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Figures 597 

 598 

Figure 1 Developmental time points studied and examples for gene expression profiles on 599 
the three species. (A) Images of adult and larval stage of P. miniata, P. lividus and S. purpuratus 600 
Arrows point to the sea urchin skeletogenic rods and arrow heads point to the sea urchin 601 
pigments. (B) Images of P. miniata, P. lividus and S. purpuratus embryos at the developmental 602 
stages that were studied in this work. Time point 6hpf in S. purpuratus does not have RNA-seq 603 
data. (C) Relative gene expression in the three species measured in the current paper by RNA-seq 604 
for P. miniata (orange curves), in [17] by RNA-seq for P. lividus (purple curves) and in [23] by 605 
nanostring for S. purpuratus (black curves). Error bars indicate standard deviation. To obtain 606 
relative expression levels for each species we divide the level at each time point in the maximal 607 
mRNA level measured for this species in this time interval; so 1 is the maximal expression in this 608 
time interval. 609 
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 610 

Figure 2 Venn diagram and NMDS analysis of 1:1:1 orthologues genes. (A) Venn diagram 611 

showing the number of 1:1:1 orthologues genes expressed in all three species, in two of the 612 

species or only in one species. (B) First two principal components of expression variation 613 

(NMDS) between different developmental time points in P. miniata (orange), P. lividus (purple) 614 

and S. purpuratus (black).   615 
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 616 

Figure 3 Interspecies Pearson correlations for different GO terms, ordered by the level of 617 
matrix diagonality (MD) of Pl-Sp matrices. In each panel, from A to J, we present the Pearson 618 
correlation of the expression levels of genes with specific GO term between different 619 
developmental stages in the three species. Upper matrix in each panel shows the Pearson 620 
correlation between the two sea urchins (P. lividus and S. purpuratus) and the bottom matrix is 621 
the Pearson correlation between the sea star, P. miniata and the sea urchin P. lividus. These 622 
matrices include the seven developmental points that have RNA-seq data in all species (Fig. 1B, 623 
excluding 9hpf in P. miniata and 4hpf in P. lividus). In each panel we indicate the GO term 624 
tested, the number of genes in each set, the average correlation strength in the diagonal (AC) and 625 
the matrix diagonality (MD), see text for explanation. Color scale is similar for all graphs and 626 
given at the middle of the figure. F, shows the Pearson interspecies correlation for all 1:1:1 genes.  627 
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 628 

Figure 4 Interspecies Pearson correlations in gene expression for genes enriched in specific 629 
sea urchin lineages. A-F, each panel shows the interspecies Pearson correlation between the 630 
developmental stages in the three species for genes that their expression enriched at specific time 631 
point in a particular cell lineage in the sea urchin, S. purpuratus according to [28]. The cell 632 
lineages at the time where the enrichment was observed are illustrated by the embryo diagrams 633 
above the relevant correlation pattern[28], the time point is also marked in a black square in each 634 
Pl-Sp panel.  In each panel we indicate lineage were these genes are enriched, the number of 635 
genes in each set, the average correlation strength in the diagonal (AC) and the matrix diagonality 636 
(MD), see text for explanation. Color scale is similar for all graphs and given at the top.  637 
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 638 

Figure 5 The average correlation strength and the matrix diagonality are independent 639 
parameters that reflect different properties of expression conservation. A, the average 640 
correlation strength in the diagonal (AC) between Pl-Sp (black bars) and Pl-Pm (red bars) in 641 
receding order of Pl-Pm correlation strength. B, Matrix diagonality (MD) of the interspecies 642 
correlations between Pl-Sp (black bars) and Pl-Pm (cyan bars) in receding order of Pl-Pm matrix 643 
diagonality. C, the matrix diagonality changes independently of the average correlation for both 644 
Pl-Sp (black dots) and Pl-Pm (orange dots). D, the interspecies average correlation between S. 645 
purpuratus and P. lividus corresponds to the interspecies average correlation between P. lividus 646 
and P. miniata (excluding skeletogenic genes, R pearson = 0.68).   E, the matrix diagonality of 647 
the interspecies correlations between S. purpuratus and P. lividus relates to the matrix diagonality 648 
between P. lividus and P. miniata (excluding skeletogenic genes, R Pearson = 0.78).    649 

 650 

  651 
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 652 

Figure 6 The correlation matrix diagonality, MD, reflects how the dominance between 653 
cellular and developmental constraints changes with evolutionary distance for different 654 
functional classes. Illustration of typical interspecies correlation matrices of developmental 655 
control genes and housekeeping genes between closely related and further diverged (lower 656 
species (upper and lower panels, respectively). With increasing evolutionary distance, that is, 657 
between the sea urchin and the sea star, the average correlation and the diagonality decrease for 658 
all gene sets but the diagonality of developmental control genes is least affected and they that still 659 
maintain the hourglass pattern (lower left panel). On the other hand, the interspecies correlation 660 
matrices of housekeeping genes are strong and non-diagonal even between the two sea urchins 661 
and remain non-diagonal between the sea urchin and the sea star (right panels).  662 
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