele frequencies are very low
(1% − 10%). Therefore, even with low variant allele frequencies, the function of
SF3B1 somatic mutation can be detectable.

3. For the remaining five samples, we could not identify any SF3B1 putative
functional mutations after extensive manual investigations. Still, the profiles of
alternative 3’SS counts for these samples are very similar to those with hotspot
SF3B1 mutations (see Figure 2C), implying that there may be other genomic
mutations on the same pathway with SF3B1 concealed in these samples.
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Figure 2. The overview of SF3B1ness score evaluation on TCGA data. A, The relationships between SF3B1ness
scores and SF3B1 mutation status. Each bar shows each individual from TCGA dataset, and the color shows SF3B1
mutation status (hotspot are defined in the above). B, The relationships between SF3B1ness scores and amino-acids
positions for samples with SF3B1 mutations. The color shows the cancer types. C, The counts of SF3B1MUT associated
alternative 3’SS and its corresponding normal splicing junction for several characteristic samples. Each bar shows the loci
of SF3B1MUT associated alternative 3’SS. For loci with ≥ 200 supporting read counts in total, they are down-sampled to
200.
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Table 1. List of samples with high SF3B1ness score and without hotspot SF3B1 mutations.

Sample name Cancer type Score Remark

TCGA-55-7576 LUAD 3193.496 No SF3B1 mutation is identified after manual investigations.
(low variant allele frequency).

TCGA-E2-A10F BRCA 1495.878 D781E mutation is identified by usual exome data analysis.
TCGA-V4-A9EC UVM 972.768 T663P mutation is identified by usual exome data analysis.
TCGA-3H-AB3K MESO 935.228 No SF3B1 mutation is identified after manual investigations.
TCGA-XM-A8RI THYM 866.908 K700E mutation is identified after manual investigations.

(low variant allele frequency).
TCGA-05-4432 LUAD 586.704 No SF3B1 mutation is identified after manual investigations.
TCGA-75-5125 LUAD 190.175 K700E mutation is identified after manual investigations.

(low variant allele frequency).
TCGA-ZP-A9CV LIHC 186.524 No SF3B1 mutation is identified after manual investigations.
TCGA-NJ-A55O LUAD 153.664 R775L mutation is identified by usual exome data analysis.
TCGA-NJ-A4YQ LUAD 136.287 No SF3B1 mutation is identified after manual investigations.
TCGA-UY-A78N BLCA 130.962 Q699E mutation is identified by usual exome data analysis.
TCGA-EY-A2OM UCEC 38.213 No SF3B1 mutation is identified after manual investigations.
TCGA-WC-A87W UVM 21.388 R625H mutation is identified after manual investigations.

(low variant allele frequency).

The SF3B1 somatic mutations linked to high SF3B1ness scores are in the proximity
of known hotspots (see Figure 2B). Although this is anticipated by the marked
concentration of SF3B1 mutations and oncogenic functions thereof. Still, SF3B1ness
score discerned the amino acid positions into those with high (e.g., T663P, Q699E) from
those with low (e.g., I665F, V668I, G693) scores even among the proximity of hotspots.

Collectively, SF3B1ness score is helpful for measuring the effects of rare SF3B1
mutations as well as saving mutations misidentified because of some technical problems
such as low variant allele frequencies. Assuming that samples belonging to the first two
classes are true positives, SF3B1ness score has fairly high precision (93.15%) on the
functional SF3B1 mutation status prediction.

Screening of SF3B1 functional mutations from large
scale transcriptome resource

To evaluate the ability of SF3B1ness score on dataset not seen during training, we
performed further large scale screening of functional SF3B1 mutation from in total of
51,577 transcriptome data in the recount2 resource, where we removed data with small
sizes (with ≤ 100M bases). We first calculated SF3B1ness score just by downloading
splicing junction data (which is far more small in size than raw sequencing data). Then,
for the samples with high SF3B1ness scores, we downloaded their raw sequence data,
aligned to the reference genome and checked the SF3B1 mutation status.

First, we identified 154 samples with ≥ 50.0 SF3B1ness scores. Of those, we could
identify 140 samples having SF3B1 mutations registered in the COSMIC database
within C-terminal HEAT repeat domains (residues 604–801). When narrowing down the
124 samples with ≥ 300.0SF3B1ness scores, then 123 samples (123 / 124 = 0.992) had
COSMIC registered SF3B1 mutations, indicating that the SF3B1ness score is highly
robust and can be utilized to a broad type of transcriptome data without caring tissue
or cancer types (see Figure 3A and S2 Table).
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Figure 3. Overview of SF3B1 functional screening using the recount2. A, The relationships between SF3B1ness
scores and SF3B1 mutation status. Each bar shows each individual from recount2 dataset, and the color shows SF3B1
mutation status (COSMIC release v87 is used for the registered number of SF3B1 mutations). B, C, The counts of
SF3B1MUT associated alternative 3’SS and its corresponding normal splicing junction (B) and the alignment view around
SF3B1 K700E for the sample having high SF3B1ness score (SRR1374647) in GTEx study (C).

Many of the SF3B1 mutations found in high SF3B1ness score samples are hotspot
mutations (a large number of records registered in COSMIC database). However, there
are several substitutions (R625G, G664C, K741N, L747W, and R775G) with few records
in COSMIC, suggesting the functional importance of these rare mutations and awaiting
for further biological experiments.

Most samples with high SF3B1ness scores are found in cancer types where SF3B1
mutations are known to be prevalent, including AML (acute myeloid leukemia), CLL
(chronic lymphocytic leukemia), MDS (myelodysplastic syndrome), breast cancer,
melanoma, and uveal melanoma. However, we could also find SF3B1 mutations from
two normal samples; one is from a whole blood sample (SRR1374647,
GTEX-ZF28-0005-SM-4WKH3) from GTEx study [15] (see Figure 3B,C). The other is
from a bone sample from an old woman (SRR2305491) [6]. These facts indicate that
SF3B1 mutations induce splicing alterations in even normal tissues and SF3B1ness score
may be helpful for efficient detection of clonal hematopoiesis from individuals without
apparent hematological malignancies.

Discussion

In this paper, we could constitute the classifier, SF3B1ness score, to accurately identify
SF3B1 functional mutation status. Most classifiers for predicting some pathway
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activation are trained on specific cancer types or tissues. However, the SF3B1ness score
developed in this paper is highly robust so that users can easily apply it to their own
data without caring the properties target transcriptome sequencing data. This will
facilitate the application of SF3B1ness score for screening SF3B1 mutation status from
large scale transcriptome data. The robustness is partly because the target loci of
splicing changes by SF3B1 mutations are mostly common across cancer types and
tissues. However, at the same time, the delicately designed probabilistic model (e.g.,
adopting zero-inflation components) significantly contribute to this robustness.

There have been active researches on inhibiting SF3B1 as a therapeutic target [13],
and several studies demonstrated that mutations within SF3B1 impact on the
sensitivities to SF3B1 inhibitors [16,28], suggesting that the SF3B1ness proposed in this
study may be helpful to evaluate the activity of aberrant splicing, and future precision
medicine.

One may argue that directly investigating SF3B1 mutation by aligning
transcriptome sequencing data and checking the variant allele frequencies of known
hotspots is much easier and more straightforward. For that opinion, we would like to
insist that automatically detecting somatic mutation is still not trivial especially for
those with low variant allele frequencies and our approach can give another way to
confirm and rescue SF3B1 functional mutations. In addition, since raw sequencing data
usually includes information that is sufficient to identify individuals and we need to
follow ethically appropriate procedures (which is often time-consuming) to access and
manage raw sequencing data. On the other hand, several consortium and resource
distribute already pre-processed splicing junction data [3, 9, 12,15], where our approach
offers perfectly simple and accurate way for somatic mutation screening.

There are other splicing factor genes such as U2AF1, SRSF2, and several studies
show that SETD2, a histone methyltransferase, is also related to aberrant splicing [24].
In fact, the characteristics of splicing changes in these genes are largely different. For
SF3B1 mutation, completely novel splicing junctions are generated, whereas just the
ratios of already splicing junctions change by the mutation in other genes. Therefore, to
be able to constitute classifier for other genes related to splicing, the model developed in
this paper need to be significantly refined.

Materials and Methods

Collection of SF3B1MUT associated alternative 3’SS

Through a large number of studies [1, 4, 5, 22], the characteristics of SF3B1MUT

abnormal splicing are known as follows:

• These aberrant splicing events are mostly alternative 3’SS.

• Also, the new acceptor sites of SF3B1MUT associated alternative 3’SS events are
typically located within 18 to 50bp downstream from the authentic acceptor sites.

We have compiled SF3B1MUT specific abnormal splicing junctions from two previous
studies. The first set is 895 splicing junctions identified by comparing 35 SF3B1MUT

and 50 SF3B1WT samples from chronic lymphocytic leukemia, breast cancer, skin
melanoma and uveal melanoma [4]. The second set is 1,124 spicing junctions identified
by comparing 16 SF3B1MUT and 56 SF3B1WT samples from uveal melanoma [1]. We
gathered the splicing junctions from the two studies and removed splicing junctions
matching with annotated introns defined by Gencode Version 19 (http://hgdownload.
cse.ucsc.edu/goldenPath/hg19/database/wgEncodeGencodeBasicV19.txt.gz).
Furthermore, we request that one end of splicing junction is at the annotated splicing

8/12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2019. ; https://doi.org/10.1101/572834doi: bioRxiv preprint 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/wgEncodeGencodeBasicV19.txt.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/wgEncodeGencodeBasicV19.txt.gz
https://doi.org/10.1101/572834
http://creativecommons.org/licenses/by/4.0/


donor site and the other is located within 50bp upstream of canonical splicing acceptor
sites. Then, the remaining the coordinates of splicing junctions are converted to
GRCh38 based positions.

A generative model of splicing junction counts via zero-inflated
beta-binomial distribution

Let xi,j , yi,j denote the counts of j-th SF3B1MUT associated alternative 3’SS and the
corresponding normal splicing for the i-th sample (i = 1, 2, · · · , I, j = 1, 2, · · · , J).
Setting ni,j = xi,j + yi,j , then the probability function of xi,j is

f(xi,j |ni,j , αj , βj , πj) = (1− πj)g(xi,j |ni,j , αj , βj), (xi,j > 0),

f(xi,j |ni,j , αj , βj , πj) = πj + (1− πj)g(xi,j = 0|ni,j , αj , βj), (xi,j = 0)

where g is the beta-binomial density function,

g(xi,j |ni,j , αj , βj)

=
Γ(ni,j + 1)

Γ(xi,j + 1)Γ(ni,j − xi,j + 1)

Γ(xi,j + αj)Γ(ni,j − xi,j + βj)

Γ(ni,j + αj + βj)

Γ(αj + βj)

Γ(αj)Γ(βj)
.

The parameters αj , βj , πj are estimated by numerically maximizing the log-likelihood,

lj(αj , βj , πj) =
I∏

i=1

log f(xi,j |ni,j , αj , βj , πj).

A classification model for SF3B1 mutation status using naive
Bayes model

Suppose zi ∈ {0, 1} is the SF3B1 mutation status for the i-th sample (0: SF3B1WT, 1:
SF3B1MUT). First, for each SF3B1MUT associated alternative 3’SS, we estimate the
parameters of zero-inflated beta-binomial distribution for SF3B1WT and SF3B1MUT

groups. Let α̂0 = (α̂0
j )j=1,··· ,J , β̂0 = (β̂0

j )j=1,··· ,J , π̂0 = (π̂0
j )j=1,··· ,J denote the

parameters estimated for SF3B1WT groups and α̂1 = (α̂1
j )j=1,··· ,J , α̂1 = (α̂1

j )j=1,··· ,J ,

π̂1 = (π̂1
j )j=1,··· ,J the parameters for SF3B1MUT groups, respectively.

Then, by applying Bayes’ theorem, the conditional probabilities are

Pr(zi|xi,ni) ∝ Pr(zi)
J∏

j=1

Pr(xi,j |zi, ni,j).

Therefore,

Pr(zi = 0|xi,ni) ∝ γ0
J∏

j=1

f(xi,j |ni,j , α̂
0
j , β̂

0
j , π̂

0
j ),

Pr(zi = 1|xi,ni) ∝ (1− γ0)
J∏

j=1

f(xi,j |ni,j , α̂
1
j , β̂

1
j , π̂

1
j ),

where γ0 is the parameter corresponding to Pr(zi = 0) (in this paper, we adopt
non-informative value γ0 = 1/2). Finally, for each new sample, we evaluate the
logarithm of the ratio of conditional probabilities (SF3B1ness score)

log Pr(zi = 1|xi,ni)− log Pr(zi = 0|xi,ni).
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Supporting Information

S1 Table.

The SF3B1ness scores and mutation status for each TCGA samples.

S2 Table.

The SF3B1ness scores and mutation status for each recount2 samples with
high SF3B1ness scores. In the Mutation Info columns, the amino-acids changes, the
numbers of registered mutations in COSMIC database and variant allele frequencies are
concatenated by commas. Also, if there are multiple somatic SF3B1 mutations, these
strings are linked together by semi-colons.
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