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Summary 

Untargeted mass spectrometry is a powerful method for detecting metabolites in biological 

samples. However, fast and accurate identification of the metabolites’ structures from MS/MS 

spectra is still a great challenge. We present a new analysis method, called SF-Matching, that is 

based on the hypothesis that molecules with similar structural features will exhibit similar 

fragmentation patterns. We combine information on fragmentation patterns of molecules with 

shared substructures and then use random forest models to predict whether a given structure 

can yield a certain fragmentation pattern. These models can then be used to score candidate 

molecules for a given mass spectrum. For rapid identification, we pre-compute such scores for 

common biological molecular structure databases. Using benchmarking datasets, we find that 

our method has similar performance to CSI:FingerID and that very high accuracies can be 

achieved by combining our method with CSI:FingerID. Rarefaction analysis of the training 

dataset shows that the performance of our method will increase as more experimental data 

become available. 
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Introduction 

Untargeted mass spectrometry is a common approach for identification of metabolites in 

biological samples (Beger et al., 2016; O’Kell et al., 2017; Schrimpe-Rutledge et al., 2016). 

Thereby, a complex biological sample is analyzed with liquid chromatography electrospray 

ionization tandem mass spectrometry (LC-ESI-MS/MS), generating several thousands of 

MS/MS spectra in a few minutes. Inferring all molecular structures from these spectra in a fast, 

precise manner is, however, still a challenge. The currently fastest way of analyzing such data is 

to match fragmentation spectra of unknown substances to a reference spectral library (Kind et 

al., 2018). These spectral libraries are usually built from known purified metabolites, analyzed 

by mass spectrometry. Some databases like XCMS (Benton et al., 2015), GNPS (Wang et al., 

2016) and Massbank (Horai et al., 2010) are collecting these data. This experimental approach 

has the highest accuracy, however, generating these reference libraries is money- and time-

consuming. 

In silico fragmentation methods, such as MS-FINDER (Tsugawa et al., 2016), MetFrag (Ruttkies 

et al., 2016) and CFM-ID (Allen et al., 2014) strive to explain all fragment ions; these methods 

break every possible covalent bond, scoring each broken bond based on its strength. Some 

methods like CFM-ID can generate a pre-calculated spectral library. However, as molecular 

rearrangements occur during fragmentation, precise prediction of the rearrangement is very 

difficult, and these methods suffer from a low identification accuracy (Blaženović et al., 2018). 

Other approaches like CSI:FingerID (Dührkop et al., 2015; Ludwig et al., 2018) convert a 

spectrum into a fragmentation tree, search this fragmentation tree against a database of known 

trees, and then infer a molecular fingerprint. This method shows high accuracy; however, it 

needs to search fragmentation trees one by one in an online way, which makes it time-

consuming when analyzing many spectra. 

Depending on the type of biological sample, different chemical search spaces can be used. For 

well-studied sample types, such as cultured cells or human plasma, many of the metabolites in 

these samples have been analyzed before. In these cases, spectra can often be matched to 

reference libraries. Even if reference spectra are not available, there is a high chance that the 

compounds are part of curated databases such as the KEGG pathway database (Kanehisa et 
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al., 2017) or the HMDB database of metabolites (Wishart et al., 2018). For such compounds, 

several identification methods have be developed (Blaženović et al., 2018). More complex 

samples such as those from plants or the environment contain many molecules whose 

structures have not been determined yet, hampering compound identification using MS. 

Here, we describe a new method called SF-Matching (SubFragment-Matching) to predict likely 

peaks in tandem mass spectra for small molecules using a machine learning approach. 

Circumventing the complexities of accurately modeling the fragmentation processes and 

probabilities of bond breakage, our new approach relies on detecting “fragile” substructures in the 

molecule. These enable us to derive the respective fragmentation patterns to achieve high 

identification accuracy of compounds from mass spectra. Furthermore, our approach appears 

complementary to the existing method CSI:FingerID as a combination with it achieves a much 

higher accuracy than either method on its own with only a small sensitivity decrease.  

 

Results 

Our concept assumes that molecules consist of fragile and relatively stable substructures. 

Molecules with similar fragile structures will share similar fragmentation patterns even if they 

have different stable substructures. For example, in lysophosphatidylinositol and 

phosphatidylethanolamine, the inositol moiety, ethanolamine and the alkyl chain are stable 

substructures, connected by a fragile substructure containing ester bonds that are likely to lead 

to fragmentation. During fragmentation, the two different molecules with different alkyl chains 

will generate similar fatty acids as fragment ions, although the masses of their fragment ions are 

different (Figure 1a). In the fatty acid that can be detected as a fragmentation product, the alkyl 

chain is the stable substructure and the carboxyl group is the fragment of the fragile 

substructure. 

Our aim was therefore to develop a method that can detect the presence of fragile substructures 

and based on this predict if a given spectrum is likely to belong to a particular compound. Unlike 

previous approaches, we use machine learning to associate structural information contained in 

2D chemical fingerprints with fragmentation patterns. Molecular fingerprints encode the 

presence of various substructures of the molecule in a vector of bits. If two molecules have 

similar fragile substructures, some bits of the fingerprint will be the same. As the substructure 

may vary from molecule to molecule, in our approach, we do not try to identify the extract fragile 

substructure, but instead use the fingerprint to represent it, and use machine learning to detect 
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the predictive parts of the fingerprint. Given a training database of molecular structures and 

mass spectra, we process each spectrum individually. On a high level, training the model works 

as follows (Figure 1b): 

1. In the molecule associated with the spectrum, we find all substructures by individually 

breaking all covalent bonds in the molecules. For each broken bond, we record the 

resulting molecular formulas together with the bond type of the broken bond. For 

example, -C17H35 is one of the substructures of lysophosphatidylinositol. 

2. For all peaks in the spectrum, we calculate the fragmentation products’ molecular 

formulas based on their m/z. 

3. For each fragmentation product, we check which substructures found in step 1 are a 

subset of the fragmentation product’s molecular formula. For any fragmentation product, 

there may be several such substructures. Considering each substructure individually, we 

then designate it as the stable substructure. The remaining part of the fragmentation 

product must therefore be a part of the fragile substructure, and its molecular formula 

can be determined from the formulas of the fragmentation product and the stable 

substructure. Together with the bond type information, we call this part of the fragile 

substructure a “subfragment.” Each molecule in the database can be checked if it 

contains a subfragment. 

For each known molecule, we calculate its molecular fingerprint based on the structure of the 

complete molecule. After determining the presence of subfragments across all training spectra, 

random forest classifiers are trained for each subfragment based on the molecular fingerprint 

and the presence of the subfragment in each spectrum. 

For testing if a certain molecule is likely to belong to a given spectrum, we do the reverse: we 

calculate its molecular fingerprint and find all possible subfragments based on the peaks of the 

spectrum. Then for every subfragment, we use the corresponding random forest classifier to 

predict the probability of the subfragment. After finding the possible molecular substructures, we 

can calculate the mass of all possible fragment ions by adding the formula of subfragment to the 

formula of substructure. 

To increase the speed of the method, we pre-calculated the predicted spectra of all 

biomolecules in four databases that collect most of the known, relevant biological molecules 

(KEGG (Kanehisa et al., 2017), HMDB (Wishart et al., 2018), ChEBI (Hastings et al., 2016) and 

ChEMBL (Gaulton et al., 2017)). This allows identification of compounds at a rate of more than 
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10 spectra per second in laptop with SSD hard disk. The pre-calculated database and searching 

scripts can be downloaded from http://www.bork.embl.de/Docu/sf_matching. 

We evaluated the performance of our approach by comparing it with CFM-ID (Allen et al., 2014), 

and CSI:FingerID (Dührkop et al., 2015), the two methods that showed very good performance 

in CASMI 2016 and can also run in batch mode (Schymanski et al., 2017). To achieve a fair 

comparison, we removed all spectra from the test set that were part of our training dataset. 

First, we used all spectra provided in the context of the CASMI 2016 and 2017 automated 

structural identification challenge (Schymanski et al., 2017) as benchmark dataset. To estimate 

the performance on multiple chemical databases, we limited the candidates to the molecules 

that are in the selected database. If one molecule was not present in the target database, the 

corresponding spectrum was not considered. In the CASMI 2016 dataset, SF-Matching had the 

best performance when searching against four different databases of known molecules (Figure 

2a). In the CASMI 2017 dataset, the performances of all methods dropped to less than 60%. 

SF-Matching performed slightly worse than CFM-ID for three of the chemical databases (Figure 

2b). For ChEMBL, SF-Matching had much lower performance. As an additional benchmark, we 

also evaluated the methods using spectra from the EMBL Metabolomics Core Facility (EMBL-

MCF) spectral library (Palmer et al., 2018). We selected candidate molecules from the 

respective chemical database with an m/z within 5 ppm of target molecules. In this dataset, SF-

Matching had a similar performance as CSI:FingerID and was superior to CFM-ID (Figure 2c). 

As our concept differs from existing ones, we reasoned that it should be possible to achieve a 

better accuracy if we combine prediction methods. As CSI:FingerID showed good performance 

in all the three benchmark dataset, we selected spectra where both our method and 

CSI:FingerID gave the same results. These consensus results achieved about 20% increase in 

accuracy than any single method, reaching more than 90% accuracy when analyzing the 

CASMI 2016 and EMBL-MCF datasets, and still more than 70% when analyzing the CASMI 

2017 dataset. Due to the consensus calculation this comes at the cost of making predictions for 

fewer spectra, in average, around 55% spectra had a consensus identification. The fraction 

varied between 40%-80% in the CASMI 2016 and EMBL-MCF datasets and between 10%-45% 

in CASMI 2017 (Figure 2d). 

As machine learning approaches gain power with increasing training sets, we randomly selected 

subsets of the training dataset to evaluate the performance. Indeed, we observed an increase in 

the prediction performance with increased training set size (Figure 2e). This result suggests that 
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SF-matching will increase performance with time with more experimental spectra becoming 

available. 

Taken together, we have developed a new method called SF-Matching to identify the spectra of 

small molecules in biological samples. Depending on the goals of the MS experiments, SF-

matching itself can be used to contribute to candidate molecule identification, given its stand- 

alone performance, but it can also be used in combination with CSI:FingerID for candidate 

predictions with high accuracy. Furthermore, as expected from machine learning techniques, 

the power of the method will increase in the future with the addition of diverse known spectra of 

biomolecules. 

 

Figure legend 

Figure 1: Schematic of the method. (a) The fragmentation of a molecule can be considered 

as breaking a fragile substructure surrounded by stable substructures. The resulting fragment 

contains both a stable substructure and part of the fragile substructure (which we term 

“subfragment”). (b) For training the method, we compare possible substructures to peaks in a 

reference database and calculate the subfragments that were observed. The presence of such 

a fragile subfragment can then be predicted based on the molecular fingerprint of the complete 

molecule. 

 

Figure 2: Performance evaluations. The accuracy and the sensitivity of SF-Matching, and the 

consensus method is compared against random prediction and two established methods on (a) 

the CASMI 2016 dataset, (b) the CASMI 2017 dataset, and (c) the EMBL-MCF dataset. The 

number in the parentheses indicates the total number of molecules which are contained in the 

various chemical databases; on right of the bar the number of correctly identified molecules is 

shown. (d) shows the fraction of spectra with consensus prediction. The number in the 

parentheses indicates the total number of molecules which are contained in the various 

chemical databases; on right of the bar the number of spectra with consensus prediction is 

shown. (e) shows the effect of training dataset size on the performance on all datasets. For 

each training dataset size, three training datasets were randomly sampled from the origin whole 

dataset, here we use the combination of four database as candidate database. 
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STAR Methods 

Converting spectra to subfragments 

Given a molecular structure, we search for molecular substructures first. We remove all possible 

bonds 𝑏𝑠,𝑡 connecting atoms 𝑎𝑠 and 𝑎𝑡, with the exception of carbon–carbon bonds in the 

aliphatic chain and bonds within ring systems. Removing a bond yields two sub-molecules with 

molecular formulas 𝐹𝑠,𝑡 and 𝐹𝑡,𝑠. For each heavy atom 𝑎𝑖 in a molecule, the Merck Molecular 

Force Field (MMFF)  (Halgren, 1996) atom type 𝑇𝑎𝑖
 was determined and the bond type 𝑇𝑏𝑠,𝑡

 was 

defined as 𝑇𝑏𝑠,𝑡
= (𝑇𝑎𝑠

, 𝑇𝑎𝑡
).  

The molecule’s corresponding spectrum can be treated as a list of 𝑛 peaks {𝑃1, 𝑃2, … , 𝑃𝑛}, here 

𝑃𝑖 = (m/z 𝑀𝑖, intensity 𝐼𝑖), and the formula of a fragment ion 𝐹𝑖 can be determined from 𝑀𝑖. 

Then, we test for all 𝐹𝑠,𝑡 if they are a subset of 𝐹𝑖. In this case, we can calculate the difference of 

the molecular formulas ∆𝑖,𝑠,𝑡= 𝐹𝑖 − 𝐹𝑠,𝑡, and define the subfragment 𝑆𝑗 = (𝑇𝑏𝑠,𝑡
, ∆𝑖,𝑠,𝑡). Therefore, 

each peak 𝑃𝑖 with intensity 𝐼𝑖 corresponds to a set of subfragments {(𝑆1, 𝐼𝑖), (𝑆2, 𝐼𝑖), … , (𝑆𝑛, 𝐼𝑖)}. 

 

Generating models for the subfragments 

To build the prediction models, we collected 34,672 spectra from the GNPS, Mass Bank and in-

house databases (Horai et al., 2010; Wang et al., 2016) corresponding to 5,994 unique 

molecules. For each spectrum in the database, the intensity of the spectrum was normalized so 

that the sum over all peak intensities equals one. If one molecule has multiple spectra, they will 

be treated individually. The spectral peaks were converted to fragment substructures as 

described above. Models were then built for all fragment substructures that occurred in at least 

five molecules.  

To address the imbalance in the number of molecules that do or do not contain a certain 

fragment substructure in their spectra, individual spectra were assigned weights. For spectra 

that contained a peak corresponding to the fragment substructure under consideration 

(positives), the weight is the peak’s intensity. For spectra that did not contain a peak 

corresponding to the fragment substructure (negatives), equal weights were assigned such that 

the sum of weights of negatives equals the sum of weights (i.e. normalized peak intensities) of 

positives. 
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For each molecule, stereoisomer information was removed, and an 8191-bit chemical fingerprint 

generated using RDKit Fingerprint . Then, an extra-trees classifier was built using the scikit-

learn (Pedregosa et al., 2012) with 100 trees, using the chemical fingerprints of the complete 

structure as features and the presence of the fragment substructure as class label. A model will 

be built if a subfragment existed in at least 5 molecules. In total, models were built for 716,447 

subfragments. Each of these models predicts the probability 𝑃(𝑆𝑖,𝑥|𝐶) that a peak 

corresponding to the subfragment 𝑆𝑖,𝑥 occurs given the chemical fingerprint 𝐶.  

 

Predicting possible peaks for a given molecule 

Given a molecule, its chemical fingerprint 𝐶 was calculated as described above. Furthermore, 

all possible peaks 𝑃𝑖 and their corresponding subfragment 𝑆𝑖,𝑥 were determined from the 

molecular structure. The molecule’s chemical fingerprint was then used to predict a probability 

for the existence of a peak, using the pre-built models for the subfragment. When several 

subfragment had associated models for a given peak, the highest probability of these was 

assigned to that peak. 

𝑃(𝑃𝑖|𝐶) = max
𝑥

𝑃(𝑆𝑖,𝑥|𝐶) 

Spectrum scoring 

Given a spectrum with peaks 𝑃𝑖 normalized peak intensities 𝐼𝑖 , the score for a molecule with 

chemical fingerprint 𝐶 is calculated by summing over the peak probabilities, using the intensities 

as weights: 

∑ 𝐼𝑖

𝑖

 P(𝑃𝑖|𝐶) 

Peaks are determined by searching for molecular formulas within a certain mass accuracy. 

 

Consensus scoring 

For consensus scoring, candidate molecules were scored both with our method as well with 

CSI:FingerID. A prediction was only accepted if both methods have the same top prediction. 
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Performance evaluation 

For the CASMI 2016 dataset, the results of CFM-ID and the positive spectra for CSI:FingerID 

were got from the author’s submission, the results of negative spectra for CSI:FingerID were 

calculated by Sirius 4.0. For the CASMI 2017 dataset, the results of CSI:FingerID were got from 

the author’s submission, the results of CFM-ID were calculated by SE-CFM trained model. For 

the EMBL-MCF dataset, the results of CFM-ID were calculated by SE-CFM trained model, the 

results of CSI:FingerID were calculated by Sirius 4.0. All the spectra in the test dataset were 

searched with 20 ppm mass tolerance. 

 

Data availability and reproducibility  

The SF-Matching can be downloaded from http://www.bork.embl.de/Docu/sf_matching. An 

example of using SF-Matching accessed at https://codeocean.com/capsule/5570439/tree/v1. 
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