
 

Transcriptomic and Cellular Decoding of Regional Brain Vulnerability to 
Neurodevelopmental Disorders 
  
Jakob Seidlitza,b,*, Ajay Nadiga, Siyuan Liua, Richard A.I. Bethlehemb, Petra E. Vértesb,c,d, Sarah 
E. Morganb, František Vášab, Rafael Romero-Garciab, François M. Lalondea, Liv S. Clasena, 
Jonathan D. Blumenthala, Casey Paquolae, Boris Bernhardte, Konrad Wagstylb,f, Damon 
Polioudakisg, Luis de la Torre-Ubietag,h, Daniel H. Geschwindg,i, Joan C. Hanj,k,l, Nancy R. Leem, 
Declan G. Murphyn, Edward T. Bullmoreb,o,p, and Armin Raznahana,* 
 
aDevelopmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, MD, USA. 
bUniversity of Cambridge, Department of Psychiatry, Cambridge, UK. 
cSchool of Mathematical Sciences, Queen Mary University of London, London, UK. 
dThe Alan Turing Institute, London, UK. 
eMcConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, 
Canada. 
fMcGill Centre for Integrative Neuroscience, McGill University, Montreal, QC, Canada. 
gDepartment of Neurology, Center for Autism Research and Treatment, Semel Institute, David 
Geffen School of Medicine, UCLA, Los Angeles, CA, USA. 
hDepartment of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of 
Medicine, UCLA, USA. 
iDepartment of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 
USA. 
jDepartments of Pediatrics and Physiology, University of Tennessee Health Science Center and 
Le Bonheur Children’s Foundation Research Institute, Memphis, TN, USA. 
kPediatrics and Developmental Neuropsychiatry Branch, National Institute of Mental Health, 
NIH, Bethesda, MD, USA.  
lUnit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of 
Child Health and Human Development, NIH, Bethesda, MD, USA. 
mDrexel University, Department of Psychology, Philadelphia, PA, USA. 
nKing’s College London, Institute of Psychiatry, London, UK. 
oCambridgeshire and Peterborough NHS Foundation Trust, Huntingdon, UK. 
pGlaxoSmithKline R&D, Stevenage, UK. 
* Correspondence to jakob.seidlitz@nih.gov or raznahana@mail.nih.gov  
  
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/573279doi: bioRxiv preprint 

https://doi.org/10.1101/573279
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

1 

Neurodevelopmental disorders are a major public health concern but remain 
poorly understood in biological terms. In particular, although we know that genetically-
distinct neurodevelopmental disorders induce distinct changes in regional brain 
anatomy, we do not understand how such specificity arises. Here, by leveraging diverse 
neurodevelopmental disorders of known genetic origin, we show that this specificity can 
be explained by cell-type dependent gradients of gene expression that are evident in the 
healthy brain. We first used in vivo structural neuroimaging to map altered cortical 
organization in neurodevelopmental disorders arising due to 6 different genomic copy 
number variation (CNV) disorders, including both duplications (chromosomes X, Y and 
21) and deletions (X-chromosome, 22q11.2, 11p13). Comparisons with publicly-available 
postmortem gene expression maps from healthy adults revealed that the spatial pattern 
of anatomical change in each disorder was preferentially associated with the spatial 
expression profile for genes within the causal CNV region. Next, by gathering a 
comprehensive set of single-cell gene expression signatures, and using normative 
postmortem data to map expression gradients for each canonical cell class in the brain, 
we identified specific cell-classes that expressed CNV genes and closely tracked the 
spatial pattern of cortical disruption in each disorder (e.g. NCAM2-expressing 
oligodendrocyte precursors in Down syndrome, MAPK1-expressing inhibitory neurons in 
del22q11.2, PTCHD1-expressing astrocytes in X-chromosome aneuploidies). Finally, we 
used two orthogonal approaches to validate our imaging-transcriptomic associations 
against direct measures of altered gene expression in tissue from CNV carriers. First, we 
demonstrated that CNV genes with differential dosage sensitivity in patients show 
patterns of brain expression that were differentially correlated with cortical disruption. 
Second, we established that CNV patients with more severely disrupted gene expression 
in blood-derived tissue show more extreme cortical disruption in brain MRI. Thus, cell-
type dependent gradients of gene expression that are intrinsic to the human brain can be 
used to infer disease-specific drivers of regional brain vulnerability without reference to 
any postmortem brain tissue in patients. Furthermore, this “transcriptional vulnerability 
model” for prediction of regional neuroanatomical disruption makes it possible to 
estimate the severity of altered brain organization in a given patient from the severity of 
altered gene expression in their blood. 

Neurodevelopmental disorders are associated with spatially selective changes in brain 
structure and function1–3, but we currently lack an understanding of how such specificity arises. 
Addressing this gap in knowledge would identify mechanisms for regional brain vulnerability in 
patients, with important consequences for translational neuroscience. There is emerging 
evidence that intrinsic spatial gradients of gene expression within the brain may partly explain 
regional brain vulnerability to developmental and degenerative disorders in humans4–7. 
However, to date, definitive tests of this “transcriptional vulnerability model” have only been 
conducted in mice, where causal genetics lesions can be experimentally defined a priori8,9. We 
currently lack similarly definitive “gene-first” tests of the transcriptional vulnerability model in 
humans, or an understanding of which specific aspects of brain organization could “translate” 
pathogenic alterations of specific gene sets into spatially-distributed disruptions of brain 
anatomy. 
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The current study provides a series of strict, independent tests of the transcriptional 
vulnerability model in humans by assembling a large body of existing structural neuroimaging 
data from diverse genetically-defined neurodevelopmental disorders arising due to known 
chromosomal or sub-chromosomal copy number variations (CNVs). By linking these 
neuroimaging data to publicly-available maps of gene expression in the human brain, we are 
able to ask if the observed neuroanatomical changes in each disorder are preferentially 
correlated with expression patterns of the defining causal genes for that disorder. We further 
validate our observations against independent surveys of cell-specific gene expression in the 
human brain, and direct measures of altered gene expression in patients. 

Our study included a total of 518 structural magnetic resonance imaging (sMRI) brain 
scans from matched case-control cohorts spanning 8 different neurogenetic disorders: XXX, 
XXY, XYY, XXYY, trisomy 21 (Down syndrome), X-monosomy (Turner syndrome), del22q11.2 
(velocardiofacial syndrome, VCFS) and del11p13 (Wilms Tumor-Aniridia syndrome, WAGR) 
(Table S1; Total N = 231 patients, 287 controls). These scans were used to map changes in 
cortical anatomy for each of 6 different CNV conditions: +X, +Y, +21, -X, -22q11, -11p13 
(Methods). Cortical changes were characterized using morphometric similarity (MS) mapping – 
a MRI marker of brain structure based on a combination of features typically studied such as 
cortical thickness, surface area, curvature10. We have previously shown that cortical MS 
gradients are closely-aligned with cortical cytoarchitecture, connectivity, and gene expression10. 
In this study, we calculated person level MS maps, and used these to compute a MS change 
map for each CNV condition relative to matched controls (Fig. 1a, Fig. S1, Methods). 

Each of the 6 CNVs studied induced a distinct spatial pattern of MS change across the 
cortex, with regionally-specific MS increases (red) and decreases (blue) relative to healthy 
control participants (Fig. 1b). Supplementary analyses (i) confirmed that the distinctiveness of 
MS change in each CNV was not an artifact of differences between the cohorts of healthy 
individuals against which each CNV was being compared (Fig. S2a), and (ii) detailed the 
distinct patterns of anatomical disruption which underlay regional MS increases vs. decreases in 
patients relative to controls (Methods, Fig. S2b). Having defined the spatial pattern of MS 
change in each disorder, we next asked if these MS change maps were preferentially correlated 
with intrinsic brain expression patterns for the gene sets that defined each disorder.  

Each CNV’s anatomical change map was aligned to the same publicly-available atlas of 
gene expression for ~15k genes in adult human cortex from the Allen Human Brain Atlas (AHBA 
dataset)11 (Methods, Fig. 1a, Fig. S1). We used partial least squares (PLS) regression to rank 
all ~15k genes in this atlas by their multivariate correlation12,13 with each CNV MS change map – 
resulting in one ranked gene list for each disorder (Fig. 1a, Extended Data Table 1). In these 
lists, genes with expression patterns that are more strongly correlated with the disease-related 
MS change map from MRI have large positive or negative PLS weights and therefore occupy 
more extreme ranks. The polarity of these ranked lists was set so that genes with strongly 
positive PLS weights had positive spatial correlations between their expression with MS change 
in patients vs. controls, and occupied extreme low ranks (i.e., closer to c. -7500, Fig. 1a). 
Conversely, genes with strongly negative PLS weights were expressed in spatial patterns that 
correlated negatively with MS change in patients vs. controls and occupied extreme high ranks 
(i.e., closer to c. +7500, Fig. 1a). These ranked gene lists therefore provided a quantitative 
framework for testing the transcriptional vulnerability model (Fig. 1a). Specifically, for each 
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disorder, we assessed if the median rank for genes in the CNV region was more extreme than 
would be expected by chance. This prediction was confirmed for all 6 CNVs (Fig. 1b, Table S2).  

In all 3 CNVs involving an abnormal gain of genetic material (+X, +Y, +21), the relevant 
chromosomal gene set showed a higher median rank than all other chromosomal gene sets 
(Fig. 1b). Conversely, in all 3 CNVs involving an abnormal loss of genetic material, genes within 
the CNV region occupied relatively low median ranks (Fig. 1b; versus all other chromosomes 
for -X, and versus random cis gene sets of matched size for -22q11.2 and -11p13). Thus, for 
these 6 different genetically-defined neurodevelopmental disorders, brain regions showing 
relatively high expression of the causal gene set in health tended to show MS decreases in 
patients carrying a duplication of the gene set, and MS increases in patients carrying a deletion 
of that gene set. Conversely, brain regions showing relatively low expression of the causal gene 
set in health tended to show MS increases in patients with gene set deletion, and MS increases 
in gene set duplication. For all 6 CNVs studied, except +Y, the the above median rank results 
were statistically significant at P < 0.05 relative to at least one of 3 different null gene rank 
models: i) 10000 gene rank permutations (PRAND or PRAND-Chr), ii) gene ranks from 10000 spatial 
rotations of the original anatomical change map (PSPIN), and iii) gene ranks from anatomical 
differences in 10000 bootstrap resamples of patient/control labels (PBOOT) (Fig. 1a, Table S2, 
Methods). Supplementary analyses clarified that the weaker statistical significance of these 
tests for the +Y CNV condition was a predictable consequence of the small number of Y-linked 
genes with available brain expression data (Fig. S3a). Repeating the above analyses using 
anatomical change maps for individual MS features (e.g. cortical thickness, surface area, etc.), 
indicated that MS change maps performed better than individual features for recovering the 
specific relationships between cortical gene expression and anatomical change in each CNV 
(Fig. S3b, Table S3). The CNV-specific gene rankings generated by our integration of 
neuroimaging and transcriptomic data (Extended Data Table 1) could not only be validated 
against prior knowledge of the genes within each CNV (Fig. 1, Table S2) but also against 
independent gene ontology (GO) annotations. Rank-based GO term enrichment analyses 
identified “biological process” (BP) and “cellular component” (CC) annotations that were 
overrepresented amongst genes with extreme PLS loadings (e.g., for -22q11.2, extreme high 
ranking genes: ion transport (BP) and axon (CC), extreme low ranking genes: cell signaling (BP) 
and plasma membrane (CC), Extended Data Table 2).  

Given that regional differences in cortical gene expression are thought to largely reflect 
regional differences in cellular composition of the cortex14, we reasoned that the spatial 
correspondence between expression of CNV genes in health and anatomical changes in CNV 
carriers (Fig. 1) could arise through the combination of (i) a spatially-patterned representation of 
different cell types across the cortex, and (ii) a patterned expression of CNV genes across cell 
types. In order to test these linked hypotheses, we compiled 57 independent cell-specific gene 
sets from 5 independent large-scale single-cell studies of the adult human cortex (Methods, 
Extended Data Table 3). To first verify that the mature cortex shows systematic regional 
differences in its expression of cell-specific gene sets, we used the AHBA dataset to calculate 
maps for the median expression of each cellular gene set across the cortex (Methods). 
Unsupervised hierarchical clustering of this cell-by-region expression matrix using the gap-
statistic criterion15 distinguished three broad cell groups with distinct patterns of regional 
expression (Fig. 2b): (i) oligodendrocytes, (ii) other glial and endothelial cells, and (ii) excitatory 
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and inhibitory neurons. Further co-clustering of cells within these three groups by the similarity 
in their regional expression profiles (Fig. 2b, Methods) recovered seven canonical cell classes 
within the central nervous system: microglia, endothelial cells, oligodendrocyte precursors 
(OPCs), oligodendrocytes, astrocytes, excitatory and inhibitory neurons. We derived a single 
omnibus gene set for each of these seven cell classes by collapsing across study-specific gene 
sets, and we then visualized the mean expression for each cell class gene set across the cortex 
(Fig. 2b, Methods). These transcriptomic proxy maps for cellular patterning across the human 
cortex could be validated against several independently-generated maps of cortical 
microstructure from neuroimaging and histology (Methods, Fig. S4). For example (i) expression 
gradients for the oligodendrocyte cell class showed a statistically significant (PSPIN < 0.05) 
positive coupling with maps of intracortical myelination as indexed by in vivo magnetization 
transfer imaging12, whereas (ii) expression gradients for astrocytes showed significantly positive 
spatial coupling with several histological and neuroimaging markers for associative cortices with 
expanded supragranular layer thickness16–18 (PSPIN < 0.05). 

Having defined and validated these cell class-specific gradients of cortical gene 
expression in health, we next tested for association between the regional expression of these 
cell classes and the observed MS changes in each CNV disorder (Methods). Specifically, for 
each CNV, we identified cell classes which met the following two independent criteria. First, the 
gene set for that cell class had to possess a significantly extreme median rank (PRAND < 0.05) in 
the ranked gene list for that CNV (Extended Data Table 1, from the aforementioned PLS 
analyses), indicating significant spatial coupling between expression of the cell signature and 
MS change in the CNV. Second, the gene set for that cell class had to include one or more 
genes from within the CNV region that had an extreme median rank (i.e., top/bottom 5% PLS 
ranks). The pairing of these criteria results in a highly conservative filter given that the primary 
single cell gene expression studies used in our analyses focused on genes that were uniquely 
or highly expressed in a given cell. Nevertheless, this filter powerful insights into potential CNV 
disease mechanisms by identifying specific CNV genes that were expressed in specific cell 
classes that showed strong expression signatures in specific foci of anatomical vulnerability to 
the relevant CNV (Fig. 2b). For example, we established that MS increases in Down syndrome 
patients relative to controls are positively coupled to the expression gradient of oligodendrocyte 
precursor cells which express the chromosome 21 gene NCAM2 as part of their cell-specific 
expression signature. Strikingly, this gene and this cell type have each been independently 
implicated in the neurobiology of Down syndrome by prior research in model systems and 
patient postmortem brain tissue19,20, but not yet integrated and linked to large-scale brain 
changes in the disorder. Similarly novel gene-cell-region motifs were discovered for all other 
CNVs examined (except +Y), including: PAX6-expressing astrocytes in cortical regions of MS-
increase in -11p13 (WAGR) syndrome; MAPK1-expressing inhibitory neurons in regions of MS-
increase in -22q11.2 (VCFS) syndrome; and a close spatial coupling between MS change in X-
chromosome CNVs and expression gradients of oligodendrocytes, endothelial cells and 
astrocytes (which express neurodevelopmentally-pertinent X-linked genes including AMMECR1, 
ITM2A and PTCHD1, respectively). Importantly, our analytic approach yielded these highly 
specific and falsifiable hypotheses regarding cell-specific drivers of regions of altered brain 
development in each CNV without reference to any postmortem brain tissue from patients, but 
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based solely on more readily acquired clinical neuroimaging data combined with publicly-
available maps of gene expression in the human brain. 

Given the “genetics-first” nature of our study design, the above findings provide quasi-
experimental evidence in humans that the spatial patterning of neurodevelopmental disorders 
on regional brain anatomy is organized by intrinsic brain expression patterns of disease-relevant 
genes. Having demonstrated that this transcriptional vulnerability model applies in humans, we 
next sought to provide the first validations of this model against direct measures of altered gene 
expression in patients. Specifically, we tested for evidence in support of two independent 
predictions from the transcriptional vulnerability model: (i) the spatial coupling between CNV-
induced anatomical changes and brain gene expression should differ between CNV genes that 
show robust expression changes in patients (i.e. dosage sensitive, DS), and those that do not 
(nDS), and (ii) amongst carriers of a given CNV, individuals who show a greater changes in DS 
gene expression should also show more pronounced anatomical changes along the spatial 
expression gradient for DS genes. We tested both these hypotheses using transcriptomic data 
from CNV carriers21–23. 

To test the first of these hypotheses, we used recently-published gene expression 
studies in patients with +21, +X, and -X CNVs21–23 to define DS and nDS gene sets for each 
CNV (Methods, Fig. 3b, Extended Data Table 4). Data were available from brain tissue in +21, 
and from blood-derived lymphoblastoid cell lines (LCLs) in +21, +X and -X, yielding 4 paired DS 
and nDS gene sets. For each CNV, we then tested if these DS and nDS gene sets differed in 
their spatial correlation with observed cortical anatomy changes (by comparing gene set median 
ranks in the relevant PLS-derived ranked gene list from Extended Data Table 1). This 
prediction was confirmed for all 3 CNVs, (PRAND < 0.05, Fig. 3b), and held for DS/nDS sets 
defined in blood-derived LCLs as well as brain tissue. The fact that genes with differing dosage 
sensitivity in patient LCLs also showed differing spatial coupling between expression and 
regional anatomical changes in the brain suggests that cis-effects of a CNV on gene expression 
may be reproducible across tissue types. This notion is supported by prior research in model 
systems24, and our own observation of a statistically-significant correlation across genes 
between the magnitude of expression change for chromosome 21 genes in brain tissue vs. in 
LCLs from patients with Down syndrome (r = 0.34, PRAND = 0.04, Methods).  

For all 3 CNVs considered, median rank differences between DS and nDS gene sets 
were driven by a small subset of DS genes (DSSS, Fig. 3b, rank decile analysis, Methods). For 
+21 and +X, DSSS genes possessed strongly positive PLS weights, indicating that they are most 
highly-expressed in cortical regions of MS increase in patients vs. controls (e.g., +21: insula and 
cingulate cortex, +X: precuneus, lateral temporal lobe ), and least expressed in regions of MS 
reduction (e.g., +21: fronto-parietal areas, +X: anterior cingulate). Conversely, for -X, DSSS 
genes possessed strongly negative PLS weights, indicating that they are most highly-expressed 
in cortical regions of MS decrease in patients vs. controls and least expressed in regions of MS 
increase. Thus, for all 3 CNV conditions considered, the spatial patterning of cortical MS 
changes was preferentially correlated with the patterned expression of CNV genes, but in 
opposite directions for DSSS vs. nDS gene sets (i.e., Fig. 1b vs. Fig. 3b, respectively). These 
observations indicated that the relative expression of DSSS vs. nDS genes could provide a 
strong predictor of regional cortical MS change in these neurodevelopmental disorders. This 
inference was verified for all three disorders (PSPIN < 0.001, Fig. 3c). 
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To test our second hypothesis – that severity of altered gene expression amongst 
patients would predict severity of cortical anatomy change – we used a subset of patients with 
abnormal sex chromosome dosage who had provided blood sample for gene expression 
analysis in addition to sMRI brain scans (N=55, karyotypes: XXX, XXY, XXYY). As part of a 
prior study, these blood samples had been used to make LCLs, from which we had measured 
expression for 11 DS X-chromosome genes by qPCR21 (Methods). Regional MS maps were 
calculated for all these patients from their sMRI data as described above and detailed in 
Methods. To interrelate peripheral gene expression and cortical MS across individuals we (i) 
scaled regional MS and gene expression within each karyotype group (to remove potential 
between-karyotype effects), (ii) used PLS regression to define the principal component of 
shared variance between gene expression and MS, and (iii) compared the variance explained 
and cortical patterning of this component relative to null distributions provided by 10000 
permutations breaking the linkage between participant scans and qPCR data (i.e., PBOOT, 
Methods). The observed principal component was statistically-significant (PBOOT = 0.0094) and 
had cortical region loadings which closely recapitulated the spatial gradient of MS change in 
individuals carrying an extra X chromosome (PSPIN < 0.0001, Methods, Fig. 4b). Thus, CNV-
induced changes in cortical anatomy are not only coupled to regional variation in the cortical 
expression of CNV genes in health (Fig. 1), but also to inter-individual variation in the 
expression of genes that show dosage sensitivity to that CNV as measured in blood-derived 
LCLs (Fig. 4).  

The methods and results presented above offer several new theoretical and empirical 
inroads into the biology of neurodevelopmental disorders. First, by studying genetically-defined 
(rather than behaviorally-defined) patient cohorts, we provide quasi-experimental evidence in 
humans that intrinsic expression gradients of disease-defining genes organize the spatial 
targeting of altered brain development in neurodevelopmental disorders (Fig. 1). Second, we 
demonstrate that these intrinsic gene expression gradients can themselves be grounded in the 
patterned expression of genes across different cell types, and the patterned expression of cell-
types across the brain. Thus, cellular organization of the human brain provides a framework for 
translating disease-related alterations of specific genes into disease-related alterations of 
specific distributed brain regions. We exploit this cellular framework to generate novel and 
highly-articulated hypotheses about the specific genes and cell-types that are most likely to 
underpin regional cortical disruptions in patients with Down, VCFS, WAGR and sex 
chromosome aneuploidy syndromes (Fig. 2). Such data-driven footholds can accelerate 
biological research into neurodevelopmental disorders by allowing a new level of precision in 
the targeting of future mechanistic studies (Extended Data Table 1). Critically, we generate 
these disorder-specific results through on an unbiased analytic approach that screens many 
potential brain regions, cell classes and genes without relying on postmortem tissue from 
patients or generalization from model systems. This provides a practical advantage given the 
scarcity of postmortem brain tissue from patients (especially those with rare genetic disorders), 
and also enables us to make predictions regarding the biology of distinctly human disorders 
using data from native human tissue. Third, for full CNVs of chromosomes X and 21, we were 
able to refine the transcriptional vulnerability model by integrating data from prior studies of 
gene expression in CNV carriers. These analyses indicated that the spatial patterning of altered 
cortical anatomy in carriers of these whole chromosome CNVs is most closely related to 
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regional differences in the balance between expression of two chromosomal gene sets within 
the human brain: those that show significant changes in expression with changes in 
chromosome dosage and those that do not (Fig. 3). This observation for full-chromosomal 
CNVs may generalize to other classes of genetic risks for neurodevelopmental disorders, such 
that regional transcriptional vulnerability is determined by a multivariate interaction between (i) 
the patterned impact of a genetic variants across multiple genes, and (ii) the patterned 
expression of these genes in a given brain regions relative to other brain regions. Finally, for full 
CNVs of the X-chromosome, we use paired measures of brain anatomy and gene expression 
within the same patient cohort to show that the cortical change map induced by carriage of an 
extra X-chromosome is more pronounced in patients who show more altered expression of 
dosage sensitive X-chromosome genes in blood-derived LCLs (Fig. 4). This finding uses the 
axis of inter-individual variation to provide orthogonal validation of the transcriptional 
vulnerability model, and also points towards the potential of using measures of gene expression 
in blood-derived tissue to predict the severity of brain phenotypes in CNV carriers. We speculate 
this this predictive relationship arises because inter-individual variation amongst CNV carriers 
for the expression levels of CNV genes is partially correlated across tissues. This hypothesis is 
consistent with observation that the proximal effects of a CNV on expression of genes within the 
CNV region are relatively stable across tissues24, and will be amenable to direct empirical 
analysis when there are large datasets of multi-tissue expression across multiple individuals 
carrying the same CNV. 

In summary, our study adopts a genetic-first approach to provide the first quasi-
experimental support in humans that the spatial patterning of neurodevelopmental disorders on 
regional brain anatomy is organized by intrinsic brain expression patterns of disease-relevant 
genes. We further show that this “transcriptional vulnerability model” for prediction of regional 
vulnerability can be linked to cell-type dependent patterning of gene expression, and validated 
against direct measures of gene expression in patients. The methods and results we present 
provide new biological insights into several of the specific neurogenetic disorders studied, as 
well as a novel generalizable framework for transcriptomic and cellular decoding of brain 
disorders from in vivo neuroimaging data. Crucially, despite not requiring access to any 
postmortem brain tissue from patients, or inference from model systems, the methods we 
present can screen the large multidimensional search space of brain regions, cell types, and 
genes to propose highly-specific mechanistic targets for developmental disorders of the human 
brain. 
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Methods 
 
Cohorts, Diagnostic Classification, and MRI Acquisition 
 
National Institutes of Health - Bethesda, USA (NIH) 
 
Sex Chromosome Aneuploidies: This dataset has been described in detail previously25–27. 
Briefly, we included 297 patients with various supernumerary X- and/or Y-chromosome counts 
and 165 healthy controls (79 females) (Table S1). Patients were recruited through the National 
Institutes of Health (NIH) website and parent support groups. X- and Y-supernumeracy was 
confirmed by karyotype testing. Exclusion criteria included a history of head injury, neurological 
condition resulting in gross brain abnormalities, and mosaicism (determined by visualization of 
50 metaphase spreads in peripheral blood). Healthy controls were enrolled in longitudinal 
studies of typical brain development28. Exclusion criteria for controls included the use of 
psychiatric medication, enrollment in special education services, history of mental health 
treatment, or prior diagnosis of a medical condition that impacts the nervous system. Full-scale 
IQ was measured with the WASI. Subjects were scanned on a 1.5T GE Signa scanner (axial 
slices = 124 x 1.5 mm, TE = 5 ms, TR = 24 ms, flip angle = 45°, acquisition matrix = 256 x 192, 
FOV = 24 cm) using a spoiled-gradient recalled echo (3D-SPGR) imaging sequence. The 
research protocol was approved by the institutional review board at the National Institute of 
Mental Health, and informed consent or assent was obtained from all individuals who 
participated in the study, as well as consent from their parents if the child was under the legal 
age of majority. 

Down Syndrome / Trisomy 21: This dataset has been described in detail previously2. Briefly, we 
included 26 patients (13 females) with Down Syndrome and 42 healthy controls (21 females) 
(Table S1). All participants with DS had a chromosomal diagnosis of Trisomy 21 according to 
parent report or direct testing, with no instances of mosaicism. In addition to the genetic 
inclusion criteria, participants were also required be free of any history of acquired head injury or 
other condition that would cause gross brain abnormalities. Full-scale IQ was measured as 
follows: for participants under the age of 18, the Differential Ability Scales, Second Edition29 was 
administered, and for participants 18 and older, the Kaufman Brief Intelligence Test, Second 
Edition30 was administered. Imaging was completed without sedation on the same 3-Tesla 
General Electric Scanner using an 8-channel head coil. High-resolution (0.94 x 0.94 x 1.2 mm) 
T1-weighted images were acquired utilizing an ASSET-calibrated magnetization prepared rapid 
gradient echo sequence (128 slices; 224 x 224 acquisition matrix; flip angle = 12°; field of view 
[FOV] = 240 mm). The research protocol was approved by the institutional review board at the 
National Institute of Mental Health, and informed consent or assent was obtained from all 
individuals who participated in the study, as well as consent from their parents if the child was 
under the legal age of majority. 

Wilms Tumour-Aniridia Syndrome (WAGR): A total of 31 patients with heterozygous contiguous 
gene deletions of incremental variable length on the short arm of chromosome 11 (11p13 
deletion), and 23 healthy controls participated in a comprehensive genotype/phenotype study 
approved by the NIH IRB and with the informed consent of their parents/legal guardians. 
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Healthy controls were screened and excluded for history of neurological and psychological 
impairments. Chromosome deletions were characterized by microsatellite marker analysis and 
oligonucleotide array comparative genomic hybridization. Neuropsychological assessments 
were conducted using standardized psychological tests. All participants underwent MRI 
structural brain imaging. Imaging quality controls included visual inspection of the raw images 
for motion artifacts as well as the quality of the surface and volume segmentations. The image 
processing results were inspected for surface and volume segmentation errors by FML and AR. 
The MRI brain scans were collected at one cubic millimeter resolution using a 3D TFE T1-
weighted sequence on a 3.0 T Philips Achieva MRI scanner equipped with an 8-channel phased 
array head coil. The sequence parameters were as follows: TR = 8.3 ms, TE = 3.8 ms, TI delay 
= 1031 ms, 160 shots. In total, 171 slices were acquired in the sagittal plane with an acquisition 
matrix of 240 by 240 and an FOV of 240 millimeters. Ethical approval was obtained from the 
local Ethics Committee. All participants (or their legal guardians) gave informed consent. 

Institute of Psychiatry - London, UK (IoP) 
 
Turner Syndrome (X-monosomy): This cohort and associated data have been described in 
depth previously31,32. We included 20 females with X-monosomic Turner’s Syndrome (TS) and 
36 healthy controls in this study (Table S1). Briefly, participants with TS were recruited through 
a university-based behavioral genetics research program run in collaboration with the South 
London and Maudsley NHS Foundation Trust and typically developing controls through local 
advertisement. Karyotype was determined for each participant with TS by analyzing thirty 
metaphase spreads using conventional cytogenetic techniques. No participants suffered from 
any psychiatric or medical disorders that would grossly affect brain function (e.g. epilepsy, 
neurosurgery, head injury, hypertension, schizophrenia) as determined by structured clinical 
interview and examination, as well as review of medical notes. Structural MRI data were 
acquired using a GE Signa 1.5T Neuro-optimised MR system (General Electric, Milwaukee, 
Wisconsin). Whole head coronal 3D-SPGR images (TR = 14 ms, TE = 3 ms, 256 x 192 
acquisition matrix, 124 x 1.5 mm slices) were obtained from all subjects. Ethical approval was 
obtained from the local Ethics Committee and informed written consent was obtained from all 
participants. 
 
Velocardiofacial Syndrome VCFS): This dataset has been used and described in depth 
previously33,34. Briefly, all patients with VCFS and control subjects were screened for medical 
conditions affecting brain function by means of a semi-structured clinical interview and routine 
blood tests. Full-scale intelligence was measured by means of the Canavan et al shortened 
version of the Wechsler Adult Intelligence Scale–Revised35. We included 27 controls (11 
females) alongside 29 participants (13 females) with clinical features of VCFS (Table S1) and a 
22q11.2 deletion detected by fluorescence in situ hybridization (FISH; Oncor Inc, Gaithersburg, 
MD, USA). Subjects were scanned on a 1.5T GE Signa scanner at the Maudsley Hospital in 
London, UK. A whole-head 3D-SPGR image was acquired for each subject (TR = 11.9 ms; TE = 
5.2 ms; 256 x 192 acquisition matrix; 124 x 1.5 mm slices). Ethical approval was obtained from 
the local Ethics Committee. All subjects (or their guardians, when subjects < 16 years old) gave 
written informed consent after the procedure was fully explained. 
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Image Processing and Generation of Morphometric Similarity Networks 
 
All T1-weighted (T1w) scans were processed using the Montreal Neurological Institute’s CIVET 
pipeline36 (v1.1.10). Due to the lack of multimodal imaging, only (gray matter) morphometric 
features derived from the T1-weighted scans were estimated (CT: cortical thickness, SA: 
surface area, GM: gray matter volume, MC: mean curvature, IC: intrinsic curvature). GM values 
were estimated using the T1w volumes of each subject. Vertex-wise CT and SA values were 
estimated using the resultant pial surface reconstructions from CIVET, while MC and IC metrics 
of these surfaces were estimated using the freely available Caret5 software package37. These 
surface meshes (∼80,000 vertices per mesh) were downsampled into our regional parcellation 
(below), where the vertex-wise estimates of the features were averaged within a given region in 
the parcellation. Cortical surface representations were plotted using BrainsForPublication v0.2.1 
(https://doi.org/10.5281/zenodo.1069156).  

For each subject, regional morphometric features (CT, SA, GM, MC, and IC) were first scaled 
(Z-scored, per feature across regions) to account for variation in value distributions between the 
features. After normalization, Morphometric Similarity Networks (MSNs) were generated by 
computing the regional pairwise Pearson correlations in morphometric feature sets, yielding an 
association matrix representing the strength of morphometric similarity between each pair of 
cortical areas10. For all individuals, regional MS estimates were calculated as the average 
morphometric similarity for between a given cortical region and all others.  
 
 
Cortical Parcellation 
 
We generated a 308-region (n=152 LH regions) cortical parcellation using a back-tracking 
algorithm to restrict the parcel size to be approximately 500mm2, with the Desikan-Killiany atlas 
boundaries as starting points38,39 This parcellation has been used in previous structural12,40,41 
and functional13 imaging studies of connectomes, and was also used in our first study of 
MSNs10. 
 
 
Statistical Analyses of MSN Differences 
 
For each cohort, group-wise effects of disease on nodal similarity were modeled using the ‘glm’ 
base function in R, with sex and age included as covariates. This model was fitted for each 
region, and the two-sided T-statistic (contrast = patient - control) was extracted (represented in 
Fig. 2a as a Z-score for plotting purposes). For the SCA groups, we collectively modeled each 
chromosome dosage effect as follows: 
 
��� � �����	�
� � �1����� � �2����� � �3����� � �4�����,    (1) 
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Where NSi is the nodal similarity estimate across subjects at region i, and Xan and Yan are the 
number of supernumerary X and Y chromosomes (respectively). This was done after ruling out 
any significant interactions between Xan and sex, or Xan and Yan for variation in nodal 
similarity1. 
For the +21, -X, -22q11.2, -11p13 patient-control comparisons in nodal similarity (NSi), the 
following model was used: 
 
��� � �����	�
� � �1����� � �2����� � �3����,      (2) 
 
Where Dx is the binary classification of patients and controls. 
 
These procedures resulted in MS change maps for 6 different CNV conditions, which were 
taken into subsequent analyses (+X, +Y, +21, -X, -22q11, -11p13).  
 
 
Interpretation of Regional Morphometric Similarity Differences 
 
Due to the zero-centered nature of the regional morphometric similarity (MS) distribution (Fig. 
S2a), we annotated the regional MS change maps (T-statistics) to determine the underlying 
effects at the edge level (i.e., “connections”). For each CNV, we first computed the edgewise 
MS change between patients and controls (i.e., Eqs 1 or 2 for each edge, or pairwise 
correlation). Then, for the top 10 positive (red in Fig. 1b) and 10 negative (blue in Fig. 1b) 
regional MS T-statistics we took the absolute sum of their corresponding edge T-values for each 
of four possible types of edge effect:  
 

● “hypercoupling” = an edge with a positive weight in controls, and a positive edge T-
statistic for the CNV effect (i.e. regions which are morphometrically similar in controls 
being rendered more similar by the CNV) 

 
● “dedifferentiation” = an edge with a negative weight in controls, and a positive edge T-

statistic for the CNV effect (i.e. regions which are morphometrically dissimilar in controls 
being rendered less dissimilar by the CNV) 

 
● “decoupling” = an edge with a positive weight in controls, and a negative edge T-statistic 

for the CNV effect (i.e. regions which are morphometrically similar in controls being 
rendered less similar by the CNV) 

 
● “hyperdifferentiation” = an edge with a negative weight in controls, and a negative edge 

T-statistic for the CNV effect (i.e. regions which are morphometrically dissimilar in 
controls being rendered more dissimilar by the CNV) 

 
These four effects are depicted in the legend of Fig. S2b.  
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Derivation of Gene Sets for each CNV 
 
Assignments of AHBA genes to chromosome locations were made according to those from 
Richiardi et al. (2015)42. These assignments defined the gene sets used for all chromosome-
level analyses. Gene sets for the two sub-chromosomal CNVs in our study were defined as 
follows. The 11p13-deletion (WAGR) gene set was defined using the known distribution of 
proximal and distal breakpoints in the WAGR patient cohort studied (relative to the 
NCB136/hg18 genome assembly, references via the USCS Genome Browser). We used the 
median proximal and distal breakpoints across patients to define a representative chromosomal 
segment for use in analysis, which encompassed 45 AHBA genes in total (Extended Data 
Table 1) including both WAGR critical region genes (WT1 and PAX6). As patient-specific 
breakpoint data were not available for the 22q11.2-deletion (VCFS) cohort, we defined the gene 
set for this CNV using reference breakpoints for the most common A-D deletion type (seen in 
>85% of patients)43, which encompassed 20 genes from the AHBA dataset. 
 
 
Transcriptomic Alignment of Neuroimaging Data 
 
Methods for the alignment of the microarray gene expression data from 6 adult human donors, 
provided by the Allen Human Brain Atlas (AHBA), to the left hemisphere (n = 152 regions) of our 
parcellation has been described in depth elsewhere4,10,40, where we have shown that the gene 
expression data is robust to leaving a given donor out of the analysis. Briefly, we used 
FreeSurfer’s recon-all to reconstruct and parcellate the cerebral cortex of each AHBA donor 
using the corresponding T1-weighted volume44. Tissue samples were assigned to the nearest 
parcel centroid of the left hemisphere of our parcellation in each subject’s native space. For the 
two subjects with right hemisphere data, we first reflected the right hemisphere samples’ 
coordinates and then performed the mapping. The median regional expression was estimated 
for each gene across participants (N = 6) and then each gene’s regional values were 
normalized (Z-scored), resulting in a 152 (regions) × 15043 (genes) matrix of the genome-wide 
expression data for the left hemisphere. The code and data underlying the AHBA alignment is 
available online at https://github.com/RafaelRomeroGarcia/geneExpression_Repository.  
 
 
Partial Least Squares Regression of MS Differences 
 
This method – applied in similar analyses integrating neuroimaging and brain gene expression 
data – has been described previously4,12 (see also Fig. S1). Here, we employ PLS regression to 
rank AHBA genes by their multivariate spatial alignment with cortical MS changes in each of 6 
different CNV conditions (+X, +Y, +21, -X, -22q11, -11p13). As detailed below, these ranked 
gene list for each CNV condition (Extended Data Table 1) provide a unifying framework to test 
for preferential spatial alignment between CNV-induced MS change and the spatial expression 
user-defined gene sets of interest (e.g. genes within vs. without the CNV region, gene sets 
defining different cell types etc.). 
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Briefly, partial least squares (PLS) regression is a data reduction technique closely related to 
principal component analysis (PCA) and ordinary least squares (OLS) regression. Here we use 
the SIMPLS algorithm45 in R (‘pls’ package46), where the independent variable matrix (X) and 
the dependent variable (Y) is centered giving rise to X0 and Y0 respectively. The first component 
is then weighted by w1 and q1 to calculate factor scores (or PLS component scores) T1 and U1. 
  
This T1 is the weighted sum of the centered independent variable: 
 
T1 = X0w1 + E1,                                                                                              (4) 
  
And U1 is the weighted sum of the centered dependent variable: 
  
U1 = Y0q1 + E2,                                                                                              (5)                                     
  
The weights and the factors scores are calculated to ensure the maximum covariance between 
T1 and U1, which is a departure from regular PCA where the scores and loadings are calculated 
to explain the maximum variance in X0.  
 
The SIMPLS algorithm provides an alternative where the matrices are not deflated by the 
weights when calculating the new components, and, as a result, it is easier to interpret the 
components based on the original centered matrices. 
 
As the components are calculated to explain the maximum covariance between the dependent 
and independent variable, the first component need not explain the maximum variance in the 
dependent variable. However, as the number of components calculated increases, they 
progressively tend to explain less variance in the dependent variable. We verified that the first 
component (U1, used for gene rank analysis) for each CNV-specific PLS explained the most 
relative variance.  
 
For each CNV, we used U1 to rank genes by their PLS loadings (from large positive to large 
negative PLS loadings, Fig. 1a). The polarity of the PLS components was fixed so that gene 
ranks would have the same meaning across all CNVs. Thus, for all CNV-induced MS change 
maps, genes with large positive PLS weights had higher than average expression in cortical 
regions where MS is increased in CNV carriers relative to controls (i.e., red regions in Fig. 1b), 
and lower than average expression in cortical regions where MS is decreased in CNV carriers 
relative to controls (i.e., blue regions in Fig. 1b). Conversely, genes with large negative PLS 
weights had higher than average expression in cortical regions where MS is reduced in CNV 
carriers relative to controls (i.e. blue regions in Fig. 1b), and lower than average expression in 
cortical regions where MS is increased in CNV carriers relative to controls (i.e. red regions in 
Fig. 1b). Mid-ranking genes with smaller PLS weights showed expression gradients that are 
weakly related to the pattern of cortical MS change. 
 
It is important to note that T1 and U1 are the first PLS component weights in the common 
dimension of the X and Y variables. Thus, in our analyses comparing AHBA gene expression to 
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cortical MS change (as in the example interpretation above), the common dimension is at the 
level of the nodes. However, in our analyses comparing individual patient gene expression to 
individual cortical MS maps, the common dimension was people rather than brain regions (see 
below). 
 
 
Median Rank Gene Enrichment Analysis 
 
The ranked gene lists provided by PLS regression of AHBA expression and MS change 
provided a common framework to test if the spatial expression of a given gene set was non-
randomly related to an observed spatial pattern of MS change. Specifically, we quantified this 
degree of spatial correspondence or a given gene set using used an objective and simple 
measure of median gene set rank. This allowed for interpretation of “rank enrichment” both 
relative to the center of the rank distribution, and relative to the extremes of the list. One 
primary, and two secondary nulls were used to compare the observed median ranks compared 
to those expected by chance. The primary null distribution for significance testing was 
generated by 10000 gene rank permutations (PRAND). We also compared observed gene set 
ranks against two orthogonal nulls distributions: gene ranks from 10000 spatial rotations of the 
relevant MS change map (PSPIN), and gene ranks from anatomical differences in 10000 
bootstrap resamples of patient/control labels (PBOOT). 
 
For the full chromosome CNVs, median ranks were assessed for chromosomes 1:22, X, Y, and 
the pseudoautosomal region (PAR, or “X|Y”). For plotting purposes, results with full 
chromosomes are presented in Fig. 1b, and results with all chromosomes and PAR genes are 
shown in Table S2. For the sub-chromosomal deletions (-22q11.2/VCFS and -11p13/WAGR), 
we performed an additional variant of our PRAND test (PRAND-Chr), only comparing observed 
median ranks to those for 10000 from gene sets of equivalent size resampled from relevant 
chromosome (i.e., chromosome 22 for -22q11.2 and chromosome 11 for -11p13). 
 
Given that CNV gene sets varied greatly in size, and the smallest gene set (+Y), was notable for 
being the only gene set that had an observed median ran that fell below the nominal PRAND = 
0.05 threshold, we conducted supplementary analyses to investigate the relationship between 
CNV gene set size and the statistical significance of observed CNV gene set median ranks 
relative to the PRAND null distribution. We decided to nest these analyses in the context of the X-
chromosome, which was the CNV that contained the greatest number of linked genes in the 
AHBA. Across evenly-spaced subsamples of the X-chromosome gene set, ranging from the set 
size of the Y-chromosome (smallest whole-chromosome CNV) to the full size of the X-
chromosome, we generated 10000 median gene ranks from the +X PLS-ranked gene list within 
each subsample, as well as median gene ranks from random pulls of the entire (AHBA-
overlapping) genome of comparable set size (Fig. S3a). Since pairs of X-chromosome subsets 
and random subsets were arbitrarily matched, subsample P-values were calculated by testing 
the median of the X-chromosome median gene ranks against the 10000 null median gene ranks 
generated by the random pulls. This was performed for each subsample size (Fig. S3a) to 
evaluate a “predicted” P-value for median ranks of CNV gene sets sized similarly to the CNVs 
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(+Y, +21) observed in our study. 
 
Due to the fact that MS change maps integrated information from multiple individual anatomical 
metrics (e.g. cortical thickness, surface area, etc.), we tested if anatomical change maps for 
each of these individual MS features were also capable of recovering the preferential 
relationship between CNV effects on cortical anatomy and corotical expression gradients for 
CNV genes. To achieve this, we repeated the analytic steps detailed above for each CNV, 
replacing the MS change map with change maps for every individual metric used as part of our 
5-feature MS mapping (Fig. S3b): gray matter volume, cortical thickness, surface area, mean 
curvature and intrinsic curvature. PLS-derived gene ranks from all these analyses were 
assessed for statistically-significant extreme ranking of CNV gene sets (PRAND < 0.05, Table S3). 
 
 
Gene Ontology Enrichment Analyses 
 
Functional enrichment was assessed using rank-based gene ontology (GO) enrichment 
analysis. First, we subsetted the full PLS-ranked gene lists for each CNV to only contain genes 
that were determined as brain-expressed (see below). Then, each refined “brain-only” CNV 
gene list was inputted to GOrilla47,48 ordered by PLS score separately in increasing and 
decreasing order to obtain enrichments for both tails of the gene list. Full output can be found in 
Extended Data Table 2. 
 
 
Collation and Anatomical Projection of Single Cell Gene Expression Data 
 
We compiled data from 5 different single-cell studies using postmortem cortical samples in 
human postnatal subjects49–53, to avoid any bias based on acquisition methodology or analysis 
or thresholding. 
 
To obtain gene sets for each cell type, categorical determinations were based on each 
individual study, as per the respective methods and analysis choices in the original paper. All 
cell-type gene sets were available as part of the respective papers. For the Zhang et al. (2016) 
and Darmanis et al. (2015) papers, these data had already been reported elsewhere54, and 
therefore were re-used in the present study. This approach to led to the initial inclusion of 58 cell 
classes, many of which were overlapping based on nomenclature and/or constituent genes. The 
genes within each of these 58 cell-types are compiled in Extended Data Table 3.  
 
We generated spatial maps of expression for each cell type gene set by calculating the median 
regional expression score for each gene set in the AHBA bulk microarray dataset (Fig. 2a). 
Then we performed hierarchical clustering of this region-by-cell-type expression matrix, using 
the gap statistic15 criterion. This unsupervised analysis enabled us to determine if the cell type 
gene sets from diverse studies could be grouped into biologically-grounded clusters by their 
patterned expression across the cortical sheet. The clustering of study-specific gene sets 
according to known cell classes was taken to indicate that gene expression gradients in the 
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cortical sheet are partly organized by cell-type. 
 
 
Data-driven Recovery of Canonical Cell Classes based on Expression Topographies 
 
The convergence of cell-type expression topography allowed us to cluster individual study cell-
type gene lists into canonical cell classes. Within the context of the N=3 hierarchical clustering 
solution from Fig. 2a we performed post-hoc assignment of each study-specific cell-type into a 
cell classes based on visualization of the t-Distributed Stochastic Neighborhood Embedding 
(tSNE) solution (Fig. 2b) on the data from Fig. 2. This solution clearly organized study-specific 
cell types into 7 canonical classes, which were fully nested within the N=3 hierarchical clustering 
solution from Fig. 2a. These 7 classes were: Astrocytes (Astro), Endothelial cells (Endo), 
Microglia (Micro), Excitatory Neurons (Neuro-Ex), Inhibitory Neurons (Neuro-In), 
Oligodendrocytes (Oligo), and Oligodendrocyte Precursor Cells (OPC).  
 
To derive expression maps for each of these 7 cell classes, we first collapsed across study-
specific gene lists to generate a single omnibus gene list for each cell class, and then calculated 
a weighted average expression for each cell class gene set in each region of our 152 AHBA 
parcellation (Fig. 2c). Weights for each underlying cell-type were computed by estimating the 
Euclidean distance of each cell-type from the centroid of their respective cell class using 
principal component analysis. Two studies did not subset neurons into excitatory and inhibitory, 
and thus these gene sets were excluded from this cell class assignment. Additionally, only one 
study included the annotation of the “Per” (pericyte) type, and thus this gene set was also 
excluded.  
 
 
Cortical Map Comparison of Overall Cell Class Expression 
 
To validate the individual cell class expression maps derived from integration of single cell 
expression studies and AHBA microarray data (Fig. 2c), we computed the spatial correlation of 
each cell class expression map to established maps of cortical microstructure from diverse in 
vivo neuroimaging and postmortem histological studies, including maps of cytoarchitecture55 
myeloarchitecture12, and gradients of evolutionary17, developmental17, and inter-individual 
(allometric) anatomical scaling16 (Fig. S4).    
 
For the cytoarchitectonic maps, a 100μm resolution volumetric histological reconstruction of a 
post mortem human brain from a 65-year-old male was obtained from the open-access 
BigBrain55 repository on February 2, 2018 (https://bigbrain.loris.ca/main.php). Using previously 
defined surfaces of the layer 1/11 boundary, layer 4 and white matter18, we divided the cortical 
mantle in supragranular (layer 1/11 to layer 4) and infragranular bands (layer 4 to white matter). 
Band thickness was calculated as the Euclidean distance between the respective surfaces. To 
approximate cellular density, we extended upon recent work on BigBrain microstructure 
profiles56 and generated microstructure profiles within supra- and infra-granular bands. Intensity 
profiles using five equivolumetric surfaces within the predefined surfaces of the BigBrain were 
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then averaged to produce an approximate density value. Calculations were performed at 
163,842 matched vertices per hemisphere, then averaged within each cortical region in our 
parcellation. 
 
Methods for generation of comparison myeloarchitecture and anatomical scaling maps used in 
these analyses have been detailed previously12,16,17,55.  
 
 
Spatial Permutation Testing of Correspondence Between Cell-Class Expression and Other 
Cortical Maps 
 
To assess specificity of the correspondence between pairs of cortical maps, we generated 
10000 “spins” of the cortical parcellation10,41. This matching provides a mapping from the set of 
regions to itself, and allows any regional measure to be permuted while controlling for spatial 
contiguity and hemispheric symmetry. 
 
We first obtained the spherical surface coordinates of each of our 308 regions on the fsaverage 
template in Freesurfer. These were then rotated about the three principal axes at three 
randomly generated angles. Given the separate left- and right-hemisphere cortical projections, 
the rotation was applied to both hemispheres. However, to preserve symmetry, the same 
random angles were applied to both hemispheres with the caveat that the sign of the angles 
was flipped for the rotations around the y and z axes. 
 
Following each rotation, coordinates of the rotated regions were matched to coordinates of the 
initial regions using Euclidean distance, proceeding in a descending order of average Euclidean 
distance between pairs of regions on the rotated and unrotated spheres (i.e., starting with the 
rotated region that is furthest away, on average, from the unrotated regions). 
 
 
Relating Cell-Class Gene Expression Gradients to CNV-induced MS Changes 
 
Our analysis of expression gradients for previously reported single cell expression signatures 
(see above) yielded a omnibus gene set for each of seven canonical cell classes. We assessed 
the relationship between cortical expression of these cell classes and cortical MS change in 
each CNV by considering two complementary features. First, we identified cell class gene sets 
that occupied significantly extreme ranks in each CNV’s ranked gene list from AHBA (PRAND < 
0.05). This rank-based criterion provides a test for the degree of spatial coupling between 
cortical expression of each cell class and each CNV change map. Then, amongst the cell 
classes that met this rank-based criterion for a given CNV, we examined the expression of CNV 
genes to identify cells clases that expressed CNV genes which (i) were independently recorded 
as being brain expressed from proteomic data (see below), and (ii) were occupied extreme 
ranks (<5th, or >95th centile) alongside the cell class gene list in the relevant CNVs ranked 
gene list. 
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Defining Dosage Sensitive Genes in Down Syndrome (+21) and X-chromosome Aneuploidies.  
 
Dosage sensitive (DS) genes were defined as those within the CNV region that were reported to 
show a statistically-significant fold change in congruence with the genomic copy number change 
(i.e., increased in duplication carriers vs. controls or decreased in deletion carriers vs. controls). 
 
Prior reports enabled us to define DS genes in +21 for two different tissue types: brain22 and 
blood-derived lymphoblastoid cell lines (LCLs)23. Brain DS genes were defined as all 
chromosome 21 genes determined to show developmentally-stable and statistically significant 
upregulation in patient vs. controls by authors of a prior study of postmortem brain tissue (see 
Table S3 from 22). The LCL DS gene set was defined as all chromosome 21 genes found to be 
significantly up-regulated in LCLs from postnatal +21 CNV carriers relative to controls (see 
Table 3 from 23). For each tissue, non-dosage sensitive (nDS) chromosome 21 genes were 
defined as those within the AHBA dataset that did not fall within the respective tissue DS set. 
 
For X-chromosome aneuploidies, DS X-linked genes were defined using a prior microarray 
study21 of X-chromosome dosage effects on gene expression in LCLs from participants with a 
wide range of X-chromosome complements. X-linked LCL DS genes were defined as all X-
linked genes with expression levels showing a significant positive association with X-
chromosome count variation across a wide karyotype range spanning X-chromosome 
monosomy (i.e., -X CNV), euploidy, and X-chromosome duplication states (i.e., +X CNV). This 
criterion (see Supplementary Information Text S3 from 21 ) defined 40 DS genes for -X and +X 
CNVs. Non-dosage sensitive genes for these CNV conditions were defined as all X-linked 
genes within the AHBA dataset that did not fall within the DS gene set.  
 
We used median rank comparisons to test if DS and nDS genes showed patterns of cortical 
expression that were differentially correlated to cortical MS changes in each CNV (Fig. 3b left). 
Specifically, the observed difference between median ranks of DS and nDS sets was compared 
to the differences of 10000 gene rank permutations (PRAND).  
 
 
Decile Score Analysis for Dosage Sensitive Genes 
 
A median rank difference between two gene sets could be driven by a difference in overall rank 
distribution between gene sets, or by a subgroup of genes in one or both sets with extreme 
ranks. We used rank decile analysis to differentiate these two scenarios. Specifically, we (i) 
computed the difference in the proportion of genes in the DS vs. nDS gene sets for each decile 
of the CNV ranked gene lists, and (ii) tested for deciles with significant differences at PRAND < 
0.05 (see Fig. 3b right). For all four instances of DS-nDS gene set comparison (+21 brain-
derived sets ; +21, -X, +X LCL-derived sets), median rank differences between the DS and nDS 
gene set were driven by a small subset of extreme-ranked DS genes (DSSS, Figs. 3b,c, 
Extended Data Table 4).  
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For all three CNVs considered in these analyses (+21, +X, -X) the median rank for these DSSS 

CNV genes was of an opposite polarity to that observed for the CNV gene set as a whole (c.f. 
Fig. 3c, Fig. 1b). This observation implied that observed cortical MS changes in +21, +X and -X 
CNVs could be relating to two opposing cortical gradients of CNV gene expression: those for 
DSSS genes vs. those for nDS genes. To verify this inference, we compared the cortical pattern 
of MS change for each of these CNVs from neuroimaging data, to the cortical pattern of 
differential expression for DSSS vs. nDS gene sets as calculated from AHBA postmortem data 
(Fig. 3d).  
 
 
Linking Peripheral Gene Expression and Brain Anatomy in X-chromosome Aneuploidies 
 
These analyses sought to validate the relationship between CNV gene expression and cortical 
MS using the axis of interindividual variation. We could test the relationship between inter-
individual variation of gene expression and cortical MS using a subset of 55 CNV carriers in our 
study from whom we had gathered measures of LCL gene expression as well as sMRI brain 
scans. These study participants all carried an extra X-chromosome (11 XXX, 23 XXY, 11 
XXYY), and originated from the National Institutes of Health Sex Chromosome Aneuploidy 
cohort. Details of sMRI data collection and MS map calculation for this cohort have already 
been described above. As part of a previously-published gene expression study, we had also 
generated qRT-PCR (quantitative reverse transcription polymerase chain reaction) measures of 
gene expression in LCL tissue from these participants for 11 DS X-linked genes. These 11 
genes had been selected based on a genome-wide microarray screen for X-chromosome 
dosage effects on LCL gene expression in sex chromosome aneuploidy conditions21. The 
methods for generation, pre-processing and analysis of these qRT-PCR data have been 
detailed previously21. Briefly, RNA was extracted by standard methods (Qiagen), and qRT-PCR 
was performed using the Fluidigm platform. For data processing, an assay with Ct > 23 was 
deemed to be not expressed. Expression data were normalized relative to the averaged 
expression of the two housekeeping genes ACTB and B2M, which were not differentially 
expressed across groups in either microarray or rtPCR data.  
 
Before inter-relating gene expression and cortical MS across these 55 +X carriers, we first 
scaled gene expression and MS data across individuals within each karyotype group to remove 
between-karyotype group effects. This enabled us to test if, within any given +X karyotype 
group, greater disruption of DS gene expression was related to a cortical MS map that more 
strongly resembled the +X MS change map (Fig. 1b). To achieve this test we used PLS 
regression to interrelate interindividual variation in gene expression and interindividual variation 
in cortical MS (see above). Partial Least Squares regression defined a principal component of 
covariance between gene expression and cortical MS across patients, and feature loadings onto 
this component: one for each gene, and one for each cortical region. The cortical region 
loadings from this PLS component were then compared to the +X cortical MS change map in 
order to test of those regions which are most sensitive to X chromosome dosage are also those 
that vary most with interindividual variation in expression of DS X-linked genes amongst carriers 
of an extra X chromosome. This map comparison consisted of computing the spatial correlation 
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between PLS loadings and the +X MS change map, and comparing this correlation to the 
distribution of 10000 correlations given by random spatial rotations of the +X MS change map 
(i.e., PSPIN). 
 
 
Defining Brain-Specific Genes 
 
For the gene ontology (GO) enrichment analyses and the single-cell enrichment analyses 
detailed below, we first thresholded our “whole-genome” gene set (N=15043) to only contain 
genes that were determined as brain-expressed via the Human Protein Atlas 
(https://www.proteinatlas.org/) database of normal tissue expression. Genes whose levels of 
expression were “not-detected” in the cerebral cortex were excluded, yielding a list of N=7971 
genes with detected brain expression (Extended Data Table 5). 
 
 
Data Availability 
 
Relevant code and processed data for generating the findings and figures presented in this 
manuscript will be made available on Github, and the brain maps will be made available on 
Neurovault (all links to be provided at time of publication).  
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Fig. 1. Transcriptomic specificity of neuroanatomical effects. a) Schematic outlining the
main imaging-transcriptomic enrichment analyses and statistical tests. b) (left) Surface
projections of T-statistics (z-scored for plotting purposes) for CNV effects on regional
morphometric similarity (MS). Despite some overlap across CNVs, each CNV induces a distinct
profile of MS change. For full chromosome CNVs, neighboring pointrange plots show the
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median (point) and standard error (range) rank of each chromosomal gene set - based on gene 
rankings from the PLS analysis (see Fig. 1a). The chromosomal gene set for each CNV 
possessed a more extreme median rank than all other chromosomal gene sets, and the polarity 
of this effect was opposite for chromosomal duplications (CNV gene set high ranked) vs. 
deletion (CNV gene set low ranked). For sub-chromosomal CNVs (depicted as red in the 
respective chromosome ideograms), density plots show median (solid line) and standard error 
(dashed line) ranks for the relevant CNV gene set. Observed ranks are shown relative to two 
null distributions: PRAND (black), and PRAND-Chr (gray). PRAND was calculated using 10000 gene 
rank permutations (black). PRAND-Chr was calculated similarly to PRAND but only sampling gene 
ranks from the respective chromosome of the CNV.  
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Fig. 2. Cell type decoding of AHBA microarray and CNV gene ranks. a) Regional median
expression (Z-score) in the AIBS microarray dataset of cell-specific gene sets, aggregated
across 5 single-cell sequencing studies and ordered according to hierarchical clustering (n=3
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clusters based on gap statistic). Cell type abbreviations are maintained from the original study 
(see also Extended Data File 3). b) T-distributed stochastic neighborhood embedding (tSNE) of 
cell-specific gene sets based on their spatial expression profiles distinguishes 7 canonical cell 
classes (color coded). c) Regional weighted expression maps (see Methods) of each canonical 
cell class from Fig. 2b. d) Significant associations between cell classes and MS change in 
different CNVs. Circles indicate cell classes with gene sets that show statistically median rank 
enrichment relative to PLS-derived ranked gene lists for each CNV disorder (PRAND < 0.05). 
Circles color indicates the direction of median rank enrichment: red circled cell classes show 
high expression in brain regions where MS is greater in patients that controls (vice versa for 
blue circles). Named genes for each cell class are (i) expressed by the cell, (ii) in the respective 
CNV, and (iii) highly correlated with regional variation in MS change for that CNV (i.e. in the top 
5% of PLS ranks). 
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Fig. 3. CNV gene dosage sensitivity predicts spatial coupling between gene expression
and anatomical change. a) Top dosage sensitive (DS) genes in brain tissue and blood-derived
lymphoblastoid cell lines (LCLs) from CNV carriers (brain: +21. LCLs: +21,+X,-X, Methods). b)
Raincloud plots showing the different distributions of ranks for DS and non-DS (nDS) genes.
Boxplots show the median and interquartile ranges. Neighboring barplots show decile-specific
differences in proportions of DS vs. nDS genes. The statistically significant (PRAND < 0.05)
median rank differences between DS and nDS gene sets are driven by a subset of DS genes
(DSSS), which are significantly enriched at extreme ranks. c) DSSS gene names highlighted from
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the DS gene set. d) Spatial correlations between DSSS-nDS differential gene expression and 
both regional PLS scores and regional MS change for each CNV.  
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Fig. 4. Severity of altered gene expression predicts severity of regional anatomical
change across patients. a) Schematic outlining analytic approach to interrelating cortical MS
changes from MRI and DS gene expression from LCLs in +X patients. b) (left) Regional
loadings for principal component of shared variance between MS change in brain and DS gene
expression in LCLs. (middle) Regional MS change in +X patients compared to controls (from
Fig. 1a). Spatial similarity between these maps indicates that +X patients with greater
dysregulation of DS genes in blood show a more pronounced manifestation of the +X MS
change map. (right) This spatial similarity is quantitatively strong (r=0.59) and statistically
significant (PSPIN<0.0001) 
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Fig. S1. Schematic overview of methodological pipeline. Morphometric Similarity Networks
(MSNs) are constructed for each subject with 5 cortical features derived from structural (T1-
weighted) MRI. Regional morphometric similarity (MS) is calculated as the average of
unthresholded edges (correlations). Linear regression yields T-statistics for CNV effects
(patients vs. controls) on each region’s MS estimates. Partial least squares (PLS) regression is
performed to generate a ranked list of genes with correlations between regional gene
expression and regional MS T-statistics (Methods).  
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Fig. S2. Consistency and interpretation of neuroanatomical effects. a) (Left) Average
regional morphometric similarity (MS) across all 4 independent cohorts of typically-developing
controls. There was relatively high regional MS in temporal and parietal regions, and relatively
low regional MS in ventromedial prefrontal regions. (Right) Correlation in average regional MS
between each set of controls. There was significantly high positive correspondence between the
topographies of regional MS (median Pearson’s r = 0.85). b) Interpretation of patient-control MS
change. Plots show the sum of the absolute T-statistics of CNV effects on MS edges within the
four possible classes of effects (y-axis), for the top 10 most positive and negative regional T-
statistics (x-axis). The key shows the four possible outcomes. For each CNV, the regional T-
statistics observed (Fig. 1b) arise from a unique combination of the four effects at the edge
level. In general, negative regional T-statistics tend to reflect morphometric decoupling in CNV
patients relative to controls, whereas positive regional values tend to reflect morphometric de-
differentiation in CNV patients relative to controls (see Methods). NV = normal volunteers.  
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Fig. S3. Gene set size and constituent features of neuroanatomical effects. a) Raincloud 
plot demonstrating consistency of effect-size between size-varying subsamples of X-
chromosome gene ranks for the +X CNV (blue), and random gene subsamples of similar size 
(red). Boxplots show the median and interquartile ranges. Median ranks are highly consistent, 
but variation in gene rank increases with reducing gene set size. Black asterisks denote 
significance of median differences, with a ~100 genes being the smallest gene set size 
necessary to consistently reach significance at PRAND = 0.05. Gray annotations denote the +Y 
and +21 CNVs, showing that they fall within the expected trend for significance based on gene 
sets of similar size within the X-chromosome. b) Regional T-statistics (CNV patients vs. 
controls) computed using individual constituent features of the morphometric similarity networks. 
The CNV gene set ranks linked to these alternative anatomical change maps are provided in 
Table S3. Black outlines denote anatomical change maps which successfully recover the 
preferential spatial coupling between anatomical change and expression of CNV region genes 
in the human cortex (PRAND < 0.05). 
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Fig. S4. Correlations between cell class expression and canonical in vivo and ex vivo
maps of cortical microstructure. Pairwise Pearson correlation coefficients (across cortical
regions) are plotted for all map pairs. Asterisks denote correlations with PSPIN < 0.05. The
comparison maps are plotted with the same color scale as the cell class maps in Fig. 2B. From
in vivo: Evo = evolutionary scaling; Devo = developmental scaling; Allom = allometric scaling;
MT = magnetization transfer; From ex vivo (BigBrain): Supra.CT = supragranular cortical
thickness; Infra.CT = infragranular cortical thickness; Supra.Den = supragranular density;
Infra.Den = infragranular density. Details and references for these maps can be found in the
Methods. 
 
 

38 

 
vo 
al 

he 
m 
g; 
al 
ty; 
he 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/573279doi: bioRxiv preprint 

https://doi.org/10.1101/573279
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

39 

 
Table S1. Participant Characteristics. 
 
Table S2. CNV Gene set median ranks for MS change maps. 
 
Table S3. CNV Gene set median ranks for anatomical change maps for individual cortical 
features. 
 
Extended Data Table 1. CNV genes. Ranked gene lists for each CNV from PLS analysis. 
 
Extended Data Table 2. GO annotations for ranked gene lists. 
 
Extended Data Table 3. Cell-type gene sets. 
 
Extended Data Table 4. Dosage sensitive gene sets.  
 
Extended Data Table 5. Brain expressed genes. 
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