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Neural information flow is inherently directional. To date, investigation of directional commu-
nication in the human structural connectome has been precluded by the inability of non-invasive
neuroimaging methods to resolve axonal directionality. Here, we demonstrate that decentralized
measures of network communication, applied to the undirected topology and geometry of brain
networks, can predict putative directions of large-scale neural signalling. We propose the concept
of send-receive communication asymmetry to characterize cortical regions as senders, receivers or
neutral, based on differences between their incoming and outgoing communication efficiencies. Our
results reveal a send-receive cortical hierarchy that recapitulates established organizational gradi-
ents differentiating sensory-motor and multimodal areas. We find that send-receive asymmetries
are significantly associated with the directionality of effective connectivity derived from spectral
dynamic causal modeling. Finally, using fruit fly, mouse and macaque connectomes, we provide
further evidence suggesting that directionality of neural signalling is significantly encoded in the
undirected architecture of nervous systems.

INTRODUCTION

Understanding how the structural substrate of connec-
tomes [1, 2] gives rise to the rich functional dynamics ob-
served in nervous systems is a major goal in neuroscience
[3–6]. The description of mechanisms underpinning neu-
ronal signalling and communication is a crucial task in
addressing this challenge [7–10].

While information can be directly communicated be-
tween anatomically connected elements of a nervous sys-
tem, polysynaptic communication is needed for struc-
turally unconnected elements. Several candidate mod-
els of polysynaptic communication have been proposed
and evaluated using graph-theoretic representations of
nervous systems [9]. Shortest paths routing is the most
ubiquitous model [11–13], which proposes that commu-
nication occurs via optimally efficient routes. Efficiency
in this context refers to routes that traverse either the
fewest number of connections (i.e. fewest number of
synapses) or the strongest and most reliable connections.
However, the computation of shortest paths mandates
global knowledge of network topology, a requirement that
is unlikely to be met in biological systems [9, 15]. This
has motivated research on decentralized models that cap-
italize on local knowledge of network properties to facil-
itate information transfer. Examples include navigation
[15–17], spreading dynamics [18, 19], communicability
[20–22] and diffusion processes [23–25].
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Many decentralized communication models are asym-
metric [8, 15, 18, 26]. This means that the efficiency of
communication between a pair of nodes can be asym-
metric; that is, sending information from region i to re-
gion j can be performed more efficiently, from a graph-
theoretic standpoint, than sending information from re-
gion j to region i. We coin the term send-receive commu-
nication asymmetry, or simply send-receive asymmetry
to describe this property. In the context of the afore-
mentioned pair of regions, we consider region i to be a
putative sender and region j as a putative receiver. Im-
portantly, communication asymmetries can arise in undi-
rected networks, such as current descriptions of the hu-
man structural connectome, where knowledge about the
directionality of individual connections is unknown. In
undirected networks, communication asymmetries arise
from the interaction between the communication model
and network topology as well as possibly geometry (Fig.
1). While asymmetric communication models have been
investigated in brain networks across various species and
scales [8, 15, 18], the directional character of information
flow inherent to these models remains largely unexam-
ined [26].

The concept of send-receive communication asymme-
try provides opportunities to infer putative directions of
neural information flow in the human connectome using
traditional in vivo diffusion MRI coupled with established
fiber tracking methods, which inherently cannot resolve
the directionality of white matter fibers. Therefore, in-
vestigating decentralized network communication mea-
sures may help bridge the gap between our symmetric
understanding of human connectome structure and the

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2019. ; https://doi.org/10.1101/573071doi: bioRxiv preprint 

mailto:caioseguin@gmail.com
https://doi.org/10.1101/573071
http://creativecommons.org/licenses/by/4.0/


2

ample evidence for its asymmetric functional dynamics
[27–29].

Here, we investigate three asymmetric network com-
munication measures: i) navigation efficiency, ii) diffu-
sion efficiency, and iii) search information. We provide
multiple lines of evidence supporting the notion that
these measures, applied to undirected brain networks,
lead to meaningful patterns of send-receive communica-
tion asymmetry. We classify cortical regions and func-
tional subsystems as senders (biased towards the effi-
ciency of outgoing paths), neutral (symmetric communi-
cation efficiency) and receivers (biased towards the effi-
ciency of incoming paths). Crucially, we use an indepen-
dent imaging modality—resting-state functional mag-
netic resonance imaging (fMRI)—to validate our commu-
nication asymmetry findings derived from brain networks
mapped with diffusion MRI. Using directed non-human
connectomes, we investigated whether the directions of
neural signalling inferred from send-receive asymmetries
are encoded, to a significant extent, in the undirected
topology and geometry of brain networks.

RESULTS

Measures of send-receive communication asymmetry

Network communication models describe a propaga-
tion strategy that delineates the signalling pathways uti-
lized to transfer information between nodes. In turn,
a network communication measure quantifies the ease
of communication along the identified pathways from a
graph-theoretic standpoint. In this paper, we use the
broad term communication efficiency to denote the ease
of communication quantified by different network com-
munication measures. Efficient communication pathways
are generally short, traverse few synapses and comprise
strong and reliable connections [30].

We considered three asymmetric network communica-
tion measures: i) navigation efficiency, ii) diffusion ef-
ficiency and iii) search information. Briefly, navigation
efficiency [15] relates to the length of paths identified by
navigation or greedy routing [16, 31], with higher values
of efficiency indicating faster and more reliable communi-
cation between nodes. Diffusion efficiency [24] quantifies
how many intermediate regions (synapses), on average, a
naive random walker needs to traverse to reach a desired
destination region. Finally, search information is related
to the probability that a random walker will travel from
one region to another via the shortest path between them
[8, 32], quantifying the extent to which efficient routes are
hidden in the network topology. Further details, includ-
ing the mathematical formulation of these measures, can
be found in Materials and Methods, Network communi-
cation measures.

Communication asymmetry is introduced by the de-
centralized character of certain network communication
models (Fig. 1). Consider the flow of information from

one region, termed the source node, to another region,
termed the target node. If this source-target pair is not di-
rectly connected, information must flow via a polysynap-
tic path that traverses one or more intermediate nodes.
Decisions on how signals are propagated through the con-
nectome depend on the local topology around each node.
Since source and target nodes occupy potentially differ-
ent vicinities, communication may happen through dis-
tinct paths, and thus with different efficiency, depending
on the direction of information flow. In contrast, central-
ized communication models such as shortest path routing
yield symmetric paths in undirected networks.

We use C ∈ RN×N×K to denote a set of communica-
tion matrices for K individuals, where C(i, j, k) denotes
the communication efficiency from node i to node j for
individual k, under an arbitrary communication measure
(Fig. 2a). The difference in communication efficiency for
opposing directions of information flow between i and j
is given by ∆(i, j, k) = C(i, j, k)−C(j, i, k). We perform
a one-sample t-test to determine whether the mean of the
distribution ∆(i, j, k = 1...K) is significantly different to
0 (Fig. 2c). This yields a t-statistic, termed A(i, j),
which quantifies the extent of communication asymme-
try between i and j. In particular, if A(i, j) is significant
and greater than zero, we conclude that communication
can occur more efficiently from node i to node j, rather
than from node j to node i. Note that A(i, j) = −A(j, i),
and thus if A(j, i) is significantly less than zero, we reach
the same conclusion. Repeating this test independently
for all pairs of nodes yields the communication asymme-
try matrix A, for which values are symmetric about the
main diagonal, but with opposite signs.

The above measure is specific to pairs of nodes. We use
a variation of this test to compute regional send-receive
communication asymmetry by taking into account all
outgoing and incoming communication paths of a given
node (Materials and Methods, Communication asymme-
try test). Regions that show a significantly higher effi-
ciency of outgoing (incoming) communication are classi-
fied as putative senders (receivers), while nodes that do
not favour a direction of information flow are classified
as neutral.

Senders and receivers of the human connectome

Whole-brain white matter tractography was applied to
high-resolution diffusion MRI data acquired in K = 200
healthy adults (age 21–36, 48.5% female) participat-
ing in the Human Connectome Project [33]. Structural
brain networks were mapped at several spatial resolu-
tions (N = 256, 360, 512 regions; Materials and Methods,
Connectome mapping). For each individual, the result-
ing weighted adjacency matrix was thresholded at 10%,
15% and 20% connection density to eliminate potentially
spurious connections [34], and subsequent analyses were
carried out on the obtained weighted connectomes. Com-
munication matrices quantifying the communication ef-
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FIG. 1. Illustrative examples of send-receive communication asymmetry in a spatially-embedded, unweighted and undirected
network. Communication efficiency from node i to j under measure x ∈ {nav, sp, si} is denoted Ex(i, j), where nav, sp and
si indicate navigation efficiency, shortest path efficiency and search information, respectively. Shortest path and navigation
efficiencies are computed as the inverse of the number of connections comprising shortest and navigation paths, respectively.
Search information relates to the probability that a random walker will travel between two nodes via the shortest path linking
them. The path identified under each communication model is designated with green (i→ j) and mauve (j → i) arrows. Send-
receive communication asymmetry refers to Ex(i, j) 6= Ex(j, i). (a) Shortest path efficiency is a symmetric communication
measure in undirected networks, and thus Esp(i, j) = Esp(j, i). (b) Navigation routes information by progressing to the next
directly connected node that is closest in distance to the target node. This results in the i-c-b-j and j-b-i navigation paths,
with respective efficiency Enav(i, j) = 0.33 and Enav(j, i) = 0.5. Hence, navigation is more efficient from node j to node
i. (c) Arrows denote the symmetric shortest paths between i and j. Arrows are annotated with the probabilities that a
random walker will traverse their respective connections based on node degree (e.g., each of the 3 connections of node i has
approximately 0.33 probability to be traversed by a random walker leaving i). We have Esi(i, j) ∝ 0.33 × 0.25 = 0.0825 and
Esi(j, i) ∝ 1 × 0.25 = 0.25. Hence, a random walker has higher probability of travelling via the shortest path in the j → i

direction, characterizing search information asymmetry between i and j.

ficiency between every pair of regions were computed
(Fig. 2a, Materials and Methods, Network communica-
tion models) and used to derive measures of send-receive
asymmetry in communication efficiency (Materials and
Methods, Communication asymmetry test). We focus on
describing the results for N = 360 at 15% connection
density. Results for other connection densities and par-
cellation resolutions can be found in Supplementary In-
formation.

Significant asymmetries in the efficiency of sending ver-
sus receiving information were evident for most cortical
regions (Fig. 3a,d,g). Regional values of send-receive
asymmetry were significantly correlated across regions
among the communication measures investigated (nav-
igation and diffusion: r = 0.29, navigation and search
information: r = 0.31, diffusion and search information:
r = 0.85; all P < 10−7). Based on these send-receive
asymmetries, we classified all regions as senders, receivers
or neutral. As expected from the strong correlation be-
tween them, diffusion and search information asymme-
tries led to similar classifications, likely due to their mu-
tual dependence on random walk processes. While com-
munication under navigation is guided by different mech-
anisms, classification consistency across measures was
greater than expected by chance (Supplementary Infor-
mation, Note 1 ).

Primary sensory and motor regions were identified as
senders (A1, S1 and M1 across all communication mea-

sures and V1 for navigation and diffusion). This is
consistent with the notion that early auditory, visual
and sensory-motor areas constitute the three main in-
put streams to the cortex, being the first to process sen-
sory stimuli that are subsequently transmitted to asso-
ciation regions [35, 36]. In contrast, expanses of the or-
bital and polar frontal cortices, the medial and dorsolat-
eral prefrontal cortices, and the precuneus were classi-
fied as receivers. These regions have been proposed as
putative functional hubs, supporting abstract and high-
order cognitive processes by integrating multiple modal-
ities of information [37–39]. Other regions consistently
identified as senders included portions of the superior
temporal, medial temporal and posterior cingulate cor-
tices, while parts of the MT+ complex, intraparietal sul-
cus cortex, and dorsal and ventral streams consistently
ranked amongst receivers. Certain regions were classi-
fied as senders under one communication measure but
receivers under another measure, possibly reflecting how
the three communication measures uniquely interact with
connectome topology. Inconsistently classified regions in-
cluded portions of the paracentral, cingulate, middle tem-
poral and inferior temporal cortices. Details on how to
access complete send-receive asymmetry tables and cor-
tical maps are provided in Materials and methods, Data
and code availability.

Despite significant asymmetries in the efficiency of
sending versus receiving information within individual re-
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FIG. 2. Methodology overview. (a) White matter tractography applied to diffusion MRI data for K = 200 adults participating
in the HCP was used to map undirected (i.e., symmetric) weighted adjacency matrices representing the structural connectivity
between N = 256, 350, 512 cortical regions. Navigation efficiency, diffusion efficiency and search information were computed
between every pair of regions to generate asymmetric communication matrices. (b) Resting-state fMRI data for the same HCP
participants was used to compute principal component (PC) time series summarizing the functional activity of M = 7, 17, 22
cortical subsystems. For each individual, effective connectivity between cortical subsystems was computed using spectral
DCM. (c) Schematic of the communication asymmetry test. First, for a pair of nodes i and j, the difference in communication
efficiency between the i → j and j ← i directions was computed. Performing this for K individuals yielded the distribution
∆(i, j, k = 1...K). Communication asymmetry was assessed by performing a one-sample t-test to determine whether the mean
of this distribution is significantly different to 0, with A(i, j) defined as the resulting matrix of t-statistics. (d) The asymmetry
test was applied to compute M ×M matrices of communication and effective connectivity send-receive asymmetries between

modules. We sought to test for correlations across the corresponding elements of these two matrices.

gions, these send-receive asymmetries were superposed
atop a strong correlation across regions between send
and receive efficiency (navigation: r = 0.95, search in-
formation: r = 0.79; both P < 10−15; Fig. 3b,e). In
other words, efficient senders were also typically efficient
receivers, and vice versa. Therefore, while all senders
were by definition significantly more efficient at sending
than receiving, some senders were in fact less efficient
at sending than some receivers. In contrast, send and
receive efficiencies were not correlated under diffusion
(r = −0.1, P = 0.1). In addition, send efficiency was
relatively uniform across regions under diffusion, while
receive efficiency showed markedly higher regional diver-
sity. This result is in line with previous observations of
the importance of local connectivity around target nodes
for diffusive communication processes [26].

Node degree was anti-correlated with send-receive
asymmetries under diffusion and search information (r =
−0.54,−0.70, respectively, both P < 10−15), with low-

and high-degree regions more likely to be senders and re-
ceivers, respectively. This was not the case for navigation
(P = 0.48), where senders and receivers were uniformly
distributed across the degree distribution. This suggests
that diffusive communication is considerably influenced
by node degree, while other topological and geometric
network properties shape send-receive asymmetries un-
der navigation.

Senders and receivers situated within cortical
gradients

Next, we aimed to investigate whether senders and re-
ceivers would reside at opposing ends of previously de-
lineated whole-brain gradients of functional connectiv-
ity [40]. We focussed on the uni- to multimodal corti-
cal gradient mapped by Marguiles and colleagues [38].
Under all three communication measures, senders were
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more likely to be located at the unimodal end of the
gradient, whereas the multimodal end was occupied by
receivers. More specifically, send-receive asymmetry and
cortical gradient eigenvalues were significantly correlated
across regions (navigation: r = −0.20, search informa-
tion: r = −0.29, diffusion: r = −0.30, all P < 10−4). In
further analyses, regions were classified as unimodal (U),
transitional (T) or multimodal (M) based only on the
cortical gradient (Materials and Methods, Cortical gradi-
ent of functional heterogeneity). The median send-receive
asymmetry across unimodal and transitional areas was
significantly increased in comparison to multimodal re-
gions (Fig. 3c,f,i; Wilcoxon rank sum test PT>M = 0.01,
2 × 10−4, 2 × 10−4 and PU>M = 4 × 10−4, 3 × 10−6,
8 × 10−7, for navigation, search information and diffu-
sion, respectively). Send-receive asymmetry did not dif-
fer between unimodal and transitional regions.

These results were generally robust to variations in cor-
tical parcellation and connection density thresholds (Fig.
S1 and S2). Taken together, our findings demonstrate
that decentralized communication measures applied to
the undirected human connectome unveil regional dis-
tinctions between putative senders and receivers. Fur-
thermore, we show that knowledge about the direction of
information flow can elucidate novel organizational struc-
ture within established cortical hierarchies, such as the
biases towards outgoing and incoming communication ef-
ficiency of uni- and multimodal regions, respectively.

Senders and receivers of cortical subsystems

Having characterized senders and receivers at the scale
of areal regions, we next sought to investigate send-
receive asymmetries between large-scale cortical subsys-
tems. We assigned cortical regions to distributed cog-
nitive systems according to established resting-state net-
works comprising M = 7 and 17 subsystems (Fig. S3a,b)
[41]. In addition, we employed a multimodal partition of
the cortex into M = 22 spatially contiguous subsystems
(Fig. S3c) [36]. Regional communication matrices were
downsampled to subsystem resolution and send-receive
asymmetries were computed for each pair of subsystems
(Materials and Methods, Cortical subsystems).

In keeping with the regional findings, we found that
some subsystems were putative senders while others were
predominantly receivers. Send-receive asymmetry ma-
trix values were significantly correlated across subsys-
tems among the communication measures investigated
(e.g., navigation and diffusion: r = 0.60, navigation and
search information: r = 0.66, diffusion and search in-
formation: r = 0.96; all P < 10−15, M = 17). Our
findings at the subsystem scale were generally consistent
across communication measures, and thus we focus on
navigation in this section (Fig. 4). Complete results for
navigation, diffusion and search information are shown,
respectively, in Figs. S4, S5, S6.

As shown in Fig. 4a,b, the somatomotor and ventral

attention networks were the most prominent senders for
the M = 7 partition. Prominent receivers included the
default mode, frontoparietal and limbic networks, which
were more efficiently navigated from a number of cog-
nitive systems than vice versa. Interestingly, adopting
a higher resolution functional partition (M = 17) sug-
gested that sub-components of coarse (M = 7) resting-
state networks can assume different roles as senders and
receivers. For instance, the visual network was segre-
gated into early (e.g., V1 and V2) from late areas of
the visual cortex (e.g., MT+ complex and dorsal and
ventral streams), with the first being a sender and the
latter a receiver (Fig. S4). Other systems that exhib-
ited this behaviour included the ventral attention, lim-
bic, somatomotor and default mode networks. These
findings reiterate that, despite the presence of asymme-
tries in send-receive efficiency, cognitive systems are not
exclusively senders or receivers, suggesting connectome
topology may allow for context-dependent directionality
of neural information flow between functional networks.

Finally, we identified senders and receivers for a high-
resolution cortical partition comprising M = 22 subsys-
tem [36]. This enabled a fine-grained, yet visually in-
terpretable, characterization of send-receive asymmetries
(Fig. 4c). For instance, navigation paths were more
efficient departing from V1 (subsystem 1) towards the
early visual cortex and MT+ complex (subsystems 2 and
5), the mid cingulate cortex and premotor cortices (sub-
system 7 and 8), different regions of the parietal cortex
(subsystems 16 to 18), and areas in the frontal and pre-
frontal cortices (subsystem 19 to 22). Meanwhile, naviga-
tion paths were more efficient departing from the ventral
system (subsystems 4), early and association auditory
cortices (subsystem 10 and 11) and the temporal cortex
(subsystem 13 and 14) towards V1.

More generally, across all three measures, the identi-
fication of senders and receivers was consistent between
regional and subsystem scales. Cortical domains associ-
ated with auditory, somatosensory and motor processes
ranked amongst the strongest senders, while frontal and
prefrontal areas consistently featured amongst the most
prominent receivers (Figs. S4, S5 and S6). Together,
these results provide putative multi-scale maps of how
the structural substrate of the human connectome may
facilitate directional information flow between cognitive
subsystems.

Senders, receivers and effective connectivity

We sought to validate our characterization of subsys-
tems as senders or receivers using an independent data
modality. To this end, time series summarizing the func-
tional dynamics of cortical subsystems were extracted
from resting-state functional MRI data for the same
K = 200 HCP participants. For each individual, we
used spectral DCM [42, 43] to compute effective connec-
tivity between cortical subsystems (M = 7, 17, 22, see
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FIG. 3. Send-receive communication asymmetry in the human connectome (N = 360 at 15% connection density). (a) Putative
senders (orange) and receivers (blue) under navigation projected onto the cortical surface. Regions colored gray are neutral and
do not show significant send-receive asymmetry. (b) Scatter plot showing correlation between send and receive efficiency across
regions under navigation. Send and receive efficiency values were aggregated across all individuals for each region. Markers are
colored according to send-receive asymmetry values (colors approximately match that of panel a). Small, medium and large
markers represent nodes with low (κ < 50), medium (50 ≤ κ ≤ 100) and high (κ > 100) degree, respectively. The dashed
line marks the x = y identity line. The distance between markers and the identity line provides a geometric interpretation of
regional bias towards sending (x < y) or receiving (x > y) efficiencies. (c) Top: Distribution of the cortical gradient eigenvalues
used as a measure of functional heterogeneity [38]. Bottom: Violin plots showing distribution of send-receive asymmetries for
regions classified as unimodal (red), transitional, (beige) and multimodal (blue) regions. Horizontal bars and white circles
denote, respectively, the mean and median of the distributions. Stars denote significant differences in between-group medians
given by a two-sided Wilcoxon rank sum test (one, two and three stars denote P < 0.05, 0.005, 0.0005, respectively). (d-e)

Search information equivalent of a-c. (g-i) Diffusion efficiency equivalent of a-c.

Materials and Methods, Effective connectivity). Pairwise
effective connectivity asymmetry was computed at the
scale of subsystems by applying the previously described
asymmetry test to the estimated effective connectivity

matrices (Fig. 2c). Importantly, effective connectivity
is an inherently directed (asymmetric) measure of con-
nectivity. This allowed us to test whether send-receive
asymmetries in communication efficiency (derived from
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FIG. 4. Send-receive asymmetry of cortical subsystems under navigation (N = 360 at 15% connection density). (a) Projection
of M = 7 distributed resting-state networks onto the cortical surface (top) and send-receive asymmetry matrix under navigation
(bottom). A matrix element A(i, j) > 0 denotes that communication occurs more efficiently from i to j than from j to
i. Send-receive asymmetry values that did not survive multiple comparison correction were suppressed and appear as white
cells. For ease of visualization and without loss of information (since A(i, j) = −A(j, i)), negative values were omitted. (b)
Resting-state networks ranked by propensity to send (top) or receive (bottom) information. Dashed vertical lines indicate a
significant bias towards outgoing (orange) and incoming (blue) communication efficiency. (c-d) Same as (a-b), but for M = 22
spatially contiguous cortical subsystems. Numbers listed next to module names identify corresponding rows and columns in

the asymmetry matrix.

diffusion MRI) and effective connectivity (derived from
resting-state fMRI) are correlated (Fig. 2d).

Communication and effective connectivity send-receive
asymmetries were significantly correlated across pairs of
subsystems (Fig. 5). These associations were significant
for all three communication measures and were replicated
across two independent resting-state functional MRI ses-
sions and multiple structural connection densities. For

instance, for M = 17, fMRI session 1 and 15% connec-
tion density, we found r = 0.51, 0.32, 0.32 for naviga-
tion, diffusion and search information, respectively (all
P < 10−4). Similarly, for M = 22, fMRI session 2 and
15% connection density, we obtained r = 0.45, 0.48, 0.48
for navigation, diffusion and search information, respec-
tively (all P < 10−12). No significant correlations were
found for M = 7, possibly due to the lack of statisti-
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FIG. 5. Effective connectivity used to validate send-receive asymmetries arising from network communication in structural
connectomes (N = 360). (a) Correlation across pairs of cortical subsystems (M = 17) in send-receive asymmetry values
from effective connectivity and three communication measures: i) navigation (green), ii) diffusion (violet), and iii) search
information (beige). Correlations were computed for two independent resting-state fMRI sessions (Sessions 1 and 2) and
multiple structural connection density thresholds (10, 15 and 20%). Significance threshold of P < 0.05 is indicated with a
dotted line. Crosses mark associations that were not statistically stronger than those found in families of 1000 rewired (blue)
and 1000 cost-preserving rewired (yellow) connectomes, respectively (repositioned connectomes, relevant for navigation, led
to statistically weaker associations in all scenarios). (b) Replication of Panel a for a cortical partition comprising M = 22
subsystems. (c) Left: scatter plot illustrating the correlation between navigation and effective connectivity asymmetries for
M = 17, 15% connection density and fMRI session 1. Shadows denote the 95% bootstrapped confidence interval. Top-right:
Distribution of correlations obtained for families of 1000 rewired (blue), repositioned (red) and cost-preserving rewired (yellow)
connectomes. Bottom-right: Send-receive asymmetry matrices for effective connectivity (resting-state functional MRI) and
navigation (diffusion MRI). The upper-triangular elements of these two matrices were correlated to test whether senders and
receivers were consistently identified across independent modalities. (d) Replication of Panel c for search information, M = 22,

10% connection density and fMRI session 2. EC: effective connectivity; r: Pearson correlation coefficient.

cal power afforded by only 21 data points. These results
suggest that biases in the directionality of neural sig-
nalling inferred from the structural connectome are re-
lated to the directions of causal functional modulation
during rest. Therefore, they establish a correspondence
between structural (connectome topology and network
communication measures) and functional (effective) di-
rections of neural information flow.

We sought to determine whether the above association
between communication and effective connectivity could
be explained by certain properties of connectome orga-
nization. We generated ensembles of randomized con-
nectomes in which (i) connectome topology was rewired
while preserving degree distribution [77]; (ii) connectome
topology was rewired while preserving degree distribution
and total network cost (defined as the sum of Euclidean

distances between structurally connected nodes [13]); and
(iii) nodes were spatially repositioned while preserving
topology (relevant only for navigation; see Supporting In-
formation, Note 2 ). For all families of randomized con-
nectomes, correlations between asymmetries in effective
connectivity and communication efficiency were signifi-
cantly decreased compared to empirical results (e.g., Fig.
5c,d top-right corner, all P < 10−3; with the exception of
diffusion and search information for the M = 17 partition
in fMRI session 2, Fig. 5a). These results indicate that
the relationship between send-receive asymmetry and di-
rectionality of functional modulation cannot be straight-
forwardly attributed to degree distribution, network cost
or a combination of the two, suggesting the importance
of more nuanced topological or geometric properties of
connectome organization to large-scale neural signalling.
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Senders and receivers in directed non-human
connectomes

Invasive connectome reconstruction techniques allow
for the resolution of axonal directionality, producing di-
rected connectomes for a host of non-human species [44].
Using directed connectomes of the fruit fly (drosophila)
[45, 46], mouse [47, 48] and macaque [49] (Materials and
methods, Non-human connectomes), we aimed to deter-
mine the extent to which send-receive asymmetry is de-
termined by axonal fiber directionality and/or the undi-
rected topology of nervous systems. To this end, we first
computed send-receive asymmetries for the directed con-
nectomes. In this case, communication asymmetry is in-
troduced both by the asymmetric character of the net-
work communication measures and by the presence of
directed connections. Next, we symmetrized the non-
human connectomes by removing connection directional-
ity, so that all connections could be traversed bidirection-
ally (Materials and methods, Symmetrized non-human
connectomes), and recomputed send-receive asymmetries
for the resulting undirected networks. In this scenario, as
with human diffusion-derived connectomes, asymmetries
are introduced solely by the asymmetry inherent to the
network communication measures. We tested whether
send-receive asymmetry values computed in the directed
(original) and undirected (symmetrized) non-human con-
nectomes were correlated across regions. Evidence of a
correlation would suggest that the undirected topology
and geometry of connectomes are influential in deter-
mining the directionality of neural signalling regardless
of axonal fiber orientation.

For the binarized (unweighted) connectomes of all
species, undirected diffusion and search information
asymmetries were strongly correlated with their directed
counterparts (fly: r = 0.95, 0.96, mouse: r = 0.58, 0.50,
macaque: r = 0.87, 0.75, for diffusion and search infor-
mation asymmetries, respectively; all P < 10−10; Fig.
6a,c,d). Non-human connectomes are typically charac-
terized by high connection density, a property that is
even more accentuated after symmetrizing connections
(fly: 83%, 89%, mouse: 53%, 70%, macaque: 66%, 79%,
directed (original) and undirected (symmetrized) connec-
tion densities, respectively). Binary navigation paths are
seldom asymmetric for densely connected networks [15],
restricting the comparison between directed and undi-
rected send-receive asymmetries under navigation. Fur-
thermore, in a binary analysis, the relationship between
directed and undirected asymmetries may follow trivially
from the high connection density of the directed net-
works, since original and symmetrized topologies will be
closely related. Considering connection weights addresses
this issue by taking into account the heterogeneous dis-
tribution of connectivity strengths of these networks [49].
Across species, send-receive asymmetries of weighted
connectomes were also correlated between directed and
undirected versions (fly: r = 0.58, 0.84, 0.41, mouse:
r = 0.34, 0.32, 0.38, macaque: r = 0.67, 0.80,−0.26, for

navigation, diffusion and search information asymme-
tries, respectively; all P < 10−10, with the exception of
P = 0.01 for weighted search information in the macaque;
Fig. 6b,e,f). This suggests that the distinction between
putative senders and receivers is not exclusively deter-
mined by the directionality of individual fibers, but is
rather partially shaped by the undirected topology of
nervous systems. Therefore, even in the absence of in-
formation about the directionality of all individual con-
nections, we can still estimate the directionality of infor-
mation flow in brain networks based on their topological
and geometrical characteristics.

DISCUSSION

The present study focused on characterizing the direc-
tionality of information flow in human and non-human
brain networks. Previous work has explored differences
between the communication efficiency of homotopic re-
gions in order to characterize cortical lateralization [14].
In a recent study, Avena-Koenigsberger and colleagues
presented a first account of differences between send
and receive communication in brain networks [26]. The
authors proposed source and target closeness centrality
measures to describe incoming and outgoing communica-
tion along a decentralized–centralized spectrum of rout-
ing models. Our concept of send-receive communication
asymmetry builds on these efforts. We contribute a sta-
tistical framework to estimate directionality of neural sig-
nalling, as well as to identify putative sender and receiver
nodes, in connectomes lacking any intrinsic directional-
ity information, such as those mapped with diffusion MRI
and tractography.

Our results consolidate the utility of disparities be-
tween incoming and outgoing propagation processes in-
herent to decentralized network communication models.
Send-receive communication asymmetry of cortical re-
gions and subsystems recapitulated, from a structural
connectivity standpoint, (i) functional heterogeneity gra-
dients and (ii) directions of functional modulation in-
trinsic to neural fluctuations at rest (effective connec-
tivity). Finally, we found that send-receive asymmetry
could still be recovered after suppressing the directional-
ity of all individual connections in directed non-human
connectomes. This suggests that the geometry and topol-
ogy of nervous systems play a crucial role in shaping the
direction of information flow.

Importantly, we reiterate that a significant send-
receive asymmetry does not preclude information trans-
fer in a particular direction, in the same way that regions
classified as senders (receivers) are capable of receiving
(sending) information. Indeed, send and receive efficien-
cies under navigation and search information were pos-
itively correlated across regions. Interestingly, we also
found that coarse functional networks with significant
biases towards incoming or outgoing communication are
typically comprised of subcomponents placed along dif-
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FIG. 6. Comparison between directed and undirected (symmetrized) send-receive asymmetries for the connectomes of the
fly, mouse and macaque. (a) Correlation across regions in send-receive asymmetry values between directed and undirected
navigation (green), diffusion (violet) and search information (beige) asymmetries for binarized (unweighted) connectomes. Black
crosses indicate non-significant (P > 0.05) or undefined (in the case of lack of communication asymmetry) correlations. (b)
Same as (a), but for weighted connectomes. (c-f) Scatter plots illustrating the association between directed and undirected

communication asymmetries.

ferent positions of the sender-receive spectrum. This may
facilitate, for instance, feedback loops in which high-order
regions send information to sensory cortices, allowing for
flexible and context-dependent transfer of neural infor-
mation. These results support the notion that cortical
computations do not follow a strictly serial paradigm,
but rather involve distributed hierarchies of parallel in-
formation processing [41, 50].

Navigation efficiency, diffusion efficiency and search in-
formation led to similar patterns of send-receive asymme-
try despite important conceptual differences in the net-
work communication models associated with these mea-
sures. This indicates that our results may be primar-
ily driven by specific properties of brain networks, rather
than by aspects particular to one network communication
measure. Randomized connectomes generally failed to
reproduce the observed relationship between send-receive
asymmetries and effective connectivity, suggesting that
complex organisational properties of nervous systems are
necessary to shape the directionality of neural signalling.

The analysis of non-human directed connectomes con-
tributes further insights into our human connectome re-
sults. We found a significant agreement between send-
receive asymmetries computed from original directed net-
works and their symmetrized counterparts. Despite the

importance of directed connections to brain network
topology [49–51], this finding provides cross-species ev-
idence that the undirected architecture of nervous sys-
tems encodes information about signalling directionality.
In addition, it further consolidates the utility of studying
directional dynamics using undirected networks, suggest-
ing that the putative directions of neural information flow
inferred from human connectomes are pertinent despite
the lack of directed connections.

Several studies of axonal tract-tracing and non-human
connectomes [37, 50, 52], macroscale gradients of corti-
cal organization [38, 40, 53], and computational mod-
els of neuronal dynamics [29, 54–57] converge to a com-
mon conceptualization of cortical hierarchies. The bot-
tom of the hierarchy tends to comprise high-frequency,
low-degree, unimodal, sensory and motor areas that con-
stitute the main inputs of perceptual information to the
brain. At the top, low-frequency, high-degree, mul-
timodal regions are conjectured to integrate multiple
streams of information in order to support higher cogni-
tive functions. Our observations of a send-receive spec-
trum of cortical regions and subsystems complements this
description of neural organization, placing senders and
receivers, respectively, at the uni- and multimodal ends
of the hierarchy.
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We used spectral DCM applied to resting state fMRI
to quantitatively validate the send-receive asymmetries
inferred from the structural connectomes mapped with
tractography and diffusion MRI. Recent work has demon-
strated the validity of spectral DCM in multi-site longitu-
dinal settings [58] and using optogenetics combined with
functional MRI in mice [59]. The choice to use spectral
DCM over the traditional task-based DCM was moti-
vated by two important factors. First, spectral DCM in-
fers effective connectivity from resting-state fMRI data,
allowing validation of our findings independent of hy-
potheses about the directionality of causal connectivity
specific to certain task scenarios. In addition, recent
evidence indicates that functional connectivity topol-
ogy at rest shapes task-evoked fluctuations, highlighting
the cognitive relevance of resting-state neural dynam-
ics [60, 61]. Second, spectral DCM is capable of han-
dling relatively large networks comprising many regions
[62]. This enabled a direct comparison between asymme-
tries in send-receive efficiency and effective connectivity
at the level of subsystems spanning the whole cerebral
cortex. Our results provide cross-modal evidence that
network communication measures accurately capture as-
pects of directional causal influences between neural sys-
tems. Future research validating and further exploring
this relationship is necessary. For instance, network com-
munication measures may help formulate hypotheses for
DCM studies, potentially reducing the number of can-
didate models based on structurally-derived communica-
tion asymmetry [63].

Several limitations of the present study should be con-
sidered. Alternative asymmetric network communication
measures such as Markovian queuing networks [64], lin-
ear transmission models of spreading dynamics [18, 19],
cooperative learning [65] and diffusion processes based on
memory-biased random walks [23] can lead to further in-
sight into the large-scale directionally of neural signalling.
Additional measures of directed functional connectivity
such as Granger causality [66] and structural equation
modeling [67] may provide supplementary means of cross-
modal validation. Tractography algorithms are prone to
a number of known biases, potentially influencing results
regarding human structural connectomes [34, 68, 69].
Lastly, the human connectomes considered in this study
did not include subcortical regions, due to challenges in
performing tractography within the subcortex. This lim-
itation should be addressed in future studies, given the
important role of subcortical regions in mediating neural
signalling between cortical areas.

In conclusion, we showed that the large-scale direction-
ality of neural signalling can be inferred, to a significant
extent, from the interaction between decentralized net-
work communication measures and the undirected topol-
ogy and geometry of brain networks. These results chal-
lenge the belief that connectomes mapped from in vivo
diffusion data are unable to characterize asymmetric in-
teractions between cortical elements. Our findings intro-
duce decentralized network communication models as a

new avenue to explore directional functional dynamics in
human and non-human connectomes.

MATERIALS AND METHODS

Connectivity data

Human connectomes

Minimally preprocessed diffusion-weighted MRI data
from 200 healthy adults (age 21–36, 48.5% female) was
obtained from the Human Connectome Project (HCP)
[33]. Details about the acquisition and preprocessing of
this diffusion MRI are described in [70, 71].

Connectome analyses are sensitive to the number of
nodes used to reconstruct brain networks [72]. We aimed
to reproduce our key findings for human connectomes
constructed with different granularities of cortical seg-
mentation comprising N = 256, 360, 512 regions/nodes.
The parcellations for N = 256, 512 segment the cortex
into approximately evenly sized regions that respect pre-
defined anatomical boundaries. Details on the construc-
tion of these parcellations are described in [15]. In addi-
tion, we mapped connectomes using the HCP MMP1.0
atlas (N = 360), a multi-modal cortical parcellation
based on the combination of structural, diffusion and
functional imaging data from the HCP [36].

Diffusion tensor imaging combined with a determin-
istic tractography pipeline was used to map connec-
tomes for each individual. Deterministic tractography
leads to less false positive connections than other recon-
struction methods, and thus may better suit connectome
mapping compared to alternative tractography methods
[34, 68, 69]. Computations were carried out using MR-
trix3 [73] with the following parameters: FACT tracking
algorithm, 5×106 streamlines, 0.5 mm tracking step-size,
400 mm maximum streamline length and 0.1 FA cutoff
for termination of tracks. Connection strength between a
pair of regions was determined as the number of stream-
lines with extremities located in the regions divided by
the product of the surface area of the region pair, result-
ing in a N × N weighted connectivity matrix per sub-
ject. All human connectome analyses were carried out
on weighted networks.

Non-human connectomes

The fruit fly connectome was mapped using images
of 12,995 projection neurons in the female drosophila
brain available in the FlyCircuit database [45, 46]. Sin-
gle neurons were labeled with green fluorescent protein
and traced from whole brain three-dimensional images.
Individual neurons were grouped into 49 local processing
units with specific morphology and function. The result-
ing connectome is a 49 × 49 weighted, directed, whole-
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brain network for the fruit fly, with 83% connection den-
sity.

The Allen Institute for Brain Science mapped the
mesoscale topology of the mouse nervous system by
means of anterograde axonal injections of a viral tracer
[47]. Using two-photon tomography, they identified ax-
onal projections from the 469 injections sites to 295
target regions. Building on these efforts, Rubinov and
colleagues constructed a directed, bilaterally symmetric,
whole-brain network for the mouse, comprising N = 112
cortical and subcortical regions with 53% connection den-
sity [48]. Connections represent interregional axonal pro-
jections and their weights were determined as the propor-
tion of tracer density found in target and injected regions.

Markov and colleagues applied 1615 retrograde tracer
injections to 29 of the 91 areas of the macaque cerebral
cortex, spanning occipital, temporal, parietal, frontal,
prefrontal and limbic regions [49, 74]. This resulted in
a 29 × 29 weighted, directed, interregional sub-network
of the macaque cortico-cortical connections with 66%
connection density. Connection weights were estimated
based on the number of neurons labelled by the tracer
found in source and target regions, relative to the amount
found in whole brain.

Network communication measures

A weighted connectome can be expressed as a matrix
W ∈ RN×N , where Wij is the connection weight be-
tween nodes i and j. Connection weights are a mea-
sure of similarity or affinity, denoting the strength of
the relationship between two nodes (e.g., streamline
counts in tractography or fraction of labelled neurons in
tract tracing). The computation of communication path
lengths mandates a remapping of connection weights into
lengths, where connection lengths are a measure of the
signalling cost between two nodes [30]. The transforma-
tion L = − log10(W/(max(W ) + min(W>0)) ensures a
monotonic weight-to-length remapping that attenuates
extreme weights [8, 75], where min(W>0) denotes the
smallest positive value in W, preventing the remapping
of the maximum value of W to 0.

Navigation efficiency

Navigation (also referred to as greedy routing) is a
decentralized network communication model that uti-
lizes information about the network’s spatial embedding
to route signals without global knowledge of network
topology [31]. Navigation is reported to achieve near-
optimal communication efficiency in a range of real-world
complex networks, including the connectomes of several
species [15–17].

Navigation from node i to j was implemented as fol-
lows. Progress to i’s neighbour that is closest in distance
to j. Repeat this process for each new node until j is

reached—constituting a successful navigation path—or a
node is revisited—constituting a failed navigation path.
The distance between two nodes was computed as the
Euclidean distance between the centroids of their respec-
tive gray matter regions.

Let Λ denote the matrix of navigation path lengths. If
node i cannot navigate to node j, Λij = ∞. Otherwise,
Λij = Liu + ... + Lvj , where {u, ..., v} is the sequence
of nodes visited during navigation. Navigation efficiency
is given by Enav(i, j) = 1/Λij , where Enav(i, j) is the
efficiency of the navigation path from node i to j [15].

Diffusion Efficiency

A diffusion process is a network communication model
whereby information is broadcast along multiple paths si-
multaneously [23]. Diffusion can be understood in terms
of agents, often termed random walkers, which are initi-
ated from a given region and traverse the network inde-
pendent of each other by randomly selecting a connection
to follow out from each successive region that is visited.
Diffusive communication does not mandate assumptions
on global knowledge of network topology, constituting,
from this perspective, a biologically plausible model for
neural communication [9]. Diffusion efficiency [24] is re-
lated to how many intermediate regions (synapses), on
average, a naive random walker needs to traverse to reach
a desired destination region.

Let T denote the transition probability matrix of a
Markov chain process with states corresponding to nodes
in the adjacency matrix W . The probability of a random
walker at node i stepping to node j is given by Tij =

Wij/
∑N

n=1Win. The expected number of hops 〈Hij〉 a
random walker takes to travel from node i to node j is
given by [76]:

〈
Hij

〉
=
∞∑
h=0

hP (Hij = h) =
∞∑
h=0

P (Hij > h).

The probability of a walker requiring more than h hops
to reach node j is equal to the sum of the probabilities of
the walker being at any node other than j after exactly
j hops. To compute this, we define Tj as the matrix T
with all elements in the jth column set to zero, so that
it is impossible for a walker to arrive at node j. This

way, we have P (Hij > h) =
∑N

n=1

[
Th
j

]
in

, where
[
Th
j

]
in

expresses the probabilities of walkers departing from i
and reaching any other node expect j in exactly h hops.
It follows that

〈
Hij

〉
=

∞∑
h=0

N∑
n=1

[
Th
j

]
in

=

N∑
n=1

[
(1− Tj)−1

]
in

.

The diffusion efficiency communication matrix is given
by Edif (i, j) = 1/Hij , where Edif (i, j) quantifies the ef-
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ficiency of information flow from node i to node j under
a diffusive process [24].

Search Information

Search information relates to the probability that a
random walker will serendipitously travel between two
nodes via their shortest path [32], quantifying the ex-
tent to which efficient routes are hidden in the net-
work topology. Previous studies suggest node pairs with
an accessible shortest path—characterized by low search
information—tend to show stronger resting-state func-
tional connectivity [8].

The connection length matrix L can be used to com-
pute Ω, where Ωij = {u, ..., v} denotes the sequence of
nodes traversed along the shortest path from node i to
node j. The search information from i to j is given by
SIij = −log2(P (Ωij)), where P (Ωij) = Tiu + ... + Tvj
and T is the transition probability matrix. We define
communication efficiency under search information as
Esi(i, j) = −SIi,j . This way, Esi(i, j) quantifies the ac-
cessibility of the Ωij shortest path under diffusive com-
munication.

Send-receive communication asymmetry measures

Send-receive communication asymmetry matrices A ∈
RN×N were computed as detailed in Measures of send-
receive communication asymmetry. For each pair of re-
gions or subsystems, a one-sample t-test was used to as-
sess whether the mean of the send-receive asymmetry val-
ues across all individuals was significantly different from
0. Bonferroni correction was then performed to control
for the N(N − 1)/2 multiple comparisons corresponding
to distinct pairs of regions. This was repeated for each
of the three communication measures.

The communication asymmetry matrix A refers to
pairwise asymmetric interactions between regions. We
performed a similar test to derive a regional (i.e., node-
wise) measure of send-receive asymmetry. Let {S,R} ∈
RN×K denote, respectively, the average send and receive
efficiencies of nodes in the network such that S(i, k) =

1/N
∑N

j=1 C(i, j, k) and R(j, k) = 1/N
∑N

i=1 C(i, j, k).
The difference between outgoing and incoming communi-
cation efficiencies of node i is given by δ(i, k) = S(i, k)−
R(i, k). Analogous to the pairwise asymmetry test, we
performed a one-sample t-test to determine whether the
mean of the distribution δ(i, k = 1...K) is significantly
different to 0. The resultant t-statistic, termed a(i),
quantifies the communication asymmetry of node i by
taking into account all of its incoming and outgoing com-
munication efficiencies. Nodes with significant and pos-
itive (negative) a were classified as senders (receivers),
while non-significant values of a were characterized neu-
tral nodes. For each network communication measure,

Bonferroni correction was performed to control for mul-
tiple comparisons across the N regions.

Regionally-aggregated send and receive efficiencies de-
picted in the scatter plots of Fig. 3e,h were computed as

s(i) = 1/K
∑K

k=1 S(i, k) and r(j) = 1/K
∑K

k=1R(j, k),
respectively. For navigation (Fig. 3b), we display the
median send and receive efficiencies in order to attenu-
ate outlier efficiency values and aid visualization.

Non-human directed connectomes were constructed
from the results of numerous invasive experiments, often
combining experiments across multiple animals of a given
species to yield a single, representative connectome. As a
result, non-human brain networks were not available for
multiple individuals, precluding use of the communica-
tion asymmetry test defined for human connectomes. As
an alternative, for non-human brain networks, we com-
puted the communication asymmetry between nodes i
and j as A(i, j) = (E(i, j) − E(j, i))/(E(i, j) + E(j, i)),
where E is a communication efficiency matrix. While this
measure does not constitute a statistical test of commu-
nication asymmetry, it allows us to evaluate differences
in the directionality of information flow of non-human
nervous systems.

Cortical gradient of functional heterogeneity

Margulies and colleagues applied a diffusion embed-
ding algorithm to resting-state fMRI data to identify la-
tent components describing maximum variance in corti-
cal functional connectivity [38]. The obtained compo-
nents, termed “gradients”, are conjectured to describe
macroscale principles of cortical organization [40]. In
particular, the resultant principal gradient (G1) sepa-
rated uni- from multimodal regions, spanning a spectrum
from primary sensory-motor areas on one end, to the re-
gions comprising the default-mode network on the other.
We used this gradient as a quantitative measure of corti-
cal functional heterogeneity and compared it to regional
send-receive communication asymmetries. To this end,
we downsampled the gradient from vertex to regional
resolution by averaging the values comprising each of the
N = 256, 360, 512 cortical areas defined by the parcel-
lations that we used. Regions were grouped into the
unimodal (G1 ≤ −2), transitional (−2 < G1 < 2) and
multimodal (G1 ≥ 2) groups shown in Fig. 3.

Cortical subsystems

Yeo and colleagues proposed a widely-used partition of
the cortical surface into 7 and 17 resting-state functional
networks [41]. These networks constitute distributed
(i.e., non-contiguous) functional communities that have
been implicated in a wide range of cognitive demands, as
well as in rest. Glasser and colleagues used multimodal
HCP data to identify 360 cortical regions. Subsequently,
they grouped these regions into 22 contiguous subsystems
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based on geographic proximity and functional similarities
[36]. We use these definitions of cortical partitions to in-
vestigate send-receive communication asymmetry at the
level of subsystems.

First, we transformed the Yeo partitions (M = 7, 17)
from vertex to regional resolution. This was achieved
by assigning each of N = 360 cortical regions to the
resting-state network with the largest vertex count within
the vertices comprising the region. The HCP partition
(M = 22) does not necessitate this step, since it is already
defined in terms of the N = 360 of the Glasser atlas.

Second, we downsampled individual communication ef-
ficiency matrices from regional (N = 360) to subsystem
resolution (M = 7, 17, 22) by averaging the pairwise effi-
ciency of nodes assigned to the same subsystem. For two
subsystems u and v, we have

E
′

uv =
1

|Mu||Mv|
∑
i∈Mu
j∈Mv

Eij

where Mu and |Mu| denote, respectively, the set and
number of regions belonging to subsystem u, E ∈ RN×N ,
and E

′ ∈ RM×M . Across K subjects, this results in a set
of communication matrices C ∈ RM×M×K that is used
to compute between-subsystems send-receive communi-
cation asymmetries as described in Fig. 2 and Materials
and Methods, Communication asymmetry test.

The send-receive communication asymmetry for indi-
vidual cortical subsystems was computed analogous to re-
gional communication asymmetries as described in Send-
receive communication asymmetry measures. For each
network communication measure, Bonferroni correction
for M and M(M−1)/2 multiple comparisons was applied
to individual and pairwise subsystems asymmetries, re-
spectively.

Send-receive effective connectivity asymmetry

Spectral DCM estimates effective connectivity from
resting-state fMRI data. It receives as input time series
characterizing the functional dynamics of neural activity
and a network model describing how these elements are
coupled. As opposed to the more common task-based
DCM, spectral DCM estimates effective connectivity in
the absence of experimental or exogenous inputs, charac-
terizing functional modulations between neural elements
based on intrinsic neural fluctuations at rest. Details on
the generative models inherent to spectral DCM as well
as the frequency-domain model inversion are described
in [42, 62].

Minimally preprocessed resting-state fMRI data for the
same K = 200 subjects was acquired from the HCP.
Functional volumes were acquired during 14m33s at 720
TR, resulting in 1,200 time points. Data from two sepa-
rate sessions (right-to-left and left-to-right encoding, per-
formed on different days) was used to compute two es-
timates of effective connectivity for each subject. HCP

acquisition and preprocessing of resting-state fMRI are
detailed in [70, 71].

We computed the blood-oxygenation-level-dependent
(BOLD) signal of N = 360 regions by averaging the time
series of all cortical surface vertices comprised into a re-
gion. Next, the N regions were partitioned into M cor-
tical subsystems as described in Materials and Methods,
Cortical subsystems. For each subsystem, we performed
a principal component analysis on all the time series be-
longing to it. The resultant first principal component
was used to summarize the functional activity of a sub-
system in a single time series. The M×1, 200 time series
of principal components were used as input to spectral
DCM, together with a fully connected model of coupling
strengths (1M×M ), enabling estimation of effective con-
nectivity between subsystems covering the whole cortex
[62]. Spectral DCM estimations were carried out using
SPM12.

Spectral DCM estimates signed effective connectivity,
with positive and negative values indicating excitatory
and inhibitory influences, respectively. Under the as-
sumption that both excitatory and inhibitory processes
are facilitated by communication between neural ele-
ments, we considered the absolute value of the estimated
coupling strengths.

The obtained coupling strengths of each subject were
concatenated. For each resting-state session, this yielded
a M ×M ×K effective connectivity matrix, which were
used to compute effective connectivity asymmetry be-
tween cortical subsystems, as described in Fig. 2 and
Materials and Methods, Communication asymmetry test.

Symmetrized non-human connectomes

Directed non-human connectomes (Wd) were sym-
metrized in order to omit information on axonal direc-
tionality. Undirected (symmetric) networks (Wu) were
computed as Wu = (Wd + WT

d )/2, ensuring that all
original connections in Wd can be traversed bidirection-
ally in Wu. Directly connected node pairs do not show
send-receive asymmetry under navigation, since both di-
rections of routing will necessarily occur via the single
connection linking the two nodes. For this reason, we
restricted the analyses in Senders and receivers in non-
human connectomes to node pairs that did not share a
direct structural connection in Wu.

Data and code availability

All analyses in the present study were carried out on
publicly available datasets. Structural and effective hu-
man brain networks were mapped from Human Connec-
tome Project data [33] (https://db.humanconnectome.
org/). The fruit fly connectome was collated from
data available in http://www.flycircuit.tw and can
be found in the supplementary information of reference
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[46]. The macaque connectome was derived from data
available at http://core-nets.org/ [49]. The mouse
connectome was constructed from resources provided by
the Allen Institute for Brain Science (https://mouse.
brain-map.org/ [47]) and is available in the supplemen-
tary information of reference [48]. The cortical gradient
of functional connectivity from reference [38] is available
at https://www.neuroconnlab.org/data/index.html.

Send-receive communication asymmetry measures and
other data necessary to generate key figures in this work
will be made available through the BALSA database
(https://balsa.wustl.edu/) upon manuscript accep-
tance. Amongst other information, the dataset will in-
clude interactive visualizations of the send-receive asym-

metry cortical projections shown in Fig 3 and tables de-
tailing the send-receive asymmetry obtained for all corti-
cal regions. We will also provide a MATLAB demonstra-
tion script that uses this data to systematically reproduce
our key findings.

Functions to compute navigation efficiency, diffu-
sion efficiency and search information are available
as part of the Brain Connectivity Toolbox (https:
//sites.google.com/site/bctnet/). Further analy-
ses and computations were performed using MRtrix3
(www.mrtrix.org/), SPM12 (https://www.fil.ion.
ucl.ac.uk/spm/software/spm12/) or custom MAT-
LAB code that will be made available upon acceptance
of this manuscript, as per described in the Materials and
Methods.
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[8] J. Goñi, M. P. van den Heuvel, A. Avena-Koenigsberger,
N. Velez de Mendizabal, R. F. Betzel, A. Griffa,
P. Hagmann, B. Corominas-Murtra, J.-P. Thiran, and
O. Sporns, “Resting-brain functional connectivity pre-
dicted by analytic measures of network communication,”
Proc Natl Acad Sci U S A, vol. 111, pp. 833–8, Jan 2014.

[9] A. Avena-Koenigsberger, B. Misic, and O. Sporns,
“Communication dynamics in complex brain networks,”
Nat Rev Neurosci, vol. 19, pp. 17–33, Dec 2017.

[10] G. Hahn, A. Ponce-Alvarez, G. Deco, A. Aertsen, and
A. Kumar, “Portraits of communication in neuronal net-
works,” Nat Rev Neurosci, Dec 2018.

[11] M. Rubinov and O. Sporns, “Complex network measures
of brain connectivity: uses and interpretations,” Neu-
roimage, vol. 52, pp. 1059–69, Sep 2010.

[12] E. Bullmore and O. Sporns, “Complex brain networks:

graph theoretical analysis of structural and functional
systems,” Nature Reviews Neuroscience, vol. 10, no. 3,
pp. 186–198

[13] E. Bullmore and O. Sporns, “The economy of brain net-
work organization,” Nat Rev Neurosci, vol. 13, pp. 336–
49, Apr 2012.

[14] B. Misic, R. F. Betzel, A. Griffa, M. A. de Reus,
Y. He, X.-N. Zuo, M. P. van den Heuvel, P. Hagmann,
O. Sporns, and R. J. Zatorre, “Network-based asymme-
try of the human auditory system,” bioRxiv, p. 251827,
2018.

[15] C. Seguin, M. P. van den Heuvel, and A. Zalesky, “Nav-
igation of brain networks,” Proc Natl Acad Sci U S A,
vol. 115, pp. 6297–6302, 06 2018.

[16] M. Boguna, D. Krioukov, and K. C. Claffy, “Navigabil-
ity of complex networks,” Nature Physics, vol. 5, no. 1,
pp. 74–80

[17] A. Allard and M. Serrano, “Navigable maps of struc-
tural brain networks across species,” arXiv preprint
arXiv:1801.06079, 2018.
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M. Paquette, S. St-Jean, G. Girard, F. Rheault, J. Sidhu,
C. M. W. Tax, F. Guo, H. Y. Mesri, S. Dávid, M. Froel-
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sard, C. Bedetti, M. Desrosiers, S. Brambati, J. Doyon,
A. Sarica, R. Vasta, A. Cerasa, A. Quattrone, J. Yeat-
man, A. R. Khan, W. Hodges, S. Alexander, D. Romas-
cano, M. Barakovic, A. Auŕıa, O. Esteban, A. Lemkad-
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SUPPLEMENTARY INFORMATION

Note 1: Consistency of sender-neutral-receiver
classification of cortical regions across

communication measures

Extending our analyses of correlations between send-
receive asymmetries across communication measures, we
compared the sender-neutral-receiver classifications of
cortical regions obtained from navigation efficiency, diffu-
sion efficiency and search information (Table S1). As ex-
pected by their mutual dependency on random walk pro-
cesses, classifications for send-receive asymmetries under
diffusion efficiency and search information were tightly
related (76% accuracy, Table S1c). While classifica-
tion under navigation showed less agreement with the
other measures (46% and 44% accuracy for diffusion and
search information, respectively; Table S1a,b), the ob-
tained three-way classification accuracy remained larger
than the 33% baseline expected by chance.

We further explored this relationship by considering
two-way classifications of regions into sender or not
sender, and receiver or not receiver. This allowed us to
assess the statistical significance of the association be-
tween the classifications from two communication mea-
sures by using Fisher’s exact test. The significance of the
obtained P-values further supports the classification con-
sistency across communication measures (Table S1d-i).

Note 2: Randomized connectomes

We used three families of randomized connectomes: i)
topologically randomized (rewired) networks, ii) topolog-
ically randomized cost-preserving networks and iii) spa-
tially randomized (repositioned) networks. For K sub-
jects, each individual connectome was used to generate
ensembles of 1,000 surrogate networks for each family.
Computing communication measures for these networks
resulted in 1,000 sets of CN×N×K null communication
efficiency matrices, per family, per communication mea-
sure. These sets were downsampled to subsystem resolu-
tion and used to compute the correlation between effec-
tive connectivity and null network send-receive commu-
nication asymmetries. Non-parametric P-values testing
the hypothesis of a lack of difference between empirical
and null correlations were computed as the proportion
of times the communication asymmetry of null networks
yielded stronger correlations than the one obtained for
the empirical connectome.

Topologically randomized networks were computed us-
ing the Maslov-Sneppen rewiring routine [77] imple-
mented in the Brain Connectivity Toolbox [11]. In this
procedure, each connection was swapped between nodes
once (on average), while maintaining the network’s orig-
inal degree distribution and ensuring it remained con-
nected.

One disadvantage of topologically randomized net-
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works is the introduction of a disproportionate number
of long-range connections, resulting in null networks with
markedly increased wiring cost compared to the empir-
ical network. To address this issue, we first computed
the empirical wiring cost of a network as the sum of Eu-
clidean distances between its connected nodes [78]. We
then generated cost-preserving topologically randomized
networks by adding a constraint to the Maslov-Sneppen
routine, namely that connection swaps must not alter

the original network’s cost by more than 1mm. Previous
studies report that this leads to surrogate networks that
match empirical wiring cost within a 0.1% error margin
[15].

Spatially randomized networks are relevant for naviga-
tion, which routes information based on local knowledge
of network geometry. They are constructed by randomly
swapping the spatial positioning of nodes, while main-
taining network topology unaltered.
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S N R
S 86 15 24
N 35 20 36
R 61 22 61

(a) Navigation (rows) and diffusion
(columns): Acc = 0.46.

S N R
S 70 15 40
N 27 13 51
R 43 22 79

(b) Navigation and SI: Acc = 0.44.

S N R
S 140 37 5
N 0 13 44
R 0 0 121

(c) Diffusion and SI: Acc = 0.76.

S ¬S
S 129 101
¬S 49 81

(d) Nav & diff:
Acc = 0.58,
P = 0.001.

R ¬R
R 157 56
¬R 82 65

(e) Nav & diff:
Acc = 0.67,
P = 6× 10−4.

S ¬S
S 155 75
¬S 65 65

(f) Nav & SI:
Acc = 0.61,
P = 0.002.

R ¬R
R 124 89
¬R 66 81

(g) Nav & SI:
Acc = 0.57,
P = 0.014.

S ¬S
S 178 0
¬S 42 140

(h) Diff & SI:
Acc = 0.88,

P = 3× 10−62.

R ¬R
R 190 49
¬R 0 121

(i) Diff & SI:
Acc = 0.86,

P = 5× 10−56.

TABLE S1. Comparison of the classification of cortical regions as senders (S), neutral (N) and receivers (R) across network
communication measures. The classification accuracy (Acc) is computed as the sum of values in the main diagonal (number of

consistently classified regions) divided by the sum of values in the table (total number of regions). (a-c) Three-way
contingency tables of the classification obtained from the send-receive asymmetries of two communication measures. Measures
listed first and second in the captions have their classes displayed in the rows and columns of the tables, respectively. (d-i)

Two-way contingency tables of the classification obtained from the send-receive asymmetries of two communication measures.
In this case, for each pair of measures, regions are classified as sender (S) or not sender (¬S), and receiver (R) or not receiver

(¬R). P-values obtained from Fisher’s exact test were used to examine the significance of the association between the
classifications of two measures.
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FIG. S1. Replication analyses regarding sending efficiency, receiving efficiency and send-receive communication asymmetry
for N = 256, 360, 512 parcellation resolutions and 10%, 15% and 20% connection density thresholds. Vertical axes indicate
the Pearson correlation’s r, while black horizontal lines mark the effect size correspondent to a correlation with P = 0.05 for
each N . (a) Correlation between sending and receiving navigation efficiencies. (b) Correlation between regional navigation
asymmetry and node degree (averaged across the connectomes of all participants). (c) Same as b, but for node strength. (d-f)

Same as a-c, but for diffusion efficiency. (g-i) Same as a-c, but for search information.
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FIG. S2. Replication analyses regarding the relationship between communication asymmetry and functional heterogeneity
for N = 256, 360, 512 parcellation resolutions and 10%, 15% and 20% connection density thresholds. The obtained results
are consistent across parcellations and connection densities, with the exception of the lack of correlation between send-receive
asymmetry and the gradient of functional heterogeneity for N = 256. (a) Pearson correlation between regional navigation
asymmetry and functional heterogeneity. Black horizontal lines mark the effect size correspondent to a correlation with
P = 0.05 for each N . (b) Z-statistic from a two-sided Wilcoxon test evaluating the hypothesis that the median navigation
asymmetry of unimodal regions is larger than that of neutral regions. Black horizontal lines mark the value of a Z-statistic
correspondent to P = 0.05. (c) Same as b, but for neutral and multimodal regions. (d) Same as b, but for unimodal and

multimodal regions. (e-h) Same as a-d, but for diffusion efficiency. (i-m) Same as a-d, but for search information.
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FIG. S3. Definition of the M = 7, 17, 22 cortical subsystems utilized in sections Send-receive communication asymmetries of
cortical subsystems Send-receive communication asymmetry and effective connectivity.
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FIG. S4. Send-receive navigation asymmetry of cortical subsystems for M = 7, 17, 22 and 10%, 15% and 20% connection
density thresholds. Send-receive asymmetry matrices were thresholded to display only statistically significant values, while
accounting for multiple comparisons. For ease of visualization and without loss of information (since A(i, j) = −A(j, i)),
negative values were omitted. Thus, A(i, j) > 0 denotes that communication takes place more efficiently from i to j than from

j to i.
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FIG. S5. Send-receive diffusion asymmetry of cortical subsystems for M = 7, 17, 22 and 10%, 15% and 20% connection density
thresholds. Send-receive asymmetry matrices were thresholded to display only statistically significant values, while accounting
for multiple comparisons. For ease of visualization and without loss of information (since A(i, j) = −A(j, i)), negative values

were omitted. Thus, A(i, j) > 0 denotes that communication takes place more efficiently from i to j than from j to i.
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FIG. S6. Send-receive search information asymmetry of cortical subsystems for M = 7, 17, 22 and 10%, 15% and 20%
connection density thresholds. Send-receive asymmetry matrices were thresholded to display only statistically significant values,
while accounting for multiple comparisons. For ease of visualization and without loss of information (since A(i, j) = −A(j, i)),
negative values were omitted. Thus, A(i, j) > 0 denotes that communication takes place more efficiently from i to j than from

j to i.
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