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Abstract 

DNA methylation is an important epigenetic mark but how its locus-specificity is decided in 
relation to DNA sequence is not fully understood. Here, we have analyzed 34 diverse whole-
genome bisulfite sequencing datasets in human and identified 313 motifs, including 92 and 221 
associated with methylation (methylation motifs, MMs) and unmethylation (unmethylation motifs, 
UMs), respectively. The functionality of these motifs is supported by multiple lines of evidences. 
First, the methylation levels at the MM and UM motifs are respectively higher and lower than the 
genomic background. Second, these motifs are enriched at the binding sites of methylation 
modifying enzymes including DNMT3A and TET1, indicating their possible roles of recruiting 
these enzymes. Third, these motifs significantly overlap with SNPs associated with gene 
expression and those with DNA methylation. Fourth, disruption of these motifs by SNPs is 
associated with significantly altered methylation level of the CpGs in the neighbor regions. 
Furthermore, these motifs together with somatic SNPs are predictive of cancer subtypes and 
patient survival. We revealed some of these motifs were also associated with histone 
modifications, suggesting possible interplay between the two types of epigenetic modifications. 
We also found some motifs form feed forward loops to contribute to DNA methylation dynamics.  

Introduction 

DNA methylation plays crucial roles in many biological processes and aberrant DNA methylation 
patterns are often observed in diseases. There are three DNA methyltransferases (DNMTs) in 
human that are responsible for de novo or maintaining methylation of cytosine. Although these 
enzymes themselves do not show strong sequence preference in vivo, DNA methylation is 
highly locus specific such as hypo-methylation of active promoters and enhancers. An urging 
question is how such locus-specific DNA methylation pattern is established. One of the possible 
mechanisms is that DNA binding proteins or non-coding RNAs recognize specific DNA motifs 
and their binding recruits DNMTs to a particular locus to methylate cytosines in the region. 
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These factors can be specifically active in a cell type or state such that to provide the cell type- 
and locus-specificity. Accumulating evidences suggest that protein binding such as CTCF and 
other proteins can create low methylated regions in the regulatory sites and introducing specific 
nucleotide sequences can establish DNA methylation1,2. These observations suggested the 
importance of the DNA sequence in shaping methylation state. Several studies have illustrated 
the relationship between sequence features and DNA methylation3–13 but the DNA motifs 
recognized by the DNA methylation associated proteins have not been well characterized. 
Therefore, cataloging these motifs would pave the way towards understanding the mechanism 
of the locus-specificity of DNA methylation. 
 
Cataloguing DNA methylation associated motifs requires a comprehensive set of methylomes 
and whole-genome bisulfite sequencing (WGBS) is a common technology to map DNA 
methylation in the entire human genome. The NIH Roadmap Epigenomics Project14 has 
generated WGBS data in 34 cell lines or tissues, which provides an opportunity to discern motifs 
associated with DNA methylation. We reason that contrasting regions that are commonly 
methylated across cells/tissues to those commonly unmethylated would increase the signal-to-
noise ratio to identify the motifs most relevant to DNA methylation. Furthermore, to consider the 
impact of cell type and cell state on DNA methylation, we also need to uncover motifs 
associated with variable methylation levels across cells/tissues; a caveat is that these motifs 
can be confounded by those only related to cell specificity. To this end, we have defined 
commonly methylated (unmethylated) regions across the 34 cells (CMR/CUR) as well as 
variably methylated (unmethylated) regions (VMR/VUR) that show cell-specific methylation 
(unmethylation). We have found the DNA motifs that are discriminative of these regions. 
 
To confirm the motifs’ association with methylation, we overlapped them with DNMT and TET 
ChIP-seq peaks and observed strong enrichment. We also used TCGA dataset to further 
assess the importance of these motifs in shaping DNA methylation. Interestingly, we found that, 
if these are SNPs occurring in the motifs, the methylation levels in the nearby CpGs are 
significantly altered, i.e. perturbation to a MM (UM) motif in a highly (lowly) methylated region 
would decrease (increase) the local methylation level. This observation strongly supports the 
functionality of the identified motifs in establishing or maintaining locus-specific DNA 
methylation. Furthermore, we observed eQTL and mQTL SNPs are enriched in the found 
motifs. We also found that the combination of somatic SNPs and the found motifs can 
significantly improve the prediction accuracy of cancer type and patient survival than using 
SNPs alone. This observation also supported the functionality of the DNA methylation 
associated motifs. Additional analyses also revealed the potential interplay between DNA 
methylation and histone modification as well as their contribution to DNA methylation dynamics. 

Results 

Defining DNA methylation regions and de novo motif discovery  
We aimed to identify DNA motifs associated with DNA methylation and thus started with 
searching for methylation regions that have the strongest signals. We collected whole genome 
bisulfite sequencing (WGBS) data of 34 human methylomes generated by the NIH Roadmap 
Epigenomics Project15,16 (Figure 1A). We took an approach similar to the Ziller et al. study17 and 
defined 1.55 million methylation regions containing 11.5 million CpG sites in the 34 methylomes. 
Because the methylome data is noisy, we only considered regions containing 2 or more CpGs 
within 400 bp apart, which covers 29.2% of the human genome.  
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Methylation level is associated with different functions. For example, low methylated regions 
(LMRs) are important in hematopoiesis and leukemia development18, DNA methylation valleys 
(DMVs) are long hypomethylated regions involved in development and tissue-specific 
regulation19,20; focal hypermethylation and long range hypomethylation are found in cancer21; 
variably methylated regions (VMR) are associated with histone modification and enhancer22. In 
this study, we defined three types of methylation regions based on the mean and standard 
deviation of the CpG methylation level in each region (Figure 1A, 1B): (1) Top 0.5% (or 7726) 
commonly methylated regions (CMR) which have highest methylation level across 34 
methylomes; (2) Top 0.5% (or 7726) commonly unmethylated regions (CUR) with lowest   
methylation levels; (3) Top 20% (or 309040) variably methylated regions (VMR) with highest 
standard deviation and this percentage is consistent with the previously reported 21.8% to 
22.6% VMRs in the methylome17,22. We are aware that these regions can vary upon the data 
sets used to define them. Because the 34 methylomes are derived from diverse cells and 
tissues, we argue the derived motifs are still a reasonable starting point of revealing DNA 
binding proteins recruiting DNA methylation enzymes.  
 
Defining commonly and variably methylated/unmethylated regions allow identification of motifs 
that are associated with DNA methylation independent of cell type or cell-type specific. CMRs 
and CURs are regions that show consistent methylation pattern across a diversity of 34 cells 
and tissues, and therefore they likely harbor motifs associated with methylation/demethylation in 
a cell type independent manner. GREAT23 analysis showed CMRs are strongly (p < 1e-30) 
linked to DNA repair and mitosis and are mostly (68%) found in introns (Figure S1A), where  
hypermethylation has been reported to confer enhancer-like activity in EGR224 and mediate 
alternative splicing25. CURs prefer promoters (66%) associated with (p < 1e-30) cell 
differentiation, development and morphogenesis, indicating the important roles of demethylation 
in these processes26,27(Figure S1A). By contrasting CMRs to CURs, we identified 55 CMR and 
87 CUR motifs using a motif finding algorithm Epigram3 (Figure 1A, 1C). A 5-fold cross-
validation using Epigram3 successfully discriminated CMRs from CURs using the motifs (AUC= 
0.97) (Figure 1C). Note that Epigram balances the GC content, sequence number and length in 
the foreground and background, which avoids identification of trivial sequence motifs (see 
details in Methods and ref. 3). Because these motifs are associated with high or low methylation 
regions commonly shared by a diverse cell types, it is reasonable to argue that they are 
important or even casual for establishing, maintaining or removing DNA methylation.  
 
Similar to TFs whose binding motifs are defined but their activities are cell type specific, the 
usage of DNA methylation associated motifs is determined by cellular state. The VMRs show 
cell type specific methylation patterns, which provides an opportunity to identify motifs active in 
particular cell types. We contrasted top 6000 methylated and unmethylated VMRs sorted in 
each cell type and discovered average 63 methylation and 85 unmethylation associated motifs 
in each methylome, with an average AUC of 0.79 (Figure 1C).  
 
In total, 5172 motifs were identified from 35 Epigram runs (1 common + 34 cell-specific). 
Because the same or similar motifs could be found in multiple cells, we clustered these motifs 
into 3226 unique ones using motif similarity measurement based on Jensen-Shannon 
divergence (see Methods). To control false discovery rate (FDR), we further conducted a robust 
volcano test28 with stringent p-value < 1e-10 and enrichment > 2 requirement, resulting in 313 
methylation motifs for the follow-up analysis (Figure 1A, S1B), including 221 unmethylation 
motifs (UM) and 92 methylation motifs (MM). Among them, 36 (16.2%) and 14 (17.1%) are 
matched to 50 known motifs in the latest version of HOCOMOCO29. The matched included 
previously confirmed factors to influence methylation level such as CTCF2 and PAX530 as well 
as factors KLF4, SP4, and EGR1 that have been reported to regulate gene expression by 
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binding to CpG rich promoters31 (Figure 1E). The majority of the motifs are novel and showed 
strong sequence preference. UMs are more similar to each other and have higher GC content 
(eg. CCGCCGCCG) than MMs (Figure S1C, S1D). Note that these motifs were found by 
Epigram after sequence balancing which removes GC content bias3. While high GC content and 
CpG-rich sequences have been associated with hypomethylation in regions such as CG-
islands32 and in specific cells33–35, our analysis revealed specific DNA motifs with sophisticate 
patterns that may be recognized by proteins or ncRNAs.  
 

Identified motifs are associated with the local DNA methylation deviated from the 
background 
We first investigated the DNA methylation levels around the identified motif occurring sites 
(determined by FIMO36 using p < 10-5, the same parameters were used for all the relevant 
analyses thereinafter). We did observe hypomethylation and hypermethylation in the neighbor 
CpGs of the UM and MM motifs, respectively. Several representative examples are shown in 
Figure 2A. It is obvious that DNA methylation levels around the motif sites show a sharp “dip” or 
“peak”, suggesting the association is highly locus-specific. Interestingly, this trend remains the 
same in different cell types despite that the methylation levels in the surrounding regions vary. 
For example, motif UM_238.2_3.88_0.53_5 (matched to the WT1 motif) was identified from 
VMRs in the right ventricle tissues; the methylation level at its occurring sites decreases in all 
the cell types although the methylation level ranges from 0.6 to 0.8 in the surrounding regions 
(Figure 2A). This observation confirms the functionality of individual UM and MM motifs even 
though the local environment is overall hyper- or hypo-methylated. 
 
We further examined the impact of these motifs on methylation in the gene coding regions. UM 
and MM consistently mark lower and higher local CpG methylation levels in the gene coding 
regions (Figure 2B). In the Roadmap dataset, we observed a significant impact of UMs or MMs 
on DNA methylation level around the transcription start sites (TSS) (Figure 2B, left panel). 
DNA methylation in the promoters is important for regulating gene expression37 and thus itself is 
likely under active regulation. We observed the same trend in the TCGA DNA methylation data 
of 9037 patients from 32 cancers measured by Illumina 450K array38 (Figure 2B, right panel). 
On average, CpG methylation decreases from the beta value of 0.81 in the Roadmap dataset, 
dominated by normal cell lines and tissues, to 0.59 in the TCGA cancer patients across 20,260 
protein-coding genes. This observation is consistent with the global hypomethylation in cancer 
cells that have been reported in the literature19,26,39. However, the MM and UM occurring bins 
still showed respectively higher and lower methylation levels than the background. As an 
example, UM and MM occurrence sites are characterized by lower and higher methylation in the 
gene coding region of TP53 (chr17:7,540,000 - 7,650,000) in both TCGA and Roadmap data. 
Collectively, our results on two separate data sets generated by different technologies support 
that the identified DNA motifs play critical roles in influencing the local CpG methylation.  
 

Identified motifs are significantly enriched at TETs and DNMTs binding sites 
Locus-specific DNA demethylation or methylation depends on the recruitment of specific 

enzymes such as TET40 and DNMTs41 to particular genomic regions42–44. We reasoned that, if 

the identified motifs are important for recruiting the enzymes, these motifs would be enriched 

around the binding sites of the recruited enzymes. To this end, we have collected all the 

available ChIP-seq experiments of TET and DNMT enzymes45–48. Indeed, at the center of TET1 

ChIP-seq peaks in hESC H1 cells46, the UM sites occur 26.7 times of expected counts (see 

details in Methods), whereas MM motifs occur roughly same (1.4 times) as the expected counts 

(Figure 2C, first panel from the left). This observation is consistent with the previous reports that 
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TETs can be recruited to specific locus by DNA binding factors40,44. Interestingly, the wide 

distribution of UM around TET peaks compared to MM-DNMT overlap is consistent with the 

previously reported role of TET in protecting spanned low-methylation regions termed 

methylation canyons against hypermethylation49. Furthermore, TET prefers CpG-rich patterns 

such as CpG island which spans several kilobases50 and can bind CpG-rich DNA sequences42 

in mammalians to maintain stable demethylation51; consistently, UMs have significantly higher 

GC content than MMs and known motifs (p < 0.05, Figure S1C).  

 

We observed different motif occurring patterns around the binding sites of different DNMT 

enzymes. DNMT3A and DNMT3B are responsible for de novo methylation52. At the center of 

DNMT3A ChIP-seq peaks in the human NCCIT cells45, we observed a peak of the MM motif 

occurrence compared to the known and UM motifs (Figure 2C). Interestingly, the MMs are 

enriched at the shoulder regions of the DNMT3B binding sites but depleted at the center 

(Figure 2C). Note that only 2.2% of DNMT3A and 3.8% of DNMT3B peaks overlap with each 

other45 (Figure S2A). Several studies have demonstrated some distinct roles of DNMT3A and 

DNMT3B, showing that DNMT3B preferentially targets gene bodies marked with H3K36me353–

56; in fact, H3K36me3 is 4.27 times enriched at the DNMT3B compared to DNMT3A peaks in 

gene coding regions (Figure S2A). These observations suggest that the MMs are likely 

recognized by DNA binding factors involved in actively recruiting DNMT3A, whereas DNMT3B 

may be recruited by flanking sequences containing MMs and together with chromatin marks 

and/or other factors such as H3K36me3. Interestingly, DNMT1, an enzyme involved in DNA 

methylation maintenance and recognizing hemimethylation57, shows a different profile from 

DNMT3A/B (Figure 2C, second panel from the left). This difference may be resulted from the 

different mechanisms or factors involved in active and passive DNA methylation.  

 

To further validate if the observed co-occurrence around methylation enzyme is significant, we 

also compared the center-to-edge enrichment of UM and MM with TFs known to regulate DNA 

methylation (Figure 2D, method). Previous studies have reported that introducing a CTCF 

binding site at a particular locus leads to TET recruitment and local DNA demethylation2. NR6A1 

has also been confirmed to recruit DNMT to methylate at target genes58. Here, we show that at 

the center of TETs binding sites, UMs are significantly more enriched than MMs, and have even 

higher enrichment than CTCF (Figure 2D, left panel). Similarly, MMs are significantly more 

enriched than UMs at the center of DNMT3A binding sites, surpassing that of NR6A1 (Figure 

2D, right panel). The enrichment of MMs and UMs were further compared with the known TFs 

such as PAX5, TOPORS, WT1 and PPARG that are most enriched at the TETs and DNMT3A 

sites (Figure S2B). These results demonstrated that the identified motifs can be recognized by 

particular DNA binding factors that in turn recruit the methylation modifying enzymes in a locus-

specific manner. Given that the majority of MMs (71.4%) and UMs (83.9%) are de novo motifs, 

our findings pave the way towards identifying particular factors involved in locus-specific 

methylation regulation.  

 

SNPs occurring at identified DNA motif sites is associated with altered methylation level 
To validate the functionality of the identified motifs, we investigated enrichment of functional 

SNPs (eQTL and mQTL) at motif occurrence sites. We analyzed the relationship between 
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somatic mutation and methylation level using the TCGA data38 and identified methylation 

quantitative trait loci (mQTL), which are SNPs correlating with CpG variation within 5000bp. 

Using Matrix eQTL59, we identified 26341 SNP-CpG pairs (mQTL), corresponding to 17038 

unique SNPs and 20043 CpGs, from the total 1.3 million somatic mutations in 9037 patients of 

32 cancers. We observed an average 11.7% mQTL discovery rate at the motif sites compared 

to 2.3% in the background (Figure 3A, upper left panel). This enrichment difference is most 

prominent around transcription start site, suggesting that the identified motifs have stronger 

impact on methylation at TSS (Figure 2B)60–62. Enrichment of mQTL in both MM and UM sites 

was also found in three additional human methylome datasets using the reported mQTLs in the 

original studies63–65 (Figure S3A), which confirms the generality of this observation. Because 

DNA methylation is associated with gene expression17,66, it is not surprising that MMs and UMs 

significantly overlap with expression quantitative trait loci (eQTL), which are SNPs correlated 

with gene expression level (Figure 3A, right panel).  

 

To investigate the causality between these motifs and DNA methylation level, we analyzed 

whether disrupting these motifs would lead to DNA methylation change. We chose to focus on 

the possible binding sites of TET1 and DNMT3A containing these motifs because the significant 

enrichment of the found motifs in the enzyme-binding regions implies that the active methlyation 

or demethlyation is most likely mediated by DNA binding factors to recruit DNMT3A or TET1, 

respectively. Despite the ChIP-seq experiment of TET1/DNMT3A was done in one particular cell 

type, the sequence features, i.e. the motif composition in these regions, do not change and thus 

the mechanism of the active methylation regulation. The methylation change is decided by 

which factors are expressed and active in a specific cell type or state. Disrupting these motifs 

would lead to methylation change in the nearby CpGs.  

 

Using the TCGA data, we first identified 5372 CpG sites from 15 cancers within 5000bp of the 

TET1 binding peaks that also contain SNPs overlapping with UMs in at least one patient. 

Because we did not have TET1 ChIP-seq data in the cancer patients, we used the published 

data measured in hESC (see Figure 2C/D). We compared the methylation change of these 

CpGs between patients with and without SNP in each cancer. 13 out of 15 cancers showed 

significant (p < 0.01) increased methylation level of with-SNP compared to the without-SNP 

patients (background) (Figure 3B, see Methods for details). One example is given in Figure 3C 

for an UM motif UM_91.0_3.11_0.56_2. This motif is within a TET1 peak and is disrupted by a 

C->T somatic mutation at chr16:68002415 on the first exon of SLC12A4 in one LUAD cancer 

patient. All 4 CpGs within 500 bps upstream of the SNP showed increased methylation (beta 

value increased from 6.2% to 52%, 8.8% to 55%, 6.2% to 44% and 17% to 56%, respectively). 

Hypomethylation in the SLC12A4 promoter is related to resistance to platinum-based 

chemotherapy in ovarian cancer67; the 4 CpGs affected by the SNP are located in the SLC12A4 

promoter, suggesting a mechanism of how the SNP may affect response to chemotherapy 

through regulation of local DNA methylation. More examples of SNP-induced methylation 

change through disrupting UMs are shown in Figure S3B.  

 

Overlapping MM and SNPs with DNMT3A peaks only resulted in <100 CpGs sites in 2 cancers. 

Although we observed decreased methylation level of DNMT3A-MM overlapping with mQTL as 
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predicted, the analysis did not have enough statistical power. Because the methylation was 

measured by 450K array and SNPs were detected by Affymetrix Genome-Wide Human SNP 

Array 6.0, it is reasonable to expect that more sites can be observed with whole methylome and 

whole genome sequencing data.  

 

Combining Motifs and SNPs Shows Diagnosis and Prognosis Power 
DNA methylation has been shown to be predictive for cancer diagnosis and patient survival 
prospective68,69. Since we have shown motif disruption is associated with methylation change, 
we hypothesized that combining motifs with SNPs can improve prediction for cancer diagnosis 
and patient survival. To evaluate this, we trained gradient boosting models70 using SNP and 
SNP+motif as features in 32 TCGA cancers from 7120 patients (see Methods for details). We 
calculated both auROC and auPRC (a metric for imbalanced dataset to avoid inflated evaluation 
of the performance)71. Inclusion of the motifs in the models showed increased auROC and 
auPRC in all the 32 cancers. On average, auROC increased from 0.78 to 0.92 and auPRC from 
0.45 to 0.56, whereas 26 (for auROC) and 13 (for auPRC) improvement are statistically 
significant (p < 0.01) (Figure 4A). Notably, several cancers showed drastic improvement, 
including ovarian cancer (OV, auPRC from 0.41 to 0.79), thyroid carcinoma (THCA, auPRC 
from 0.49 to 0.82), acute myeloid leukemia (LAML, auPRC from 0.6 to 0.88), 
pheochromocytoma and paraganglioma (PCPG, auPRC 0.49 to to 0.75) (Figure S4B). These 
cancers all have reported aberrant methylome and have methylation associated diagnosis and 
therapeutic targets72–75.  
 
For 26 cancers with auPRC>0.3, the 67 most predictive features (score > 0.01) determined by 
the gradient boost estimator are shown in Figure 4B (see Methods for details), including 13 
SNPs, 20 MMs and 34 UMs. Only 2 MMs are matched to known motifs (RXRB and PAX5), 
whereas 7 UMs to AP2B, BTD, PLAL1, GLIS2, WT1, CNOT3 and GTF3A. The predictive SNPs 
include those occurring on the cancer driver genes such as BRAF (in 16 cancers), TP53 (in 14 
cancers), IDH1 (in 14 cancers), PIK3CA (in 13 cancers) and KRAS (in 12 cancers). Strikingly, 
we found numerous MMs and UMs very predictive in multiple cancers. Notably, 
MM_814.4_2.02_0.62_8 (PAX5) that has been shown to strongly impact local methylation level 
(Figure 3C) is important in 12 cancers. The 5 UMs predictive in >10 cancers are 
UM_78.3_2.97_0.58_2 (BTD), UM_13.5_2.17_0.53_2, UM_195.4_2.88_0.56_5 (GTF3A), 
UM_35.4_2.56_0.54_3 and UM_61.9_2.40_0.56_4 (Figure 4B). 
 
To evaluate the prognosis power of the motifs, we trained two gradient boosting models (SNP 
and SNP+motif) to discriminate low-risk from high-risk patients. We evaluated the performance 
using survival hazard ratio of the predicted high-risk group (higher ratio means better 
performance). The SNP-only model found 6 out of 22 cancers having significant (p < 0.05) 
hazard ratio. In comparison, SNP+motif model achieved 16 out of 22 cancers having significant 
(p < 0.05) hazard ratio (Figure 4C, left panel, see Methods for details). Kaplan-Meier test 
showed better separation of patient survival between the predicted low-risk and high-risk groups 
by considering motifs (p=3.6E-43 for SNP and p=3.2e-270 for SNP+motif, Figure 4D, right 
panel). Multivariate survival analysis on the full model revealed important factors correlated with 
patient survival (p < 0.05), including 6 SNPs, 6 MMs and 20 UMs (Figure 4D). These results 
further confirmed the functionality of the discovered motifs and highlighted the potential for 
clinical application. 
 
Motifs involved in both DNA methylation and histone modifications  
Both DNA methylation and histone modification play important roles in regulating gene 

expression and their interplay has been well recognized76,77. In a separate study, we identified 
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361 motifs that are associated with 6 (H3K4me1, H3K4me3, H3K27ac, H3K27me3, K3H9me3, 

H3K36me3) histone modifications from 110 diverse human cell types/tissues78 (Figure 5A). By 

comparing the 313 methylation motifs and the histone associated motifs, we found that 56.5% 

MMs (52 out of 92) overlap with histone motifs (e-value cutoff of 0.05 using TomTom). 

Unsurprisingly, 35 MMs are aligned to H3K36me3 motifs as H3K36me3 can recruit DNMT3A/3B 

through their PWWP domain79,80. In contrast, 74.2% (164 out of 221) UMs found no match to 

histone motifs. 57 UMs are matched to motifs associated with active promoter or enhancer 

marks: 12 UMs matched to H3K27ac, an active promoter and enhancer mark; another 12 UMs 

matched to the promoter mark H3K4me3. As active enhancers and promoters tend to have low 

methylation15, this observation is not unexpected. Interestingly, we observed another 12 UMs 

matched to the motifs associated with the poised promoter markers H3K4me3+H3K27me3. 

Previous studies also suggested colocalization of H3K4me3 and H3K27me3 marks is 

associated with DNA hypomethylation in pre-implantation embryos81.  

 

Regulatory loops on DNA methylation 
DNA methylation is dynamically regulated in response to the cell state change. We analyzed the 

putative regulatory connectivity between the identified motifs, transcription factors and the 

modifying enzymes of TET1 and DNMT3A. We only considered TET1 and DNMT3A here 

because their binding peaks are significantly enriched with UMs and MMs, respectively (Figure 

2C). It is well accepted that a known TF motif occurring in the promoter of a gene suggests a 

possible regulation of the gene expression by the TF. Similarly, we infer the occurrence of an 

UM or MM in a gene’s promoter indicates putative regulation on the DNA methylation level and 

thus affecting gene expression.  

 

We first analyzed the promoters of TET1 and DNMT3A. We found 19 UMs in the promoters of 

both TET1 and DNMT3A. We also found these UMs appearing in the promoters of 25 TFs that 

also have motifs in the promoters of both TET1 and DNMT3A and presumably regulate the two 

enzymes (Figure 5B). Such a topology forms a feed forward loop (FFL)82 that involves three 

nodes: two regulator nodes (motifs and TFs), one regulates the other (motifs regulates TFs), 

and both jointly regulating a target (TET1 or DNMT3A) (see Methods). UMs induce 

demethylation of TET1/DNMT3A and their regulator TFs, which forms positive FFLs to enhance 

the expression of both TET1 and DNMT3A once the motifs are activated. We also found 2 and 5 

MMs occurring in the promoters of TET1 and DNMT3A, respectively. These MMs appear in the 

promoters of 14 TFs as the other regulator of TET1 or DNMT3A, of which 1 TF only regulates 

TET1, 7 TFs only regulates DNMT3A and 6 TFs regulate both (Figure 5B); these FFLs form 

enhanced dynamic regulation to repress TET1 and DNMT3A expressions. Overall, there are 

many more activating than repressive FFLs on regulating TET1 and DNMT3A.   

 

Previous reports have also shown TET1 and DNMT3A have competitive binding to regulate 

promoters in mouse embryonic stem cells83. In addition, in honey bee Dnmts and Tet (homolog 

of vertebrate DNMTs and TETs) were found to target memory-associated genes sequentially, 

while Dnmt3 was found in a negative feedback loop for DNA methylation84. We found 6 genes 

targeted by UMs and also by both TET1 and DNMT3A (as indicated by their ChIP-seq peaks in 

hESC and NCCIT cells, respectively) (Figure 5C). Interestingly, 4 of them (KLHL3, C1orf61, 
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ACVR1C, PTPRO) are also targeted by MMs and either TET1 or DNMT3A (Figure 5C). One of 

them, PTPRO, a cancer suppressor and therapeutic target of a variety of solid and liquid 

tumors, is silenced by promoter hypermethylation85. In fact, we observed higher methylation at 

the promoter of the first TSS of PTPRO (TSS1, chr12:15,474,979-15,476,332) in the TCGA 

patients (beta value average at 0.15) compared to the ROADMAP methylomes (beta value 

averaged at 0.05) (Figure 5C). PTPRO has multiple TSSs and alternative splicing forms86, and 

each TSS has a TET1 or DNMT3A ChIP-seq peak (Figure 5C). As competitive binding of 

activator and repressor can lead to sharp turn on/off of the gene expression87–89, we speculate 

the competitive FFLs formed by the motifs and modifying enzymes would thus allow dynamic 

regulation of the methylation and presumably the expression levels of these genes.  

Conclusion 

In this study, we present a comprehensive catalog of the DNA motifs associated with DNA 
methylation. We did observe coincident higher and lower methylation levels around the MM and 
UM occurring sites, respectively. Furthermore, the motif sites are also enriched with functional 
SNPs, including mQTL and eQTL. We also showed that combining DNA motifs and SNPs can 
achieve accurate prediction in TCGA cancer patient’s diagnosis and prognosis, which supports 
the importance of these motifs.  
 
Our analysis suggested that these motifs are most likely involved in recruiting TET and 
DNMT3A/3B for active demethylation and methylation, as indicated by their significant 
enrichment in the binding sites of these enzymes. The passive or maintenance methylation 
mediated by DNMT1 seems to be regulated by mechanisms other than DNA binding co-factors 
because we did not observe enrichment of the found motifs in the DNMT1 binding sites. 
Interestingly, some of these motifs may also play roles in histone modifications as they were 
also found associated with histone modifications, particularly those relevant to DNA methylation 
such as H3K36me3 that were reported to recruit DNMT3A/B through their PWWP domains. 
Furthermore, these motifs can form feed forward loops (FFLs) with TFs to regulate TET1 and 
DNMT3A or regulate genes together with TET1/DNMT3A. These FFLs allow possible regulation 
of the DNA methylation dynamics and presumably the gene expression dynamics. Our motif 
analysis suggests putative mechanisms for experimental test. 

Methods 

De novo motif discovery 

11.5 million CpG sites common across all human 34 methylomes have been collected from NIH 
Roadmap Epigenomics Project15. Methylation regions are defined by segments with 2 or more 
CpGs within 400 bp apart and region methylation level is defined by the mean CpG beta values. 
Each region is then assigned mean and standard deviation of methylation across all 34 tissues 
and cells. A t-test is done for all regions with the null hypothesis that a region is uniformly 
distributed from all CpGs in all tissues. CMRs and CURs are defined by highest and lowest 
0.2% t-test scores, while VMRs are defined by the top 20% standard deviation (Figure 1A, 1B). 
For common motifs MM and UM, we perform Epigram contrasting CMRs and CURs.  
 
In short, Epigram looks for enriched motifs that best differentiate the foreground from the 
background sequences. In both sets of the input sequences, Epigram iterates through all 
possible k-mers to calculate their occurrences, enrichment over genomic background and 
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enrichment over shuffled input. These values are combined to determine the enrichment of k-
mers. Position weight matrices (PWMs) are then generated by first picking a top k-mer and 
enriched k-mers similar to itself to construct a “seed” PWM, which is then extended by adding 
more enriched k-mers that are a few base pairs shifted from the original one. The motifs are 
then further ranked and filtered based on how well they differentiate the foreground from the 
background using LASSO (least absolute shrinkage and selection operator) logistic regression. 
The final set of motifs is then evaluated by random forest. 
For tissue-specific VMM and VUM, we contrasted top 6000 most methylated and unmethylated 
regions in each methylome. In total, we identified 5172 motifs from 35 Epigram runs (34 
methylome + 1 common) with default parameters3 before curation (Figure 1C). For each run, 
Epigram found DNA motifs that discriminate enrichment peaks of the high methylation region 
under consideration (eg. CMR) from a background of low methylation region (eg. CUR). 
Importantly, the background has the equal GC content, number of regions and sequence 
lengths as the foreground to avoid inflated prediction results caused by simple features or 
unbalanced data set.  
 
Motif curation and defining motif occurrence site 

Following our previous study3, we match motifs to the 1156 known motifs documented by the 
HOCOMOCO ChIP-seq consortium29 using an e-value cutoff of 0.05 with Tomtom90. Next, we 
merged the similar motifs to remove redundancy. We calculated a pairwise motif distance using 
weighted Jensen-Shannon Divergence:  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √
∑ 𝐽𝑆𝐷(𝑀1(𝑖 + 𝑘), 𝑀2(𝑗 + 𝑘))3𝑛𝐴𝑙𝑖 − 1

𝑘=0

𝑛𝐴𝑙𝑖
+ 𝐺(𝑛𝐴𝑙𝑖, 𝑛𝐺𝑎𝑝) 

   𝐺(𝑛𝐴𝑙𝑖, 𝑛𝐺𝑎𝑝)  =
𝑔𝑎𝑝𝑃 ∗  𝑛𝐺𝐴𝑃2

𝑛𝐴𝑙𝑖
 

where M1, M2 are PWMs of the two motifs, respectively, M(i) represents the ith column in the 
matrix, JSD(x,y) is Jensen-Shannon divergence, nAli and nGap are respectively the length of 
the aligned sequence and gaps. Gap penalty function G has gapP as weight parameter set at 
0.1. To ensure high similarity within motif cluster, gap penalty function is set to quadratic which 
is more stringent compared to traditional linear function to prevent having excessive gaps and 
hangovers. Motifs were hierarchically clustered with UPGMA91 algorithm and clusters were 
chosen using a distance cutoff of 0.1. As a result, we obtained 3226 clusters and selected the 
motif closest to the centroid of the cluster to represent all the motifs in that cluster. We combine 
the p-value of motifs in the cluster using Fisher's combined probability test. Enrichment of each 
cluster is combined by geometric mean. The strongest 313 motifs are filtered by volcano test 
with combined p < 10-10 and enrichment > 2 (Figure S1B). Finally, motif occurrence sites are 
determined by a p < 10-5 calculated by FIMO36. 
 
Normalized motif occurrence and center-to-edge enrichment at DNMTs and TETs ChIP-
seq peaks. 
DNMTs and TETs ChIP-seq peaks were downloaded from the published studies45,47,48. The 
5000bp neighbor regions around the ChIP-seq peaks were included as the background or edge. 
Normalized motif occurrence was calculated using the following formula.  
 

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑀𝑜𝑡𝑖𝑓𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑀𝑜𝑡𝑖𝑓𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒)

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑀𝑜𝑡𝑖𝑓𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒)
 

 

 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑀𝑜𝑡𝑖𝑓𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒) =
𝑇𝑜𝑡𝑎𝑙𝑀𝑜𝑡𝑖𝑓𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝐿𝑒𝑛𝑔𝑡ℎ ∗ 𝑇𝑜𝑡𝑎𝑙𝐶ℎ𝑖𝑝𝑆𝑒𝑞𝑃𝑒𝑎𝑘𝑁𝑢𝑚𝑏𝑒𝑟 ∗ 𝐵𝑖𝑛𝑊𝑖𝑑𝑡ℎ

𝐺𝑒𝑛𝑜𝑚𝑒𝑆𝑖𝑧𝑒
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where 𝑀𝑜𝑡𝑖𝑓𝑆𝑖𝑡𝑒𝐶𝑜𝑢𝑛𝑡 is the occurrence number of a motif in a 100 bp bin, 
𝑇𝑜𝑡𝑎𝑙𝑀𝑜𝑡𝑖𝑓𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝐿𝑒𝑛𝑔𝑡ℎis the total length of  genome-wide motif occurrences defined by 

FIMO (see the above section), 𝑇𝑜𝑡𝑎𝑙𝐶ℎ𝑖𝑝𝑆𝑒𝑞𝑃𝑒𝑎𝑘𝑁𝑢𝑚𝑏𝑒𝑟is the total number of ChIP-seq 
peaks, 𝐵𝑖𝑛𝑊𝑖𝑑𝑡ℎ is 100 bp and 𝐺𝑒𝑛𝑜𝑚𝑒𝑆𝑖𝑧𝑒 is the genome size of 3.14E9 bp for the human 

genome hg19. We did this calculation for each of the 313 motifs in each 100 bp bin. Results are 
plotted in Figure 2C.  
 
Further, center-to-edge enrichment was calculated by 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑀𝑜𝑡𝑖𝑓𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 in the 
center 100 bp ChIP-seq bin divided by the average of 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑀𝑜𝑡𝑖𝑓𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 at the bins 

2500 bp upstream and downstream. Average enrichment and standard deviation were 
calculated across all MMs or UMs, followed by a two-tailed two-sample t-test, with p < 0.01 
marked as significant. Results are plotted in Figure 2D.  
 
Functional SNPs enrichment analysis with TCGA 

We downloaded the processed data (level 3) of 36 TCGA cancers from the Firehose database92 
including patient survival, somatic mutations, 450K methylation array and RNA-seq data. Matrix 
eQTL59 linear model was used to identify mQTL and eQTL co-variating with methylation and 
transcript RNA-seq level, with 5000 bp distance cutoff from SNP to CpG and transcript TSS, 
respectively. We used a conservative p-value cutoff of 0.01 on top of a FDR cutoff of 10%. Then 
we calculated the number of mQTL or eQTL out of all SNPs in 10 bins of gene body, i.e., 0-
10%, 10-20% … 90-100% of the mRNA transcript length, defined in Gencode v1993. We 
performed such analysis on all genes and repeated it with the UM and MM occurrence sites 
(Figure 2A). To determine the significance of functional SNP enrichment, a chi-square test was 
carried out in each of the 10 bins of gene body, with the null hypothesis that mQTL% or eQTL% 
occurring at motif sites are the same as the rest of all genes, p < 0.01 are marked as significant.  
 
mQTL enrichment analysis with three independent datasets 

Three human methylome studies with independently called mQTLs were collected, i.e. human 
life course study63, GenCord Cohort study64 and a Schizophrenia study65. In total, there are 
around 16,000 to 30,000 identified mQTLs collected from these published studies. We defined 
an enrichment score using the following formula. 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡𝑆𝑐𝑜𝑟𝑒 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑚𝑄𝑇𝐿 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒)

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑚(𝑚𝑄𝑇𝐿 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒)
 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑚𝑄𝑇𝐿 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒) =
𝑇𝑜𝑡𝑎𝑙 𝑚𝑄𝑇𝐿 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 ∗  𝑇𝑜𝑡𝑎𝑙𝑀𝑜𝑡𝑖𝑓𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝐿𝑒𝑛𝑔𝑡ℎ

𝐺𝑒𝑛𝑜𝑚𝑒𝑆𝑖𝑧𝑒
 

 
 
where 𝑇𝑜𝑡𝑎𝑙 𝑚𝑄𝑇𝐿 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 is the total number of mQTLs identified in each study, 

𝑇𝑜𝑡𝑎𝑙𝑀𝑜𝑡𝑖𝑓𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝐿𝑒𝑛𝑔𝑡ℎis the total length of  genome-wide motif occurrences defined by 
FIMO (see the above section) and 𝐺𝑒𝑛𝑜𝑚𝑒𝑆𝑖𝑧𝑒 is the genome size of 3.14E9 bp for the human 

genome hg19.  
  

We repeated this process in all samples from all three studies and calculated standard 
deviation. Specifically, (1) 5 life stages from birth, childhood, adolescence, pregnancy and 
middle age in human life course study (blood samples from 1018 mother–child pairs), (2) 3 
tissues from fibroblasts, LCLs and T-cells in GenCord cohort by Maria el al (204 newborn 
umbilical cord samples) and (3) 3 regions from prefrontal cortex, striatum and cerebellum of 
adult brain regions in the Schizophrenia study (173 fetal brain samples ranging from 56 to 169 
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days post-conception). Finally, we used a single-tail one-sample t-test to determine the 
statistical significance (p < 0.01, Figure S3A).  
 
Predicting TCGA cancer type with SNP and motif 

For each of the 32 TCGA cancers (in total 7120 patients), we trained two gradient boosting 

models70 (SNP and SNP+motif) to distinguish a specific cancer from the other cancers. We 

chose gradient boosting implemented in sklearn94 and tuned its parameter based on a recent 

study95, which showed that this decision tree based model is robust and performs well. Note that 

TCGA has 4 aggregated cancer types (GBMLGG, COADREAD, KIPAN and STES) that 

combine individual cancers such as GBMLGG combining GBM and LGG; we excluded them 

from the 32 TCGA datasets to avoid inflating the performance due to using the same patients in 

both the training and testing sets. In a SNP-only model, the cancer subtype of each patient was 

predicted only by somatic mutations as features. Because the input features are large (1.3 

million unique somatic mutations for 7120 patients), we first reduced feature number. Each 

feature was assigned a score by the gradient boosting out-of-bag importance and averaged in 

5-fold cross validation to avoid overfitting. Features with negative importance scores were 

removed. Optimal number of features were determined as we observed the best model 

performance at around 500 features (Figure S4A, upper panel). Top 500 SNPs ranked by the 

average score were used, while assuring equal or better performance compared to the full 

model (Figure S4A, lower panel). 

 

After feature selection, we obtained 500 selected SNPs. To represent what SNPs were found in 

each patient, we used a series (length 500) of 0s and 1s to indicate which SNPs a patient has. 

For example, 1,1,0,1, ... indicates patient have the 1st, 2nd and 4th SNP. For a SNP+motif 

model, each patient was represented not only by these 500 selected SNPs, but also by whether 

each of the 313 motifs is disrupted by SNPs. We used a series (length 313) of integers to 

indicate how many SNPs (without feature selection) are harbored in the occurrence sites for 

each of the 313 motifs. For example, 10, 20, 0, ... indicates there are 10 SNPs in all the 

occurrence sites of the 1st motif, 20 SNPs in the 2nd motif and no SNPs in the 3rd motif. The 

performances of the two models were evaluated by auROC and auPRC with 5-fold cross-

validations for each cancer (Figure 4A). Feature importance was determined by the default out-

of-bag (OOB) important scores using mean decrease of Friedman squared error over all cross-

validated predictions in SNP+motif models. We filtered features with importance score >0.01 

within the enriched 313 motif groups and well-studied SNPs located in the identified driver 

mutations by IntOGen Consortium97. To reduce false positives of selecting predictive features, 

we only considered 26 out of 32 TCGA cancers that showed auPRC > 0.3 (Figure 4B). 

 
Predicting TCGA patient survival with SNP and motif 

All patients in 22 TCGA cancers with patient survival and SNP information were dichotomized 

based on 5-year survival to train two gradient boosting models (SNP and SNP+motif). We used 

the 500 SNP features and 813 SNP+motif features from the diagnosis analysis and cross 

validations were performed the same way as described above. The model performance was 

evaluated by the log2 hazard ratio and Kaplan-Meier estimator of the patient 5-year survival rate 

in the R package survival98 (Figure 4C). Multivariate survival analysis was performed to show 
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factors significantly (p < 0.05) correlated with patient survival with 95% confidence interval 

(Figure 4D).  

 

Feedforward loop analysis 

We built a network with three types of nodes: motifs, TET1/DNMT3A, coding genes. We have 

defined promoters as the region -1000bp and +500bp from transcription start sites (TSS) of 

protein coding genes (including TET1 and DNMT3A) from Gencode v1993, as previously 

described. A directed edge is defined if the source node has an occurrence sites at the 

promoter of the target nodes. For TET1 and DNMT3A, occurrence site is defined by ChIP-seq 

data previously measured in hESC and NCCIT cells, respectively. For motifs, the occurrence 

site is defined by FIMO with p < 10-5. When coding gene is a target, we first check if the gene is 

a known transcription factor, then define its binding site by FIMO with p < 10-5. Finally, tracks 

are visualized in integrated genome viewer and the methylation track is provided by WGBS of 

H1 from The Epigenomics Roadmap Project14.  
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Figures: 

 
Figure 1. Defining methylated regions and searching for methylation associated motifs  
A. The strategy of identifying DNA methylation associated motifs. B. WGBS CpG sites are 
merged within 400bp regions. Based on average CpG beta values of the region, we defined 
commonly methylated (CMR), un-methylated (CUR) and variably methylated regions (VMR). C. 
Identification of DNA methylation associated motifs in 34 cells and tissues. Example motifs are 
shown on the right (if matched to a known motif, the known motif logo is shown on the top).   
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Figure 2. Identified motifs marks methylation level 
A. Example motifs shown with average CpG methylation level calculated in 50 bp bins around 
all motif sites, determined by FIMO at 1e-5 p-value cutoff. Upper panel, from left to right: 
UM_180.0_3.14 (matched to CTCF); UM_106.1_4.08 (de novo); UM_238.2_3.88 (matched to 
WT1); lower panel, from left to right: MM_65.9_2.90 (matched to TOPORS); MM_814.4_2.02 
(matched to PAX5); MM_206.3_2.16 (de novo). B. DNA methylation levels in the ROADMAP 
(left) and TCGA (right) data sets over gene body. Each gene body was split into ten equal bins 
and the Beta values of all CpGs in the same bin were averaged over all genes. Lower panel 
shows the correlation between the motif occurrences and CpG methylation in ROADMAP 
(WGBS data from H1, mesoderm and liver) and TCGA (450K methylation of CpGs averaged in 
patients from PAAD, LUAD and BRCA) around TP53 (chr17:7,540,000 - 7,650,000)  C. 
Normalized motif occurrence of UM, MM and known TFs (excluding matched) from 
HOCOMOCO29 at 5000 bp windows centering ChIP-seq peaks of TET1, DNMT3A and 
DNMT3B collected from various studies45–47. Lower panel shows the clustered heatmap of 
normalized z-score. D. Center-to-edge enrichment of UMs and MMs in comparison with TF 
NR6A1 and CTCF, which were reported to recruit DNMT and TET to specific loci, at the ChIP-
seq peaks of DNMTs and TETs. 
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A. 

 
B.         C. 

  
 

Figure 3. SNP at motif sites co-occur with local methylation alteration 
A. Distribution of mQTLs (SNPs associated with methylation) and eQTLs (SNPs associated with 
gene expression) over gene body (see Methods for details). Each gene body is split into ten 
equal bins. B. Methylation level change of CpG sites nearby TET1-UM sites (TET1 binding 
peaks containing UM motifs) overlapping with somatic SNPs. Asterisks indicate p < 0.01 
calculated with paired one-tail t-test, pairing foreground observed methylation change to the 
corresponding background expected methylation change. Foreground (FG), mQTL at TET1-UM 
sites. Background (BG), mQTL at TET1 binding peaks45–47. To ensure the statistical 
significance, we only considered the cancers with >100 CpGs within 5000bp of TET1-UM sites 
(see details in Methods). C. An example showing disruption of an UM motif (no match with 
known motifs) by a C->T somatic mutation at chr16:68002415 significantly increases the 
methylation level of the nearby CpGs in the LUAD patients. 
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A.          B. 

  
C.         D. 

  
 
Figure 4. Motifs disrupted by SNPs predicts cancer subtype and survival 
A, auROC and auPRC for cancer subtype prediction. Classification model of each cancer built 
with gradient boosting. Performance evaluated with auROC (area under receiver operating 
characteristic, good for overall evaluation.) and auPRC (area under precision recall curve, good 
for unbalanced dataset where positive label is scarce). SNP: using somatic mutation as 
features. SNP+motif: using both somatic mutation and collective disruption of motif site as 
features (See Methods for details). * Adjusted p < 0.05. B, Results of top predictive features 
(score>0.01) using gradient boosting out-of-bag estimation. 26 cancers with auPRC > 0.3 are 
shown. C, Results of survival analysis with gradient boosting model using SNP or SNP+motif as 
features. Left: multivariate survival analyses for all solid TCGA cancers. Forest plots showing 
log2 hazard ratio (95% confidence interval) of predicted high risk group by SNP+motif or SNP. 
*Adjusted p < 0.05 (blue for SNP and red for SNP+motif). Right: Kaplan-Meier survival 
estimation (95% confidence interval) in high-risk group versus low-risk group predicted by SNP 
(top) or SNP+motif model (bottom). D. Multivariate survival analysis showing factors correlating 
with patient survival (p < 0.05) with log2 hazard ratio (95% confidence interval).   
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A. 

 
B. 

 
C. 

 
 
Figure 5. Methylation motifs interplay with TET1, DNMT3A, gene regulation and histone 
modification 
A. Methylation motifs matched to histone motifs78. Motifs are aligned with TomTom with e < 

0.05. Lower panel showing several examples. B. Feedforward loop targeting TET1 and 

DNMT3A. C. Feedforward loop via TET1 and DNMT3A. 
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Supplementary Figures: 

A 

 
B       C 

 
D. 

  
E. 
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Figure S1. Characterization of the identified motifs and regions.  

A. Gene ontology analysis and genomic location of CUR and CMR compared against the whole 
genome. B. Volcano plot of 313 top cluster filtered by logP>10 and fold-change enrichment>2. 
C. Motif GC content of top 313 unmethylation motifs (UM), methylation motifs (MM) and known 
motifs curated from hocomoco29. D. tSNE99 plot showing sequence similarity among 313 motifs, 
pairwise distance calculation described in method sequence alignment. E. Methylation 
correlated with CUR, CMR and motif locations at XRCC5 and ERCC6L2, two genes associated 
with DNA repair.  
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A 

 

 
 

B 

 
 

Figure S2. Identified motifs marks methylation level 
A. methylation motif co-occur with DNMT1 and DNMT3B ChIP-seq45 peaks in differentiated 
NCCIT cell, while unmethylation motif co-occur with TET ChIP-seq46 peaks in human embryonic 
stem cells. Lower panel shows the histogram of DNMT3A peak counts 5000bp nearby DNMT3B 
peaks, with 50bp bin width. B.  Details on center-to-edge enrichment of motifs and known TFs in 
respect to TETs and DNMTs ChIP-seq peaks.  
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A. 

 

 

B. 

 
 

Figure S3 Identified motif occurrences overlaps with TCGA functional SNPs.  

A. Enrichment of mQTL at UM and MM occurrence site using three additional studies, namely 
human life course study63, GenCord Cohort study64 and a Schizophrenia study65. Enrichment of 
mQTL are defined as observed mQTL ratio over expected ratio, with error bars showing 
standard deviation across samples (Left: across five stages in human life course; Middle: across 
three cell types; Right: across three adult human brain regions) and p < 0.01 t-test are marked 
(See method for details). B. More examples UMs and MMs matched to known motifs CTCF, 
SP1, PAX5 and TOPORS disrupted by somatic mutations show correlation with local 
methylation alteration.  
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A. 
 

 
 

B. 

 
 
Figure S4. Motifs disrupted by SNPs predicts cancer subtype and survival 

A. Feature selection reduces feature number while improve performance for SNP-only 

diagnosis model. "Elbow" indicates the number of features having positive feature importance 

scores. B. Performance evaluation of models predicting patient cancer subtype using auROC 

metric.  
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