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Abstract 

Introduction 

 Although Fourier-transform mass spectrometry has substantially improved our 

ability to detect lipids and other metabolites; the untargeted and accurate assignment of 

detected metabolites remains an unsolved problem in metabolomics. New assignment 

methods such as our SMIRFE algorithm can assign elemental molecular formula to 

observed spectral features in an untargeted manner without orthogonal information from 

tandem MS or chromatography. However, for many lipidomics applications, it is 

necessary to know at least the lipid category or class that is associated with a detected 

spectral feature in order to derive biochemical interpretation.  

 

Objectives 

 Our goal is to develop a method for robustly classifying elemental molecular 

formula assignments into lipid categories for application to SMIRFE-generated 

assignments.  

 

Results 

 Using machine learning, we developed a method that can predict lipid category 

and class from SMIRFE molecular formula assignments.  Our methods achieve high 

accuracy (>90%) and precision (>83%) for all eight of the lipid categories in the 

LIPIDMAPS database. Model performance was evaluated using sets of theoretical, 

data-derived, and artifactual molecular formulas. Our models were generalizable, 

applicable to real-world datasets, and very discriminating with most molecular formulas 
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classified to the “not lipid” category. Lipid categories with the highest classification 

propensities were glycerophospholipids and sphingolipids, matching the highest 

category prevalence in LIPIDMAPS. 

 

Conclusions 

 Our methods enable the lipid classification of untargeted molecular formula 

assignments generated by SMIRFE without orthogonal information, facilitating 

biochemical interpretation of highly untargeted lipidomics experiments. However, this 

lipid classification appears insufficient for validating single-spectrum assignments, but 

could be useful in cross-spectrum assignment validation. 

 

Introduction 

 Lipidomics is the subdiscipline of metabolomics concerned with the analytical 

investigation of the lipidome, the set of lipid metabolites and their roles within the 

metabolome. Unlike other categories of metabolites, that are largely grouped based on 

their structures, lipids are defined by their very low solubility in water and collectively 

represent a structurally and chemically diverse set of metabolites with various roles in 

normal and pathological cellular function. By virtue of this structural and chemical 

diversity, which often confers amphipathic properties, seemingly every life process 

involves lipids, including but not limited to: maintenance of cellular structure (Singer and 

Nicolson, 1972); membrane fluidity (Clamp et al., 1997) (Chen and Yu, 1994); 

intracellular , extracellular, and hormonal signaling (Zechner et al., 2012) (Morrison and 

Farmer, 2000); energy metabolism (J R Neely and Morgan, 1974) (Adeva-Andany et al., 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/572883doi: bioRxiv preprint 

https://doi.org/10.1101/572883
http://creativecommons.org/licenses/by-nc/4.0/


2018); and disease processes (De Pablo and De Cienfuegos, 2000) including cancer 

(Zhang and Du, 2012) (Ray and Roy, 2018). Thus, through lipidomics, more complete 

modeling of cellular metabolism  and a better understanding of physiological and 

pathological processes at the mechanistic level can be achieved (Lydic and Goo, 2018).  

 Although the potential benefit of lipidomics are enormous, the rigorous analytical 

investigation of the lipidome in real-world biological samples requires the reliable 

observation of lipid features in the samples as well as the accurate assignment of those 

features to a lipid structure and/or lipid class. This represents a significant bioanalytical 

chemistry problem due to the high structural diversity of lipids , their wide range of 

observed concentrations, and differences in lipid profiles between compartments and 

with respect to time (Horvath and Daum, 2013) (Aviram et al., 2016) (Fahy et al., 2005). 

Given its sensitivity to a wide range of chemical structures and low detection limits, 

mass spectrometry remains the most popular analytical technique for lipidomics 

analysis (Köfeler et al., 2012) . Traditionally, mass spectrometry has been used in 

conjunction with other analytical techniques such as gas chromatography 

(Quehenberger et al., 2011), liquid chromatography (Masoodi and Nicolaou, 2006), 

(Sandra et al., 2010) or TLC (Valdes‐Gonzalez et al., 2011) to provide additional 

orthogonal information that aid in the assignment of observed lipid features. Recent 

advances in mass spectrometry, namely Fourier transform mass spectrometry (FT-MS), 

have provided significant improvements in mass accuracy, mass resolution, and 

sensitivity (Eliuk and Makarov, 2015) . Together, these analytical improvements provide 

the capability to resolve distinct isotopologues with identical unit masses, which in turn 

enables natural abundance correction for multi-isotope labeling experiments (Carreer et 
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al., 2013; Moseley, 2010), improved assignment accuracy without orthogonal chemical 

information (Moseley et al., 2018), and the detection of compounds in the sub-

femtomolar range (Eyles and Kaltashov, 2004) (Dettmer et al., 2007) . These 

capabilities enable the use of stable isotope resolved metabolomics (SIRM) techniques 

in combination with traditional lipidomics methodologies (Li et al., 2013) that can provide 

richer information, allowing the elucidation of unknow metabolic pathways, the 

quantification of relative fluxes through connected metabolic pathways, and the 

identification of active metabolic pathways under various cellular conditions (Postle and 

Hunt, 2009) (Allen et al., 2015).  

 Although mass spectrometry, especially FT-MS, enables the robust detection of 

lipid features, the assignment of those features to lipids and by extension to lipid class, 

remains challenging. Although mass spectrometry enables the detection of previously 

unobserved lipids, existing spectral assignment methodologies such as LipidSearch 

(Peake et al., 2013) and PREMISE (Lane et al., 2009) rely heavily or exclusively on 

observed m/z values from MS1 to query databases of known metabolites for 

assignment. This can result in either a lack of assignments for these features or worse, 

incorrect assignments for these features which can cause large interpretive errors later 

in an analysis. The presence of spectral artifacts in FT-MS spectra can result in the 

consistent misassignment of artifactual features, leading to substantial errors in 

downstream analyses (Mitchell et al., 2018). Additionally, the potential for assignment 

bias from using these databases significantly hampers the potential for discovery 

(Moseley, 2013) – a stated goal of many untargeted lipidomics analyses. Although 

orthogonal information from chromatography or MS/MS can cross validate potential 
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assignments; the necessary combined analytical setups are more complex, generate 

additional information that must be processed, require larger amounts of sample 

(Chekmeneva et al., 2017) , are incompatible with direct infusion experiments, and can 

still suffer from assignment bias when using fragmentation or retention time annotated 

databases. The incompleteness of metabolite and lipid databases (Mitchell et al., 2014) 

(Schrimpe-Rutledge et al., 2016) is a major source of assignment error that cannot be 

easily overcome through additional orthogonal information.  

Since orthogonal chromatographic information is not a panacea, advances in FT-

MS assignment techniques and improvements in electrospray ionization have made 

direct-infusion mass spectrometry an increasingly popular analytical setup for both 

metabolomics and lipidomics. Using assignment techniques such as our in-house 

SMIRFE algorithm (Moseley et al., 2018) (Mitchell et al., 2019), elemental molecular 

formulae can be robustly assigned to observed spectral features without information 

from chromatography or MS/MS and without querying existing databases of metabolite 

and lipid structures. This assignment methodology is ideally suited for untargeted 

metabolomics and lipidomics workflows, with the molecular formula assignments useful 

for both biomarker characterization and relative metabolic flux analysis after natural 

abundance correction (Moseley, 2010) (Carreer et al., 2013).  Furthermore, this 

assignment methodology is resilient against misassignment due to common artifacts in 

FT-MS spectra. However, many lipidomics experiments are concerned with changes at 

the lipid class level, which neither SMIRFE molecular formula assignments nor 

elemental analysis by other methods like inductively coupled plasma mass spectrometry 

directly provide.  
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 Lipid classes are sets of lipids that share certain chemical structure features. 

When the chemical structure of a lipid feature is known, either through database lookup 

or other analytical approaches, classification of that structure into a lipid class is 

straightforward. Automated tools such as ClassyFire (Djoumbou Feunang et al., 2016)  

use machine learning methods to automatically assign lipid class (and more generally 

metabolite class) based on the input structures; however, structural information cannot 

be directly acquired through elemental formula assignment methods.  Although 

detection of potential lipid features can be achieved using ratios of heteroatoms 

(Brockman et al., 2018) , the classification of molecular formulae into specific lipid 

classes remains an unsolved problem that can prevent the effective biochemical 

interpretation of SMIRFE-generated formulas derived from class-level lipidomics 

analyses.  

 Manually constructing rules that can map elemental formulae to lipid classes is a 

daunting proposition and would result in rules that are fragile and likely incomplete and 

incorrect. Fortunately, the prediction of lipid class from compound properties derivable 

from MS1 spectra, namely their elemental molecular formula, can be stated as a 

supervised machine learning problem. With supervised machine learning, models are 

trained that predict a ‘label’ (e.g. lipid class) from a set of features (a feature vector) 

describing an input (e.g. elemental components of a molecular formula). These models 

are not constructed by hand, but rather, example inputs with known labels are used to 

‘train’ a model. Using a large lipid database such as LIPIDMAPS (Sud et al., 2007)  that 

contains many examples of known lipids and their associated lipid classification, a set of 
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generalized predictive models can be constructed via training to infer rules for predicting 

the correct lipid classes from elemental molecular formulae.    

 

A Chemically-Descriptive Feature Vector and an Appropriate Machine Learning 

Algorithm for Lipid Classification 

 The selection of both a chemically-descriptive feature vector and an appropriate 

machine learning algorithm will heavily influence both the performance and applicability 

of the resultant lipid class predictive models. Feature vectors must be sufficiently 

descriptive so that the algorithm has sufficient information to differentiate between 

inputs with different lipid class labels, but must also contain information that can be 

readily and accurately acquired through direct infusion FT-MS MS1 experiments. As 

such, structural information, which is the most informative, cannot be included in our 

feature vectors. Limiting our feature vectors to only information that can be acquired 

routinely from MS1, namely elemental molecular formula assignments provided by our 

SMIRFE algorithm, still provides substantial chemical information, including, the number 

of atoms for each element present in the formula and the theoretical monoisotopic 

mass.  

Random Forest (Breiman, 2001) has been successfully applied to many 

metabolomics problems (Chen et al., 2013) (Wang‐Sattler et al., 2012)  and has several 

properties, which makes it an ideal machine learning method for this use-case. First, the 

classification of inputs into lipid classes is a highly hierarchical problem, for which 

Random Forest provides excellent performance. Second, a Random Forest of decision 

trees excels at learning classification rules based on discrete data like elemental atom 
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counts.  Third, the bagging process intrinsic to the Random Forest algorithm provides 

protection against overfitting and enables the direct measurement of classifier accuracy 

similar to explicit cross-validation (Svetnik et al., 2003) . Fourth, bagging and the 

construction of many independent binary classifiers makes unbalanced training 

datasets, where each label is not equally represented in the training data, less 

problematic.  This last property is especially important, since a training dataset based 

on LIPIDMAPS will be highly unbalanced with respect to the different lipid classes (see 

Table 1).  

 

Materials and Methods  

Structure of Chemically-Descriptive Feature Vectors 

 

Figure 1 – Example Feature Vector 

 

Figure 1: Example construction of a feature vector for the EMF C16H32O2, 

corresponding to palmitic acid. In a real-world application, the EMF would be provided 

from an assignment method such as SMIRFE and the compound it represents may not 

be known. The first step in constructing the feature vector is to calculate the theoretical 

monoisotopic mass for that EMF. Calculating the theoretical mass for an EMF rather 
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than relying upon the observed mass for the corresponding spectral feature, eliminates 

the potential confound of mass error at the classification step. Calculating and using the 

monoisotopic mass is necessary so that isotopologues of the same EMF can be 

classified using the same classifiers. In the second step, the number of hydrogens 

missing in the formula due to unsaturation is calculated. Finally, the monoisotopic mass, 

the number of missing hydrogens and the EMF are used to construct the feature vector. 

The coloring and bolding of the numbers in the example feature vector reflect the 

sources of these values.  

 

As illustrated in Figure 1, the feature vector, based on a given molecular formula, 

contains an atom count for each CHONPS element, the sum of atom counts for other 

elements, and the theoretical monoisotopic mass and individual decimal places from 

this mass.  To ensure that all molecular weights for all entries were comparable, every 

entry had its theoretical monoisotopic molecular mass re-calculated using isotope 

molecular masses from NIST (Wieser et al., 2013) (Berglund and Wieser, 2011) .   Each 

element atom count is an integer, but for different elements the expected atom count 

range can vary significantly. For biological lipids in general, up to 300 hydrogen atoms 

could be expected, but only a few sulfur or phosphorous atoms are expected.  The 

theoretical monoisotopic mass is a floating-point number between zero and a few 

thousand daltons, while each digit will be represented as an integer between 0 and 9.  

As a result, each feature in our feature vector will be on a different scale. Although 

these could be normalized to remedy the differences in scale, which is a requirement for 
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some machine learning algorithms, the Random Forest algorithm does not have this 

limitation.  

 

Derivation and Organization of Training Datasets 

 In addition to the selection of proper feature vectors and the selection of an 

appropriate machine learning algorithm, the quality of a machine learning model 

depends heavily on the quality of the training data from which the model is constructed. 

Training datasets should be large, contain examples of both true positives and true 

negatives, and cover most of the expected feature space. Additionally, training data 

must be organized in the appropriate manner.  In this case, the training data should 

have the training inputs mapped to both high-level lipid categories (e.g. glycerolipid, 

phospholipid, etc.) and further subdivided into more specific “main classes” (e.g. 

monoradylglycerols, eicosanoids, secosteroids, etc.).  

 The LIPIDMAPS database is the largest lipid-specific repository of metabolite 

structures and every entry in LIPIDMAPS is assigned to both a high-level lipid category 

and a lower-level ee. There are 7 lipid categories, which are further subdivided into 79 

distinct classes.  Each entry represents either an observed lipid or a predicted lipid and 

contains an elemental formula for that lipid and its assigned lipid category and lipid 

class. Therefore, entries from LIPID MAPS are sources of true positives for our training 

dataset. LIPID MAPS is also subdivided into two databases: the LIPID MAPS Structure 

Database (LMSD) and the LIPID MAPS In-Silico Structure Database (LMISSD). The 

LMSD contains both manually verified and computationally generated lipids and is freely 

available for download, while the LMISSD is completely computationally generated 
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lipids. Unlike the LMSD, the LMISSD is not directly downloadable and a web scraper 

written in R (Ihaka and Gentleman, 1996)  using the RSelenium package (Harrison, 

2016)  was used to extract every LMISSD entry with its lipid category, lipid class, and 

molecular formula.   We downloaded the LMSD in September, 2018, which contained 

42,004 entries.  We webscraped the LMISSD in September, 2018, obtaining 1,131,106 

entries. 

 However, true positives are only one half of a training dataset.  True negatives 

are also needed for the construction of robust models. In this case, a true negative is a 

biological formula that is not a lipid. The human metabolome database (HMDB) (Wishart 

et al., 2012)  contains many examples of biological formulas of known class and is 

freely downloadable. By filtering out and removing known lipids from the HMDB, a set of 

false negatives were constructed. These entries, of course, do not have a lipid category 

or lipid class assigned to them, so an extra category and class called ‘non_lipid’ was 

assigned to these entries. We downloaded version 4.0 of the HMDB on September, 

2018, which contained 114,089 entries with 22,657 entries being non-lipids. 

 Since in-silico generated lipids may not necessarily exist in biological systems, it 

is prudent to construct two example training datasets: HMDB non_lipids + LMSD 

(referred to as LMSD training set) and HMDB non_lipids + LMSD + LMISSD (referred to 

as LMISSD training set). Since isomers of lipids can have the same molecular formula 

but have a different structure that can even belong to different lipid categories and lipid 

classes, each training dataset was deduplicated by mapping each formula to all 

observed lipid categories and classes for each formula. A large portion of the entries in 

both the LMSD and LMISSD are isomers of other entries of the same lipid class and 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/572883doi: bioRxiv preprint 

https://doi.org/10.1101/572883
http://creativecommons.org/licenses/by-nc/4.0/


category. The final LMSD + HMDB non_lipid training dataset resulted in 16,215 unique 

entries as compared to 30,692 for the LMSD + LMISSD + HMDB non_lipid training 

dataset.  

 

HMDB-Derived Molecular Formula Convex Hull Construction 

 From the set of HMDB formulas composed only of CHONPS elements and with a 

molecular weight below 1600 m/z, a convex hull was constructed and enumerated to 

generate theoretical metabolite formulae of biological origin. In this formulation, each 

molecular formula from the HMDB represents a point in a six-dimensional space (each 

dimension representing the number of a CHONPS element present in the formula) 

where each point has integer coordinates corresponding to the number of each element 

present. The convex hull around these points was constructed using the Python 

implementation of the qhull algorithm (Barber and Huhdanpaa, 1995).  All possible 

points within the convex shape were then enumerated to generate all CHONPS-specific 

molecular formulae within the convex hull. 

 

Experimentally-Derived Molecular Formulae from Human Lung Cancer Samples  

 Paired cancer and non-cancer tissue samples were acquired from eighty-six 

patients with suspected resectable stage I or IIa primary non-small cell lung cancer 

(NSCLC). Specimens were obtained primarily using wedge resection and all specimens 

were harvested within 5 minutes after pulmonary vein clamping to minimize ischemia in 

the resected tissues. Immediately after resection, the tumor was transected and 

sections of cancerous tissue and surrounding non-cancer tissue at least 5 cm away 
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from the tumor were immediately flash frozen in liquid nitrogen and stored at <80°C. 

On-site pathologists confirmed the diagnosis and cancer-free margins on parallel tissue 

samples. All samples were collected under a University of Louisville approved Internal 

Review Board protocol and written informed consent was obtained from all subjects 

prior to inclusion in the study. The frozen samples were then prepared and analyzed 

using two Thermo Orbitrap Fusion instruments interfaced to an Advion Nanomate 

nanoelectrospray source. Additional details on sample preparation and mass 

spectrometric analysis are included in supplemental materials.  

MS1 spectra were acquired for each sample using direct infusion. These MS1 

spectra were then assigned using our in-house SMIRFE assignment tool which assigns 

spectral features without a database of expected molecular formulas corresponding to 

metabolites. Instead, SMIRFE generates an exhaustive list of expected molecular 

formulas which can be queried using a peak’s observed m/z with a mass tolerance 

determined by the digital resolution of the instrument, which is approximately 1ppm for 

the Fusion instrument. SMIRFE uses patterns in the intensity ratios of suspected 

isotopologues of the same elemental molecular formula and how these patterns 

compare to predicted intensity ratios based on isotope natural abundances. 

Assignments were generated for 192 samples up to 1600 m/z and SMIRFE assigned 

127,338 unique formulas.  

Monolithic Classifier Construction 

Initially a single, monolithic random forest classifier was constructed for the 

simultaneous classification of all lipid categories and classes.  This construction was 

done using the random forest implementation from sklearn (Pedregosa et al., 2011)  
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with default hyperparameters except for the number of decision trees, which were 

varied from the default of  10 trees to 500 trees.  

Hierarchical Classifier Construction and Organization 

Figure 2: Organization of Hierarchical and Monolithic Models 

 

 

Figure 2: Organization of Hierarchical and Monolithic Models - In a monolithic 

organization there exists one model for classifying feature vectors into lipid categories 

and another model for lipid classes (Panel A). This organization is simpler with fewer 

model to train compared to the hierarchical organization of models (Panel B). In the 

hierarchical organization there are more models total but the class models are 

organized under their respective category model.  

 

Using the monolithic organization, a single model exists for lipid categories and a 

second model exists for lipid classes (Panel A). Each query feature vector is processed 

by both models to produce category and class labels and each model can be used 
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independently. While conceptually simple and easier to implement, the monolithic 

organization suffers from relatively poor performance.  

An alternative approach is a hierarchy of models in which category and class 

models are combined (Panel B). Each class and category model is its own Random 

Forest model. This organization has several distinct advantages over the monolithic 

implementation. First, the hierarchal organization enables the simplification of each 

decision boundary that each model must learn and each model can select its optimal 

set of features for drawing that boundary. Second, using category classifiers to filter 

what feature vectors should be passed to lower level class models effectively results in 

machine learning models feeding their results into other machine learning models. This 

technique is employed in deep learning to construct robust and powerful classifiers for 

complicated classification problems. Third and finally, collections of relatively weak 

classifiers working together often outperform monolithic classifiers. This observation is 

also well-known in the machine learning field (Polikar, 2012) and is the central 

motivating concept behind ensemble machine learning algorithms such as Random 

Forest.  

 These advantages come at the cost of additional manual overhead to segment 

and organize the training datasets appropriately and additional computational overhead 

to construct and train multiple models. This cost is largely mitigated by the fact that 

models need to be trained only once (or very rarely) and can then be reused, effectively 

amortizing the cost of building the models and using preconstructed models for 

classification is computationally cheap. For all models, the Random Forest 
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implementation from the Python sklearn package (Pedregosa et al., 2011)  was used 

with default hyperparameters except for the number of trees which was set to 500. 

Evaluation of Lipid Classification Performance 

 The performance of any machine learning model can be evaluated using a 

variety of metrics; however, rarely does a single metric fully reflect the goodness of any 

model in all use cases. For example, classifiers with high overall accuracy for the whole 

training set may classify certain labels very poorly which may not be obvious from a 

global accuracy metric. This is especially true for unbalanced training datasets, where 

conservative models will have high accuracy but make very few classifications. For this 

use-case, the chemical characterization of direct infusion MS1-based lipidomics 

experiments, models that perform well for all lipid labels are obviously desirable, but 

more importantly, high specificity is desired. Models that generate many incorrect 

assignments will, at the very least, become burdensome to utilize effectively, and at 

worst, could lead to incorrect interpretation of results. Therefore, highly accurate and 

highly precise models are desirable even at the cost of missing some true positive 

classifications.  

 To evaluate the accuracy for the Random Forest models, we used the out-of-bag 

training accuracy. While not strictly equivalent to explicit cross-validation, the accuracy 

metric provided by out-of-bag training accuracy is a sufficient proxy, even though for 

unbalanced datasets such as ours, the out-of-bag training accuracy underestimates the 

error rate (Janitza and Hornung, 2018); however, from our own experience, this 

underestimation is not significant. For precision, the classic definition of precision can 

be applied for sets of inputs on known label and their model-generated labeling. Models 
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that are both highly accurate and highly precise are unlikely to generate false 

assignments and are suitable for our task.  

 

Results 

Monolithic Classifier Performance on Training Datasets 

 Using the LMSD + HMDB_non_lipid dataset, the performance of a monolithic 

classifier for lipid category and lipid class was tested. Even with 500 trees, the 

monolithic Random Forest models were only able to achieve an out-of-bag accuracy of 

74.9% for lipid category and 87.3% for lipid class. Including the LMISSD resulted in an 

out-of-bag accuracy of 83.1% for lipid categories and 80.1% for lipid class. In both 

datasets, the presence of a large number of non-lipid entries inflates the lipid class 

accuracy as all non-lipid entries map to the non-lipid class. Although monolithic 

classifiers may have the theoretical advantage of being simpler to implement, train, and 

deploy, their usefulness is limited by their relatively poor classification performance.  

 

Multi-Classifier Performance on Training Datasets 

 For both training datasets (LMSD + HMDB_non_lipid and LMSD + LMISSD + 

HMDB_non_lipid), the out-of-bag accuracy and precision for each lipid category are 

shown in Table 1A, while the class level results are shown in Supplemental Table 1. For 

all categories, the LMSD + HMDB_non_lipid trained models achieved high precision 

and high accuracy for all lipid categories. Classification performance for lipid class 

varies between classes but is in general excellent for classes with enough examples. 

The LMISSD-trained models achieved similar precision and accuracy for all categories 
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(Table 1B) and classes (Supplemental Table 2). Although individually high accuracy or 

high precision would not necessarily indicate a well-trained model, the combination of 

high accuracy and precision across the models implies that the combined classification 

performance is robust and can be effectively applied to experimentally-derived 

molecular formulae.  

Table 1A: LMSD + HMDB_non_Lipid Model Performance (Category) 

LMSD + HMDB_non_Lipid Model Performance (Category) 

Category Precision 
Out of Bag 
Accuracy 

Number of 
Examples 

Fatty Acyls [FA]  0.841 0.901 2031 
Glycerolipids [GL]  0.996 0.995 532 

Glycerophospholipids [GP]  0.995 0.996 1886 
Polyketides [PK]  0.767 0.885 1376 

Prenol Lipids [PR]  0.989 0.971 473 
Saccharolipids [SL]  1.000 0.998 102 
Sphingolipids [SP]  0.999 0.993 1404 
Sterol Lipids [ST]  0.934 0.972 824 

not_lipid  0.928 0.799 7587 
 

Table 1B: LMSD + LMISSD + HMDB_non_Lipid Model Performance (Category) 

LMSD + LMISSD + HMDB_non_Lipid Model Performance (Category) 

Category Precision 
Out of Bag 
Accuracy 

Number of 
Examples 

Fatty Acyls [FA]  0.838 0.939 2031 
Glycerolipids [GL]  0.996 0.993 2715 

Glycerophospholipids [GP]  0.979 0.980 9766 
Polyketides [PK]  0.773 0.934 1376 

Prenol Lipids [PR]  0.989 0.983 473 
Saccharolipids [SL]  1.000 0.999 102 
Sphingolipids [SP]  0.976 0.976 3089 
Sterol Lipids [ST]  0.931 0.983 824 

not_lipid  0.930 0.882 7587 
 

Table 1A and 1B Caption 
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The accuracy and precision of category-level models trained on the LMSD + 

HMDB_non_lipid dataset demonstrates excellent accuracy on all classes and excellent 

precision for all classes apart from polyketides (76.7%). The polyketides represent a 

very diverse set of structures compared to other lipid classes which explains this 

discrepancy. The number of examples of each category highlights the unbalanced 

nature of this dataset and motivated the use of Random Forest for these models. Each 

model was trained as a one-class against all model (i.e. the Fatty Acyl [FA] model was 

trained using the set of known Fatty Acyls as true positives and all other examples as 

true negatives). Inclusion of the LMISSD provided no additional examples of Fatty 

Acyls, Polyketides, Saccharolipids, or Sterol Lipids and had minimal effect on the 

precision and accuracy of the models.  

 

Multi-Classifier Performance on Theoretical Molecular Formulae  

 Brute force enumeration and testing of all points within the convex hull 

constructed around all CHONPS-only molecular formulae in the HMDB identified 

110,857,519 formulae. While a brute force approach was computationally expensive, 

requiring several thousand CPU-core hours of time, it was necessary due to memory 

constraints with more complex methods. However, classification of the resulting convex 

hull took approximately 10 CPU-core hours. Calculations were performed on a quad-

socket system with four E7-4820v4 CPUs (10 cores, 20 threads each) clocked at 2.00 

Ghz and 1TB of RAM clocked at 2400MHz. Classifying these formulae with the LMSD 

and LMISSD models resulted in the majority of formulas assigned to either the non_lipid 

category or to no category at all. Results for each category are summarized in Table 2. 
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The LMISSD models predict 4 of the 7 categories more frequently than the LMSD 

models but the trend in predicted categories were similar. Given the number of formulas 

in the convex hull that do not correspond to ‘real’ metabolite formulas, a high 

percentage of non_lipid or no classification formulas is expected if our models are highly 

discriminating. 

 

Table 2A: LMSD + HMDB_non_lipid Model Performance for Convex Hull 

(Category) 

LMSD + HMDB_non_lipid Model Performance for Convex Hull (Category) 
Category Predictions % of Hull Formulas 

Fatty Acyls [FA]  475,516 0.429 
Glycerolipids [GL]  8,205  0.007 

Glycerophospholipids [GP]  1,145,418 1.033 
Polyketides [PK]  84,333 0.076 

Prenol Lipids [PR]  18,684 0.016 
Saccharolipids [SL]  6,708 0.006 
Sphingolipids [SP]  7,494,579 6.761 
Sterol Lipids [ST]  18,643 0.017 

not_lipid  74,621,680 67.31 
no category 29,202,459 26.34 

 

Table 2B: LMSD + LMISSD +HMDB_non_lipid Model Performance for Convex Hull 

(Category) 

LMSD + LMISSD +HMDB_non_lipid Model Performance for Convex Hull 
(Category) 

Category Predictions % of Hull Formulas 
Fatty Acyls [FA]  393,314 0.354 

Glycerolipids [GL]  56,116 0.051  
Glycerophospholipids [GP]  1,735,925 1.566 

Polyketides [PK]  118,968 0.107 
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Prenol Lipids [PR]  15,881 0.014 
Saccharolipids [SL]  2,795 0.002 
Sphingolipids [SP]  12,568,226 11.34 
Sterol Lipids [ST]  15,670 0.014 

not_lipid  73,562,707 66.36 
no category 27808607 25.08 

 

Tables 2A and 2B Caption 

 The formulas within the convex hull surrounded by the HMDB metabolites 

represent a very large set of plausible metabolites formulas. Lipid categories were 

predicted for every formula within the hull. For all categories, more formulas were 

predicted for each category than existed in the training dataset, indicating that the 

models have generalized beyond the training dataset. The extent of this generalization 

varied depending on the training dataset. For example, saccharolipids (the category 

with the smallest number of examples in the training dataset) was predicted more 

frequently in the LMSD trained models than in the LMISSD models, while sphingolipids 

were more frequently predicted in the LMISSD trained models than in the LMSD trained 

models. Although the distribution of predicted lipid categories varies slightly between the 

two sets of models, the overall trends are comparable.  For example, sphingolipids were 

the highest predicted lipid category from the convex hull dataset by both sets of models. 

 

Multi-Classifier Performance on Experimentally-Observed Molecular Formulae 

 The distribution of the assigned lipid categories on molecular formulae 

enumerated from a human lung cancer FT-MS dataset is shown in Table 3A for the 

LMSD based classifier. SMIRFE generates many possible assignments for each peak 

at higher m/z as the number of possible formulas increases dramatically with increasing 
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m/z. As a result, a relatively small percentage of formulae are assigned to a lipid 

category but many peaks have at least one formula that was assigned to a lipid 

category. For the LMSD models, the ability to predict lipid category and class drops 

substantially after about 1200 m/z. This is due to the low number of entries in the LMSD 

at higher m/z.  

  When the masses of the peaks are shifted by +21 m/z to mimic a gross 

miscalibration error, the number of SMIRFE assignments is increased, from 127,338 to 

131,690 total formulas and the number of predicted lipids increases as well from 32,688 

to 34,755 (Tables 3A and 3B). This result implies that the lipid classifier cannot be used 

alone to screen out all bad assignments when lipids are expected, instead other 

orthogonal data must be used to verify the quality of the assignments and select the 

correct assignments.   

 

Table 3A: LMSD + HMDB_non_lipid Model Performance for Unshifted 
Assignments 
 

LMSD + HMDB_non_lipid Model Performance for Unshifted Assignments 

Category Predictions % of Assigned 
Formulas 

Fatty Acyls [FA]  639 0.502 
Glycerolipids [GL]  795 0.624 

Glycerophospholipids [GP]  8062 6.331 
Polyketides [PK]  28 0.022 

Prenol Lipids [PR]  1054 0.827 
Saccharolipids [SL]  166 0.130 
Sphingolipids [SP]  21586 16.952 
Sterol Lipids [ST]  358 0.281 

not_lipid  54389 42.71 
no category 40683 31.95 
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Table 3B: LMSD + HMDB_non_lipid Model Performance for Shifted Assignments 
 

LMSD + HMDB_non_lipid Model Performance for Shifted Assignments 

Category Predictions % of Assigned 
Formulas 

Fatty Acyls [FA] 258 0.1951 
Glycerolipids [GL] 923 0.7001 

Glycerophospholipids [GP] 9517 7.227 
Polyketides [PK] 37 0.0281 

Prenol Lipids [PR] 1160 0.8808 
Saccharolipids [SL] 233 0.1769 
Sphingolipids [SP] 22370 16.99 
Sterol Lipids [ST] 257 0.1952 

not_lipid 51863 39.38 
no category 45663 34.67 

 

Table 3A and 3B 

 SMIRFE assignments were generated for the NSCLC dataset described in 

supplemental material. SMIRFE assignments are generated in an untargeted manner 

without using a database of known lipids. For the peak masses across all peaklists, 

127,338 total formulas were assigned and then classified. 32,688 total lipid category 

classifications were made with the most commonly assigned categories being 

glycerophospholipids and sphingolipids. A similar result was observed in the convex hull 

results as well, potentially indicating that this is an artifact of the classification method or 

possibly that these lipid categories are much more diverse than other categories. When 

each peak was shifted by 21 m/z, roughly 3% more formulas were assigned and 6% 

more lipids were classified. This small relative increase in SMIRFE assignments is likely 

due to the increased search space density with a 21 m/z shift.  More importantly, the 
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large number of artifactual assignments reflects the necessity of high-quality data prior 

to classification. Methods that can predict high-quality assignments correctly are not 

necessarily protected from the effects of low-quality spectral data that can cause 

misassignment.  

 

Cross-Sample Assignment Correspondence Improves Assignment Quality 

 Limits in mass resolution and intensity resolution and the immense size of the 

search space considered by SMIRFE at high masses leads to ambiguous assignments 

for many peaks. When mass error is present, ambiguous and incorrect assignments can 

be generated. However, the correct assignment for a peak should be assigned more 

consistently for a consistently observed feature in the dataset. Therefore, how well an 

assignment corresponds across samples in a dataset is a potential avenue for selecting 

high quality assignments. Figure C shows histograms of assignment correspondence 

for elemental molecular formulas derived the spectra of the lung cancer dataset. Much 

higher correspondence is observed in the unshifted assignments vs the shifted 

assignments and the number of shifted high-correspondence assignments are fewer at 

lower m/z.  
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Figure 3: Cross-Sample Correspondence Identifies High Quality Assignments - 

Correct assignments are expected to occur more consistently within a set of samples 

than incorrect assignments. As shown in Panel A, below 400 m/z, very few assignments 

are made in the shifted spectra and very few of the assignments correspond across an 

appreciable number of spectra (i.e. the vast majority of the first bin represents single 

spectra assignments). As m/z increases (Panels B-D), shifted spectra have more 

assignments and by chance some of these assignments correspond in multiple 

samples. However, at up to 1200 m/z, there are clearly more well corresponding 

formulas in the unshifted assignments than in the shifted assignments. These results 
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imply that assignment correspondence can be used to select correct assignments up to 

a given mass cutoff. In this dataset, this appears to be less than 1200 m/z. 

 

Discussion 

Classifier Organization and Performance  

 As mentioned previously, a monolithic, multi-lipid-class predictive model failed to 

achieve top performance for the task of classifying assigned molecular formulas into 

lipid categories and classes.  We hypothesize that this is due to the inability of a single 

classifier to represent all these boundaries completely and accurately. This single 

classifier must not only learn how to separate lipids from non-lipids, but it must also 

subdivide the lipid feature space into discrete spaces representing each category and 

further subdivide these category spaces into class spaces. Much of this subdivision can 

be done explicitly during training. For example, the diacylglycerols are a sub-class of the 

larger category of glycerolipids and a less powerful classifier can easily identify the 

diacylglycerols from other glycerolipids when it must only learn that single decision 

boundary. As a result, our organization of weaker predictive models had superior 

performance. Initially, this behavior can seem counterintuitive but is consistent with the 

concept of ensemble learning from machine learning where collections of weaker 

classifier models often outperform fewer larger classifier models when properly 

organized. The hierarchy of models that are constructed mirror how a human would 

approach the classification problem. For example, if a molecular formula is known not to 

be of the sphingolipid category, a human will not attempt to assign this formula to a 

sphingolipid class; however, a monolithic model will attempt to do so. This wastes 
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computational power and increases the likelihood of incorrect prediction of both class 

and category.  

 The final models produced by our tool achieved both high accuracy and high 

sensitivity on the training dataset. Of course, performance on training data does not 

paint a complete picture of model performance, but for Random Forest which 

implements bagging, these metrics predict performance on inputs similar to the training 

data. Models with both high accuracy and high sensitivity are unlikely to produce 

incorrect lipid assignments, but may be overly conservative and fail to generate a 

non_lipid assignment for some inputs. While this behavior is undesirable, it is preferable 

to less conservative models that will yield many incorrect lipid category and class 

predictions. 

 

LMSD vs LMISSD Trained Models 

 One method for improving the performance of a machine learning model is to 

provide larger amounts of training data, which in turn enables more informed and more 

accurate decision boundaries to be determined. For this reason, models were trained 

using both the LMSD and LMISSD, which has nearly 25 times the number of entries as 

the LMSD. However, LMISSD trained models did not offer substantially improved 

performance as compared to the LMSD-only models on the training datasets. Although 

the LMISSD contained many entries, the input training set only doubled in size after 

isomeric entries were removed, implying that little information was added regarding the 

distribution of formulas in lipid category or lipid class space.  Another possible 

explanation for this observation is that the LMISSD contains substantially more entries, 
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but for only 4 out of the 7 categories in the LIPIDMAPS database and that the decision 

boundaries for these categories were already well-determined by the LMSD only 

models.  

  

Classifier Generalization 

 A benefit that machine learning models have over traditional database lookups 

are their ability to infer rules that can be applied to never observed inputs to make 

accurate predictions. This ability was demonstrated with both the LMSD- and LMISSD-

constructed models. Both models produced lipid category and class predictions for 

experimental and theoretical molecular formulae not present in the training dataset. 

However, the generalizability of the models depends heavily on the quality and size of 

the input dataset (Supplemental Figure 1).  

 Despite having similar performance on the training datasets, the LMISSD and 

LMSD trained models had similar but distinctive behavior on the convex hull 

metabolites. The LMISSD assigned many more sphingolipids than the LMSD models 

and in general, the categories with more examples in the training dataset were more 

frequently predicted. This could be due to a bias in the trained models from the 

unbalanced training data or could reflect the relative amount of structural diversity 

possible within each class, i.e. the number of possible sphingolipid formulas might truly 

be larger than the number of possible sterol formulas. However, the percentage of hull 

formulas predicted for each category was similar between the two models, implying that 

they are overall very similar. Both models predicted roughly the same number of 

non_lipid formulas implying that the overall lipid vs non-lipid decision boundaries of the 
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two models are very similar. Discrepancies between the two models can also be 

attributed to the presence of predicted lipids in the LMISSD that do not exist – this could 

confuse classifiers if the predicted lipids and the validated lipids suggest different 

decision boundaries.  

 Ultimately the ability of both models to make accurate predictions will be 

improved with larger training datasets. With more examples that more exhaustively 

span lipid formula space, the more accurate and generalizable the models constructed 

using these same methods will become.  However, given the marginal improvement 

with a doubling of the training dataset from the LMSD vs LMISSD, improvements may 

be marginal without a vastly larger training dataset.  

 

Mass Error and Classification Results 

 Ideally, a substantial mass error would result in no formulas being assigned by 

SMIRFE or that the assigned formulas fail to classify. As shown with our NSCLC 

dataset, a large mass error does not eliminate all assignments nor completely abolish 

our ability to classify the resulting, almost certainly incorrect, assigned formulas.  

 Given the very large search space that an untargeted tool must search to 

generate assignments, almost any m/z has many possible assignments, given the 

theoretical molecular formula search space. Since a systematic error does not change 

the mass difference between isotopologues, patterns of isotopologues for these 

incorrect formulas can still be identified and assigned. Thus, without extremely high 

mass resolution to restrict the set of possible assignments considerably, which still may 

not be effective (Kind and Fiehn, 2006), a constant mass error will still produce 
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assignments. Furthermore, current variance in peak intensities is not low enough to 

prevent artifactual assignment at higher m/z.   

As was seen in the convex hull analysis, approximately a quarter of the 

generated formulas appeared to be lipids to the models. This could reflect the true 

distribution of lipids in possible formula space, but more likely it represents limitations of 

our models. Nonsense formulas that can arise from m/z error or from the convex hull 

method cannot be properly learned as they are very different from the training set data. 

Although the ability of our models to produce no classification for an input feature vector 

protects against this effect, it is not perfect. The same models that learn real 

(biochemically relevant) metabolite formulas correctly may fail to properly handle 

nonsense formulas that SMIRFE can assign to peaks with high mass error and noise or 

artifactual peaks. 

Therefore, lipid classification alone should not be used to filter out features in 

datasets, especially on a single-spectrum basis. Information such as how many times a 

formula is observed across a dataset appears to be useful for filtering.  Also, observed 

correlation between features classified to the same lipid category and/or class should 

provide additional discriminating criteria. Features considered trustworthy by this 

information and other methods can then be used for further analysis. Similar problems 

exist with targeted assignment tools as well and a lack of substantial cross-sample 

formula correspondence is an indication that there is a possible data quality problem 

preventing accurate assignment. 

 

Implications for Experimental Design 
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 The ability to predict lipid category and class from molecular formula 

assignments without the need for cross-validated metabolite assignments, enables 

simpler experimental designs as the volume of information needed to perform class or 

category level comparisons is lessened. As molecular formula can be assigned from 

direct infusion FT-MS MS1 spectra directly and in a cross-validating manner, 

chromatography and other cross-validation information is not necessary for class or 

category level comparisons when using these models. However, the quality of the 

analyses will depend heavily on the quality of the assigned molecular formulae.  

 SMIRFE leverages patterns in the relative heights of isotopologue peaks for the 

same elemental molecular formula to determine what molecular formulae best explain 

features observed in a spectrum. Although SMIRE is not necessarily limited to only 

high-end mass spectrometers such as FT-MS instruments, only these instruments 

provide enough mass accuracy and resolution to observe and characterize relevant sets 

of isotopologues. This restriction is becoming increasingly less relevant as high-

performance spectrometers become more available. Additionally, SMIRFE and 

subsequent lipid prediction does not enable the robust assignment of metabolite 

structures to spectral features and this will still require additional information from 

orthogonal experiments.  

 

Conclusions 

 With untargeted analysis methods, lipidomics has the potential to produce more 

informative datasets that will aid in the construction of more complete models of cellular 

metabolism. This in turn enables a better understanding of both healthy and disease 
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processes. A necessary step in many of these analyses is the assignment of lipid 

category or class to an observed lipid feature. When multiple orthogonal sources of 

information are available (i.e., MS + chromatography, NMR + chromatography, MS/MS), 

lipid category and class assignment can be inferred from trustworthy metabolite 

assignments based on comparison to spectral databases; however, this approach limits 

untargeted analysis, since spectral and lipid databases are incomplete.  

 The application of machine learning algorithms enables the construction of 

models that can accurately and precisely assign lipid labels to observed spectral 

features that have been assigned to a molecular formula. Unlike other approaches that 

leverage metabolite databases directly for lipid assignment, these models have the 

capacity to infer lipid category and class for entries not present in existing databases. 

This capacity is essential for untargeted metabolomics experiments as database 

incompleteness can lead to a biasing of lipid classification and in turn biological 

interpretation. Since these models are informed by the existing metabolite databases 

during training, their capacity to compensate for database incompleteness is not 

unlimited as observed with our LMSD informed models having limited efficacy at higher 

mass ranges. The inclusion of additional sources of empirically observed lipids in these 

mass ranges may extend the useful mass range of this methodology. LMISSD-informed 

models did not suffer from this limitation, but had decreased accuracy and specificity, 

potentially attributable to unrealistic entries in the LMISSD.  

 By recapitulating the same level of performance observed with the training 

datasets, the robust ability of these models to make lipid classifications on molecular 

formulas assigned to features derived from spectra of non-polar tissue extracts 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/572883doi: bioRxiv preprint 

https://doi.org/10.1101/572883
http://creativecommons.org/licenses/by-nc/4.0/


demonstrates their potential for real-world application. Thus, machine learning-based 

approaches will allow for more untargeted lipid profiling analyses than existing 

database-centric methods, even with the more limited data that can be acquired using 

direct injection MS1 alone. Similar methods could be applied to the classification of 

other major types of biomolecules or to identify potential contaminants or non-biological 

compounds detected in complex biological samples. However, the quality of the 

predictions made by such methods remains limited by the ability to generate high quality 

assignments in an unbiased manner for higher m/z ranges that are relevant to lipid 

profiling. Methods such as SMIRFE combined with cross-sample correspondence 

provides a potential avenue to generating such assignments for these higher m/z 

ranges.  
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Abstract: 

 These pages contain supporting information including descriptions of the tissue 

samples from which the experimental set of formulas was derived, additional result 

tables for the machine learning models, and a figure showing the distribution of 

molecular formulas across our training datasets with respect to m/z.  
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Paired Human NSCLC Cancer and Non-Cancer Tissue Samples 

Eighty-six patients with suspected resectable stage I or IIa primary non-small cell 

lung cancer (NSCLC) and without diagnosed diabetes were recruited based on their 

surgical eligibility. The extent of resection was determined by the surgeon in accordance 

with clinical criteria. Many of the specimens were obtained from wedge resections which 

minimizes surgery time while the other specimens were acquired in less than 5 minutes 

after the pulmonary vein was clamped. Both techniques minimize ischemia in the 

resected tissues. Immediately after resection, the tumor was transected and section of 

cancerous tissue and surrounding non-cancer tissue at least 5 cm away from the tumor 

were immediately flash frozen in liquid nitrogen and stored at <80°C. On-site pathologists 

confirmed the diagnosis and cancer-free margins on parallel tissue samples. All samples 

were collected under a University of Louisville approved Internal Review Board (IRB) 

protocol and written informed consent was obtained from all subjects prior to inclusion in 

the study (Sellers et al., 2015).  

The frozen samples were pulverized under liquid nitrogen to <10 μm particles 

using a Spex freezer mill, and extracted using a modified Folch method as previously 

described (Ren et al., 2014). The lipid fraction was supplemented with 1 mM butylated 

hydroxytolune and then dried by vacuum centrifugation at room temperature. Samples 

for FT-MS analysis were redissolved 200-500 μl chloroform/methanol (2:1) supplemented 

with 1 mM butylated hydroxytolune. Reconsitituted lipids samples were diluted in in 

isopropanol/methanol/chloroform 4/2/1 (v/v/v) with 20 mM ammonium formate (95 μl of 

solvent for 5 μl of sample) before direct infusion. 
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Mass Spectrometry Analysis of Tissue Samples 

Ultrahigh resolution (UHR) mass spectrometry was carried out on a Thermo 

Orbitrap Fusion interfaced to an Advion Nanomate nanoelectrospray source using the 

Advion “type A” chip, also from Advion, inc. (chip p/n HD_A_384).  The nanospray 

conditions on the Advion Nanomate were as follows: sample volume in wells in 96 well 

plate – 50 µl, sample volume taken up by tip for analysis – 15 µl, delivery time – 16 

minutes, gas pressure – 0.4 psi, voltage applied – 1.5 kV, polarity – positive, pre-piercing 

depth – 10 mm. The Orbitrap Fusion Mass Spectrometer method duration was 15 

minutes, and the MS conditions during the first 7 minutes were as follows: scan type – 

MS, detector type – Orbitrap, resolution – 450,000, lock mass with internal calibrant 

turned on, scan range (m/z) – 150-1600, S-Lens RF Level (%) – 60, AGC Target – 1e5, 

maximum injection time (ms) – 100, microscans – 10, data type – profile, polarity – 

positive. For the next 8 minutes, the conditions were as follows for the MS/MS analysis: 

MS properties: detector type – Orbitrap, resolution – 120,000, scan range (m/z) – 150-

1600, AGC Target – 2e5, maximum injection time (ms) – 100, microscans – 2, data type 

– profile, polarity – negative; monoisotopic precursor selection – applied, top 500 most 

intense peaks evaluated with minimum intensity of 5e3 counts; data dependent MSn scan 

properties: MSn level – 2,  isolation mode – quadrupole, isolation window (m/z) – 1, 

activation type – HCD, HCD collision energy (%) – 25, collision gas – Nitrogen,  detector 

– Orbitrap, scan range mode – auto m/z normal, Orbitrap resolution – 120,000, first mass 

(m/z) – 120, maximum injection time (ms) – 500, AGC target – 5e4,  data type – profile, 

polarity –  positive. The ion transfer tube temperature was 275oC.  (Yang et al., 2017). 
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Supplemental Tables 1 and 2 

Supplemental Table 1 shows the training accuracy and precision for each class-level 

model in the model collection trained using the LMSD and the HMDB_non_lipid dataset. 

Excellent precision and accuracy were achieved for most classes; however, some 

classes have very few examples. For small classes, metrics of accuracy and precision 

are less useful. During class training, the category of each lipid is known – for the non-

lipid category this results in perfect accuracy and precision, because there is only one 

non-lipid class for the non-lipid category. Each class is trained using a one-against all 

approach, which inflates the accuracy metric but not precision for each class model. 

Supplemental Table 2 shows the same results on the LMSD + LMISSD + 

HMDB_non_lipid dataset. Similar metrics of precision and accuracy were achieved on 

this larger dataset.  
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Supplemental Table 1 

LMSD + HMDB_non_Lipid Model Performance (Classes) 

Category Precision 
Out of Bag 
Accuracy 

Number of 
Examples 

Other Fatty Acyls [FA00]  1 0.998951588 19 
Fatty Acids and Conjugates [FA01]  0.851590106 0.967992599 610 

Octadecanoids [FA02]  1 0.996423065 38 
Eicosanoids [FA03]  0.940677966 0.993647857 129 
Docosanoids [FA04]  0.9 0.99858156 18 
Fatty alcohols [FA05]  1 0.991674376 151 

Fatty aldehydes [FA06]  0.885714286 0.992661116 89 
Fatty esters [FA07]  0.934177215 0.975454826 513 
Fatty amides [FA08]  0.945544554 0.99426457 199 
Fatty nitriles [FA09]  1 0.999876657 2 
Fatty ethers [FA10]   NAN  0.999814986 2 

Hydrocarbons [FA11]  1 0.999938329 121 
Oxygenated hydrocarbons [FA12]  0.952380952 0.993216158 86 

Fatty acyl glycosides [FA13]  0.981132075 0.998458218 53 
Other Glycerolipids [GL00]  1 0.999568301 8 
Monoradylglycerols [GL01]  1 0.999198273 18 

Diradylglycerols [GL02]  1 0.999444958 162 
Triradylglycerols [GL03]  1 0.999568301 313 

Glycosylmonoradylglycerols [GL04]  1 0.999876657 2 
Glycosyldiradylglycerols [GL05]  1 0.99950663 29 

Other Glycerophospholipids [GP00]  1 0.999136602 14 
Glycerophosphocholines [GP01]  0.737179487 0.976749923 319 

Glycerophosphoethanolamines [GP02]  0.734693878 0.977243293 259 
Glycerophosphoserines [GP03]  0.979166667 0.997964847 238 

Glycerophosphoglycerols [GP04]  1 0.998889917 249 
Glycerophosphoglycerophosphates [GP05]  1 0.999876657 2 

Glycerophosphoinositols [GP06]  0.987394958 0.999321616 235 
Glycerophosphoinositol monophosphates 

[GP07]  1 0.999876657 2 
Glycerophosphoinositol bisphosphates 

[GP08]  1 0.999938329 1 
Glycerophosphoinositol trisphosphates 

[GP09]  1 0.999938329 1 
Glycerophosphates [GP10]  0.983673469 0.998458218 241 

Glyceropyrophosphates [GP11]  1 0.999876657 2 
Glycerophosphoglycerophosphoglycerols 

[GP12]  1 0.999691644 74 
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CDP-Glycerols [GP13]  1 0.999938329 18 
Glycosylglycerophospholipids [GP14]  1 0.99950663 5 

Glycerophosphoinositolglycans [GP15]  1 0.999876657 205 
Glycerophosphonocholines [GP16]   NAN  0.999938329 1 

Glycerophosphonoethanolamines [GP17]   NAN  0.999938329 1 
Di-glycerol tetraether phospholipids 

(caldarchaeols) [GP18]  1 0.999938329 1 
Glycerol-nonitol tetraether phospholipids 

[GP19]  1 0.999938329 1 
Oxidized glycerophospholipids [GP20]  1 0.998766574 17 

Other Polyketides [PK00]  1 0.999938329 1 
Linear polyketides [PK01]  1 0.999568301 7 

Halogenated acetogenins  [PK02]  1 0.999938329 1 
Annonaceae acetogenins  [PK03]  1 0.999938329 1 

Macrolides and lactone polyketides [PK04]  1 0.998458218 38 
Ansamycins and related polyketides  [PK05]  1 0.99950663 8 

Polyenes [PK06]  1 0.999753315 4 
Linear tetracyclines [PK07]  1 0.99950663 8 

Angucyclines  [PK08]   NAN  0.999938329 1 
Polyether antibiotics  [PK09]  1 0.999383287 10 

Aflatoxins and related substances  [PK10]  1 0.999383287 6 
Cytochalasins [PK11]  1 0.999814986 3 

Flavonoids [PK12]  0.978973928 0.995312982 1168 
Aromatic polyketides [PK13]  0.977777778 0.994819611 69 

Non-ribosomal peptide/polyketide hybrids  
[PK14]  1 0.999629972 6 

Phenolic lipids [PK15]  1 0.998704903 45 
Isoprenoids [PR01]  0.992167102 0.996423065 381 

Quinones and hydroquinones [PR02]  1 0.99808819 35 
Polyprenols [PR03]  0.967741935 0.998458218 30 
Hopanoids [PR04]  1 0.998704903 27 

Acylaminosugars [SL01]  1 0.999444958 9 
Acylaminosugar glycans [SL02]  1 0.999814986 3 

Acyltrehaloses [SL03]  1 0.999629972 83 
Other acyl sugars [SL05]  1 0.99950663 8 

Other Sphingolipids [SP00]  1 0.999568301 17 
Sphingoid bases [SP01]  1 0.998643232 67 

Ceramides [SP02]  0.99009901 0.998889917 100 
Phosphosphingolipids [SP03]  1 0.999444958 143 

Phosphonosphingolipids [SP04]  1 0.999876657 2 
Neutral glycosphingolipids [SP05]  0.992727273 0.986247302 553 
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Acidic glycosphingolipids [SP06]  0.988505747 0.986432316 520 
Basic glycosphingolipids [SP07]   NAN  0.999876657 1 

Amphoteric glycosphingolipids [SP08]  1 0.999938329 1 
Sterols [ST01]  0.925233645 0.986802344 348 

Steroids [ST02]  0.93258427 0.996484736 92 
Secosteroids [ST03]  0.857142857 0.987295714 208 

Bile acids and derivatives [ST04]  0.867924528 0.994819611 75 
Steroid conjugates [ST05]  0.989473684 0.996114709 101 

not_lipid  1 1 7587 
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Supplemental Table 2 

LMSD + LMISSD + HMDB_non_Lipid Model Performance (Classes) 

Category Precision 
Out of Bag 
Accuracy 

Number of 
Examples 

Other Fatty Acyls [FA00]  1 0.999392054 19 
Fatty Acids and Conjugates [FA01]  0.850352113 0.980867575 610 

Octadecanoids [FA02]  1 0.997890069 38 
Eicosanoids [FA03]  0.964285714 0.9962808 129 
Docosanoids [FA04]  0.833333333 0.999213246 18 
Fatty alcohols [FA05]  1 0.995315238 151 

Fatty aldehydes [FA06]  0.846153846 0.995672853 89 
Fatty esters [FA07]  0.957333333 0.985945714 513 
Fatty amides [FA08]  0.954545455 0.996638415 199 
Fatty nitriles [FA09]  1 0.999928477 2 
Fatty ethers [FA10]   NAN  0.999928477 2 

Hydrocarbons [FA11]  1 0.999964238 121 
Oxygenated hydrocarbons [FA12]  1 0.996101992 86 

Fatty acyl glycosides [FA13]  0.963636364 0.9990702 53 
Other Glycerolipids [GL00]  1 0.999713908 8 
Monoradylglycerols [GL01]  1 0.998354969 61 

Diradylglycerols [GL02]  0.813163482 0.984551014 492 
Triradylglycerols [GL03]  0.915625 0.985945714 1242 

Glycosylmonoradylglycerols [GL04]  1 0.999928477 2 
Glycosyldiradylglycerols [GL05]  1 0.999713908 910 

Other Glycerophospholipids [GP00]  1 0.999392054 14 
Glycerophosphocholines [GP01]  0.719298246 0.968351035 571 

Glycerophosphoethanolamines [GP02]  0.693939394 0.967850374 528 
Glycerophosphoserines [GP03]  0.778012685 0.973214605 517 

Glycerophosphoglycerols [GP04]  0.842436975 0.979758967 525 
Glycerophosphoglycerophosphates 

[GP05]  1 0.999928477 512 
Glycerophosphoinositols [GP06]  0.829787234 0.978221221 514 

Glycerophosphoinositol 
monophosphates [GP07]  0.983050847 0.992382792 617 

Glycerophosphoinositol bisphosphates 
[GP08]  0.911870504 0.9962808 509 

Glycerophosphoinositol trisphosphates 
[GP09]  0.911870504 0.9962808 509 

Glycerophosphates [GP10]  0.909090909 0.991345707 519 
Glyceropyrophosphates [GP11]  1 0.999928477 2 
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Glycerophosphoglycerophosphoglycerols 
[GP12]  1 0.999749669 315 

CDP-Glycerols [GP13]  1 0.999964238 18 
Glycosylglycerophospholipids [GP14]  1 0.999713908 5 

Glycerophosphoinositolglycans [GP15]  1 0.999785431 205 
Glycerophosphonocholines [GP16]   NAN  0.999964238 1 

Glycerophosphonoethanolamines [GP17]   NAN  0.999964238 1 
Di-glycerol tetraether phospholipids 

(caldarchaeols) [GP18]  1 0.999964238 1 
Glycerol-nonitol tetraether phospholipids 

[GP19]  1 0.999964238 1 
Oxidized glycerophospholipids [GP20]  0.884877556 0.911132568 3882 

Other Polyketides [PK00]  1 0.999964238 1 
Linear polyketides [PK01]  1 0.999749669 7 

Halogenated acetogenins  [PK02]  1 0.999964238 1 
Annonaceae acetogenins  [PK03]  1 0.999964238 1 

Macrolides and lactone polyketides 
[PK04]  1 0.998998677 38 

Ansamycins and related polyketides  
[PK05]  1 0.999713908 8 

Polyenes [PK06]  1 0.999856954 4 
Linear tetracyclines [PK07]  1 0.999713908 8 

Angucyclines  [PK08]   NAN  0.999964238 1 
Polyether antibiotics  [PK09]  1 0.999642385 10 

Aflatoxins and related substances  
[PK10]  1 0.999642385 6 

Cytochalasins [PK11]  1 0.999892715 3 
Flavonoids [PK12]  0.978973928 0.997282123 1168 

Aromatic polyketides [PK13]  0.977777778 0.996924507 69 
Non-ribosomal peptide/polyketide 

hybrids  [PK14]  1 0.999785431 6 
Phenolic lipids [PK15]  0.977777778 0.999105961 45 

Isoprenoids [PR01]  0.98961039 0.997997354 381 
Quinones and hydroquinones [PR02]  1 0.998962915 35 

Polyprenols [PR03]  0.967741935 0.9990702 30 
Hopanoids [PR04]  1 0.999284769 27 

Acylaminosugars [SL01]  1 0.999678146 9 
Acylaminosugar glycans [SL02]  1 0.999892715 3 

Acyltrehaloses [SL03]  1 0.999713908 83 
Other acyl sugars [SL05]  1 0.999713908 8 

Other Sphingolipids [SP00]  1 0.999749669 17 
Sphingoid bases [SP01]  1 0.999105961 67 

Ceramides [SP02]  0.998548621 0.999678146 688 
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Phosphosphingolipids [SP03]  1 0.999785431 675 
Phosphonosphingolipids [SP04]  1 0.999928477 2 

Neutral glycosphingolipids [SP05]  0.996412556 0.992454315 1118 
Acidic glycosphingolipids [SP06]  0.990384615 0.992239745 520 
Basic glycosphingolipids [SP07]   NAN  0.999928477 1 

Amphoteric glycosphingolipids [SP08]  1 0.999964238 1 
Sterols [ST01]  0.927899687 0.992382792 348 
Steroids [ST02]  0.93258427 0.997997354 92 

Secosteroids [ST03]  0.886904762 0.99234703 208 
Bile acids and derivatives [ST04]  0.897959184 0.996888746 75 

Steroid conjugates [ST05]  0.979381443 0.997711261 101 
not_lipid  1 1 7587 
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Supplemental Figure 1: Training Set Mass Distributions 

 Both the LMSD and LMISSD are heavily biased towards lipids with a mass below 

1200 m/z (Panels A and B respectively). This effect becomes clearer once entries are 

deduplicated to yield only unique formulas (Panels C and D). Some entries exist out to 

3000+ m/z but the bulk of the formulas still reside in the sub 1200 mass range. When 

combined, the bias is still present in the combined set of unique formulas (Panel E). 

Additionally, the LMISSD does not have entries from all the lipid categories. 
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