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Abstract 51 

Ancestral state reconstruction models use genetic data to characterize a group of 52 

organisms’ common ancestor. These models have been applied to salmonellosis outbreaks to 53 

estimate the number of transmissions between different animal species that share similar 54 

geographical locations, with animal host as the state. However, as far as we are aware, no 55 

studies have validated these models for outbreak analysis. In this study, salmonellosis 56 

outbreaks were simulated using a stochastic Susceptible-Infected-Recovered model, and the 57 

host population and transmission parameters of these simulated outbreaks were estimated 58 

using Bayesian ancestral state reconstruction models (discrete trait analysis (DTA) and 59 

structured coalescent (SC)). These models were unable to accurately estimate the number of 60 

transmissions between the host populations or the amount of time spent in each host 61 

population. The DTA model was inaccurate because it assumed the number of isolates 62 

sampled from each host population was proportional to the number of individuals infected 63 

within each host population. The SC model was inaccurate possibly because it assumed that 64 

each host population's effective population size was constant over the course of the simulated 65 

outbreaks. This study highlights the need for phylodynamic models that can take into 66 

consideration factors that influence the characteristics and behavior of outbreaks, e.g. 67 

changing effective population sizes, variation in infectious periods, intra-population 68 

transmissions, and disproportionate sampling of infected individuals. 69 

 70 

Introduction 71 

Ancestral state reconstruction models estimate the ancestral states of organisms based 72 

on their evolutionary history. Outbreaks are “...the occurrence of disease in excess of what 73 

would normally be expected in a defined community, geographical area or season” (1). 74 

Ancestral state reconstruction models have been used to investigate the transmission of 75 
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infectious agents between animal populations over the course of outbreaks, with host 76 

population as the state (2). However, as far as we are aware, no studies have validated these 77 

models for this type of analysis. 78 

The discrete trait analysis (DTA) and structured coalescent (SC) models are ancestral 79 

state reconstruction models. Both models treat each host population as a discrete trait and can 80 

be approximated using Markov chain Monte Carlo methods (3,4). There are many differences 81 

between these two ancestral state reconstruction models. In the context of host association 82 

studies, the DTA model uses a substitution model to model the transmission between host 83 

populations (3). The pruning algorithm (5), often used in phylogenetic analysis to account for 84 

possible mutations, is similarly used by the DTA model to integrate all possible migration 85 

histories (6). The SC model assumes that the pathogen associated with each host population 86 

has a fixed effective population size and models the transmission between populations. The 87 

DTA model assumes that the number of offspring an individual pathogen is likely to produce 88 

is independent of its host population, whilst the SC model allows for variation between host 89 

populations (4). The DTA model assumes that the proportion of isolates sampled from each 90 

host population is proportional to the size of the pathogen population associated with that 91 

host, whilst the SC model allows for variation in these population sizes (6). Some of these 92 

assumptions are applicable to the investigation of outbreaks (e.g. varying effective population 93 

size), whilst others are not (e.g. isolate proportionality). 94 

Salmonellosis is an intestinal infection caused by non-typhoidal Salmonella strains. 95 

Salmonellosis outbreaks vary in size and can involve one or more host populations (7). 96 

Identifying the amount of time Salmonella spends in a host population over an outbreak and 97 

the amount of transmission between host populations can inform control measures to limit 98 

salmonellosis outbreaks, e.g. if human cases are primarily from exposure to poultry sources 99 

then control measures that limit human exposure to poultry or decrease the amount of 100 
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Salmonella in poultry may be beneficial. However, there is growing evidence that exposure 101 

to human sources contributes more to salmonellosis outbreaks than previously thought (8). 102 

Therefore, methods and models are required that can approximate the number of cases that 103 

are the result of exposure to different animal and/or human sources. The aim of this study 104 

was to use simulated outbreaks to investigate whether the DTA or SC models could be 105 

applied to infer transmission dynamics in outbreaks involving multiple hosts, motivated by 106 

non-typhoidal Salmonella. 107 

 108 

Methods 109 

Outbreak simulations 110 

The MASTER package (9) in BEAST2 (10)  was used to simulate stochastic 111 

transmission dynamics for a pathogen infecting structured populations, including associated 112 

phylogenetic and transmission trees. Outbreaks were generated using a stochastic 113 

Susceptible-Infected-Recovered (SIR) model, intended to simulate the transmission of 114 

zoonotic salmonellosis. In this model, susceptible host individuals become infectious by 115 

exposure to other infected individuals: 116 

�� � ��
���
�� 2��   (1) 117 

�� � ��
���
�� �� � ��  (2) 118 

 119 

Equation 1 represents the transmission of the infectious agent from an infected 120 

individual to a susceptible individual of the same host population. Equation 2 represents the 121 

transmission of the infectious agent from an infected individual to a susceptible individual of 122 

another host population. Here, �� represents a susceptible individual from one host 123 

population, �� represents an infectious individual from the same host population, �� represents 124 
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an infectious individual from another host population, and ���  and ���  represents the 125 

transmission rate per susceptible individual per infectious individual. 126 

In this model, infectious individuals also recover or are removed over time: 127 

��
��
	 
�   (3) 128 

Equation 3 determines the infectious period for an infectious individual. Here, �� 129 

represents an infectious individual in one host population, 
� represents a recovered/removed 130 

individual in the same host population, and ��  represents the recovery/removal rate per 131 

infectious individual for this host population. The mean infectious period for a host of type � 132 

is 
�

��
. 133 

 134 

Simulated outbreaks 135 

We simulated 23 outbreaks using the MASTER package, hereinafter ‘outbreak 136 

simulations’. This created 23 transmission trees consisting of all the transmissions that took 137 

place over the course of each simulated outbreak (Fig 1). These simulations consisted of two 138 

host populations: human and animal. We wanted to compare the simulated outbreaks with a 139 

previously reported salmonellosis outbreak in New Zealand that involved Salmonella 140 

enterica serovar Typhimurium DT160 (herein, DT160) (11). Therefore, the initial susceptible 141 

host population size, infectious period (�) and transmission rate (�) values varied between 142 

the 23 simulations but represented possible values for salmonellosis outbreaks in New 143 

Zealand (S1 Appendix). 144 

 145 

Fig 1. Flow diagram of the methods used to compare the SC and DTA models using 146 

various sampling methods. White rectangles represent the methods used and blue rectangles 147 

represent the data produced. 148 

 149 
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Simulated genetic sequences from outbreaks 150 

One hundred ‘Salmonella’ isolates were randomly sampled from each outbreak 151 

simulation, after stratifying for host population, hereinafter ‘random sampling’. For each 152 

outbreak simulation, the transmission tree was simplified to only include nodes common to 153 

the 100 isolates (both steps were accomplished using custom Perl scripts). The sampled 154 

transmission trees were used to simulate genetic data for the 23 simulated outbreaks using the 155 

sequence simulation capability of the BEAST 2 package MASTER, hereinafter ‘sequence 156 

simulations’. 800 SNPs were simulated in total for the 100 isolates, similar to the 793 core 157 

SNPs shared by 109 DT160 isolates (11). Perl and R scripts were used to analyze the sampled 158 

transmission tree and to calculate the amount of time spent in each host population and 159 

quantify the number of transmissions, later referred to as the ‘known parameters’. 160 

 161 

Model consistency 162 

To investigate variation in model estimates between different samples (i.e. model 163 

consistency), one of the simulated outbreaks was randomly sampled 10 times after stratifying 164 

for host population. For each sample, sequence simulations were used to create genetic data. 165 

 166 

Sample size 167 

To investigate the effect of different sample sizes on the models’ estimates, one of the 168 

simulated outbreaks was randomly sampled 12 times. The number of isolates sampled 169 

systematically ranged from 25 to 300 isolates in 11 increments of 25. For each sample, 170 

sequence simulations were used to create genetic data. The genetic data systematically ranged 171 

from 200 to 2400 SNPs in 11 increments of 200, respectively. To determine if sample size 172 

affected the extremity of a model’s estimates, the simulated outbreak chosen had significantly 173 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 19, 2019. ; https://doi.org/10.1101/574087doi: bioRxiv preprint 

https://doi.org/10.1101/574087
http://creativecommons.org/licenses/by/4.0/


different population values between host populations and similar transmission values for 174 

comparison.  175 

 176 

Disproportionate sampling 177 

To investigate the effect of the relative number of isolates from each source on model 178 

estimates (i.e. disproportionate sampling), as expected during the outbreaks, one of the 179 

simulated outbreaks was randomly sampled 10 times with different numbers of animal and 180 

human isolates. For each sample, 100 isolates were analyzed, but the proportion of isolates 181 

that were from each host population were systematically ranged from 5-95% in 10% 182 

intervals. For each sample, sequence simulations were used to create genetic data. 183 

 184 

Equal-time sampling 185 

To investigate an alternative sampling method, ‘equal-time sampling’, an in-house 186 

Perl script was used to stratify the isolates from the initial 23 simulated outbreaks by host 187 

population, before randomly sampling an equal number of isolates from each year of the 188 

simulated outbreaks, to a total of 100 isolates. Sequence simulations were used to create 189 

genetic data for the samples. 190 

 191 

Equal intra-population transmission and infectious periods 192 

To investigate if different intra-population transmission rates and infectious periods 193 

had any effect on model estimates, twelve additional outbreaks were simulated but with equal 194 

intra-population transmission rates and infectious periods (EPTI) for both host populations, 195 

but inter-population transmission rates and initial susceptible host population sizes that 196 

varied. For each simulation, 100 isolates were sampled using random sampling, and sequence 197 

simulations were used to create genetic data. 198 
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 199 

DTA model 200 

For the DTA model, the genetic data was imported into BEAUti 1.8.3 to create an 201 

XML file for BEAST 1.8.3 (12). The generalized time reversible (GTR) model was used to 202 

model base substitutions (13), the Gaussian Markov random field (GMRF) Bayesian skyride 203 

model was used to allow for changes in the effective population size (14), and a strict 204 

molecular clock was used to estimate the mutation rate, which was calibrated by the tip date. 205 

The XML file was run in BEAST for 10 million steps as a single run with a 10% burn-in. 206 

 207 

SC model 208 

For the SC model, the genetic data was imported into BEAUti 2.4 with the 209 

MultiTypeTree package (4) to create an XML file for BEAST 2.4 (10). The GTR model was 210 

used to model base substitution and a strict molecular clock was used to estimate the 211 

mutation rate, which was calibrated by the tip date. The XML file was run in BEAST for 250 212 

million steps as a single run with a 10% burn-in. The SC model was run for a larger number 213 

of steps than the DTA model as its population and transmission parameters took longer to 214 

converge. BEAST 1.8.3 is unable to run the SC model, unlike BEAST 2.4. BEAST 2.4 can 215 

run GMRF and DTA models but does not have a BEAUti interface to easily set up these 216 

models. BEAST 1.8.3. does have an interface for these models so was used for the DTA 217 

model. 218 

 219 

Model comparison 220 

The SC and DTA models were used to estimate the amount of time spent in each host 221 

population (population parameters) and the amount of transmissions between the host 222 

populations (transmission parameters). However, the models' raw outputs were not directly 223 
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comparable, as the SC model’s implementation explicitly records transmissions along 224 

branches, whilst the DTA approach integrates and marginalizes over these transmissions and 225 

therefore does not record them in its output. Therefore, the relative amount of time (i.e. 226 

proportion) spent in each host population and the relative number of inter-population 227 

transmissions made up of each transmission were compared. The performance of the two 228 

models were compared using four parameters:  229 

1. The proportion of outbreak simulations that a model included the known parameter 230 

within their 95% highest posterior density (HPD) intervals. 231 

2. The mean squared error between a known parameter and a model's mean estimates. 232 

3. The size of a model's 95% HPD intervals. 233 

4. The correlation coefficient between a known parameter and a model's mean estimates. 234 

 235 

DT160 outbreak 236 

The DTA and SC models were used to analyze a previously-described salmonellosis 237 

outbreak in New Zealand caused by DT160 (11). 109 DT160 isolates from animal (n=74) and 238 

human (n=35) host populations over 14 years were investigated using the 793 core SNPs they 239 

shared. 240 

 241 

Scripts 242 

The in-house scripts used in this study are available from GitHub 243 

(https://github.com/samuelbloomfield/Scripts-for-outbreak-simulations). 244 

 245 

Results   246 

Model consistency 247 
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There was some variation in the DTA and SC models' population and transmission 248 

mean estimates for the same simulated outbreak that was randomly sampled ten times (Fig 2). 249 

The SC model's 95% HPD intervals included known population parameters more frequently, 250 

whilst the DTA model's 95% HPD intervals included known transmission parameters more 251 

frequently.  252 

The outbreak transmission tree was the same for the ten samples, as these samples 253 

were taken from the same simulated outbreak. However, the samples consisted of different 254 

animal and human isolates, such that when the outbreak transmission tree was simplified to 255 

only include nodes and branches common to these isolates, there was some variation in the 256 

time spent in animal and human populations, and the number of transmissions between these 257 

populations between samples. The known parameters were taken from the ten sampled 258 

transmission trees, not the entire outbreak transmission tree, resulting in slight differences in 259 

the known parameters between the ten samples. This is true for other analyses below that 260 

sampled the same outbreak multiple times. Some of the outbreaks investigated in this 261 

outbreak consisted of hundreds of thousands of infected animals and humans (S1 Appendix), 262 

leaving large outbreak transmission trees that required large time periods to calculate the 263 

number of transmissions and time spend in the populations. The small amount of variation in 264 

the sampled transmission trees and the outbreak transmission tree for this dataset suggests 265 

that the sampled transmission tree parameters are representative of the outbreak transmission 266 

tree parameters. 267 

 268 

Fig 2. The proportion of time spent in the animal (A and E) and human (B and F) host 269 

populations, and the proportion of inter-population transmissions made up of animal-to-270 

human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC 271 

(blue: A-D) and DTA (red: E-F) models, for 10 random samples of the same simulated 272 
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outbreak. The circles represent the mean, the error bars represent the 95% HPD interval, the 273 

black horizontal lines represent the known parameters for the sampled outbreaks, and the 274 

grey horizontal lines represent the known parameters for the entire outbreak. 275 

 276 

Sample size 277 

The DTA and SC models were affected by variation in sample size for the same 278 

simulated outbreak differently. Increased sample sizes were associated with smaller 95% 279 

HPD intervals and more accurate and extreme mean population estimates by the SC model up 280 

to 100 samples. After this point, increased sample sizes had little effect on the precision, 281 

extremity or accuracy of the model's mean population estimates (Fig 3). The DTA model's 282 

mean population estimates were more precise than the SC model’s. Sample size had no effect 283 

on their accuracy but decreased the size of their 95% HPD intervals. The accuracy of the SC 284 

and DTA models’ mean transmission estimates and their 95% HPD intervals displayed some 285 

variation, but there were no trends with sample size. 286 

 287 

Fig 3. The proportion of time spent in the animal (A and E) and human (B and F) host 288 

populations, and the proportion of inter-population transmissions made up of animal-to-289 

human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC 290 

(blue: A-D) and DTA (red: E-F) models versus the number of isolates sampled from the same 291 

outbreak. The circles represent the mean, the error bars represent the 95% HPD interval, the 292 

black horizontal lines represent the known parameters for the sampled outbreaks, and the 293 

grey horizontal lines represent the known parameters for the entire outbreak. 294 

 295 

Disproportionate sampling 296 
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The DTA and SC models responded to variation in sample proportions for the same 297 

simulated outbreak differently. The DTA model's mean estimates showed a much stronger 298 

positive correlation with the proportion of isolates sampled from each host population than 299 

the SC models' mean estimates (Fig 4). The DTA model's mean estimates displayed a 300 

sigmoid-like association with the proportion of isolates sampled from each host population 301 

(Fig 5). 302 

 303 

Fig 4. Bar graph of the correlation coefficients between the models’ mean estimates 304 

and the proportion of sampled isolates that are animal or human hosts for the same outbreak 305 

that was disproportionately sampled. 306 

 307 

Fig 5. The proportion of time spent in the animal (A and E) and human (B and F) host 308 

populations, and the proportion of inter-population transmissions made up of animal-to-309 

human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC 310 

(blue: A-D) and DTA (red: E-F) models versus the proportion of sampled isolates that are 311 

animal (A, C, E and G) and human (B, D, F and H) for the same outbreak that was 312 

disproportionately sampled. The diagonal line represents accurate parameter estimates of the 313 

sampled outbreaks, the dots represent the mean, and the error bars represent the 95% HPD 314 

interval. 315 

 316 

Multiple variable simulations 317 

The DTA and SC models showed different associations between known and estimated 318 

parameters when 100 isolates were randomly sampled from each of the 23 simulated 319 

outbreaks. The SC model predicted a larger proportion of known population and transmission 320 

parameters within its 95% HPD interval compared to the DTA model (Fig 6). However, its 321 
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mean 95% HPD interval sizes were larger and the DTA model's mean estimates showed a 322 

stronger positive correlation with the known parameter values than the SC model's mean 323 

estimates. Both models had similar mean squared errors between the known parameters and 324 

the models' mean estimates. However, the SC model's mean population estimates were all 325 

within the 0.2-0.8 interval and its mean transmission rates were all within the 0.35-0.65 326 

interval, whilst the DTA models had mean estimates that lay outside of these ranges (Fig 7). 327 

 328 

Fig 6. The proportion of outbreak simulations that the models included the known 329 

parameter within their 95% highest posterior density (HPD) intervals (A); the correlation 330 

coefficient between known parameters and the models’ mean estimates (B); the mean squared 331 

error between known parameters and the models’ mean estimates (C); and the size of the 332 

models’ 95% HPD intervals (D), for the population and transmission estimates made by the 333 

DTA (red) and SC (blue) models for 23 randomly-sampled simulated outbreaks that 100 334 

isolates were randomly sampled from. 335 

 336 

Fig 7. The proportion of time spent in the animal (A and E) and human (B and F) host 337 

populations, and the proportion of inter-population transmissions made up of animal-to-338 

human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC 339 

(blue: A-D) and DTA (red: E-F) models versus the true parameters for 23 simulated 340 

outbreaks that 100 isolates were randomly sampled from. The diagonal line represents 341 

accurate parameter estimates of the sampled outbreaks, the dots represent the mean, and the 342 

error bars represent the 95% HPD interval. 343 

 344 

The phylogenetic trees produced by the DTA and SC models for the 23 simulated 345 

outbreaks poorly reflected the sampled transmission trees (Fig 8). The DTA model was 346 
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unable to detect transmissions along branches in the transmission trees. The SC model could 347 

identify transmissions along branches, but often over-estimated the amount of transmissions 348 

compared to the true transmission tree. In the example given, the SC model predicted that 349 

‘Salmonella’ was predominantly in the animal (red) population, as indicated by the 350 

predominantly red branches, but that coalescent events primarily occurred in the human 351 

(blue) population. This was common for most of the maximum a priori trees produced by the 352 

SC model, where the population that was estimated to have a smaller effective population 353 

size would be where the coalescent events took place, whilst the population with the 354 

estimated larger effective population size would predominate the branches. The phylogenetic 355 

trees in Fig 8 represent the most likely trees estimated using the DTA and SC models for one 356 

simulated outbreak, not the variation amongst each model, as each model estimated 357 

thousands of phylogenetic trees. 358 

 359 

Fig 8. Sampled transmission tree (A), maximum clade credibility tree produced by the 360 

DTA model (B) and maximum a posteriori tree produced by the SC model (C), for one of the 361 

23 simulated outbreaks that 100 isolates were randomly sampled from. The blue areas 362 

represent time spent in the human population and the red areas represent time spent in the 363 

animal population. 364 

 365 

Equal-time sampling 366 

The DTA and SC models gave similar population and transmission estimates for the 367 

23 simulated outbreaks with random (Fig 6-7) and equal-time sampling (Fig 9-10) of 100 368 

isolates. Random sampling estimated more known parameters within its 95% HPD interval, 369 

but equal-time sampling had smaller mean squared errors between known parameters and the 370 

mean estimates, and smaller 95% HPD intervals. The SC and DTA models also estimated 371 
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similar phylogenetic trees for simulated outbreaks that were sampled using random and 372 

equal-time sampling (Fig 11). This suggests that neither sampling method was more suitable 373 

for these ancestral state reconstruction models. 374 

 375 

Fig 9. The proportion of outbreak simulations that the models included the known 376 

parameter within their 95% highest posterior density (HPD) intervals (A); the correlation 377 

coefficient between known parameters and the models’ mean estimates (B); the mean squared 378 

errors between known parameters and the models’ mean estimates (C), and the size of the 379 

models’ 95% HPD intervals (D), for the population and transmission estimates made by the 380 

DTA (red) and SC (blue) models for 23 simulated outbreaks that 100 isolates were sampled 381 

equally over time from. 382 

 383 

Fig 10. The proportion of time spent in the animal (A and E) and human (B and F) 384 

host populations, and the proportion of inter-population transmissions made up of animal-to-385 

human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC 386 

(blue: A-D) and DTA (red: E-F) models versus the true parameters for 23 simulated 387 

outbreaks that 100 isolates were sampled equally over time from. The diagonal line 388 

represents accurate estimates of the sampled outbreaks, the dots represent the mean, and the 389 

error bars represent the 95% HPD interval. 390 

 391 

Fig 11. Sampled transmission tree (A and D), maximum clade credibility tree 392 

produced by the DTA model (B and E) and maximum a posteriori tree produced by the SC 393 

model (C and F), for one of the 23 simulated outbreaks that 100 isolates were sampled 394 

randomly (A-C) and equally over time (D-F). The blue areas represent time spent in the 395 

human population and the red areas represent time spent in the animal population. 396 
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 397 

Equal intra-population transmission rates and infectious periods 398 

The DTA and SC models provided more accurate estimates of population parameters 399 

for the 12 simulated outbreaks with equal intra-population transmission rates and infectious 400 

periods (EPTI) (Fig 12 and 13) than the 23 simulations where these parameters varied (Fig 6 401 

and 7), with smaller mean squared errors, a higher proportion of known parameter within 402 

their 95% HPD intervals, and mean estimates that were more positively correlated with the 403 

known parameters. The DTA model's mean population estimates displayed a sigmoid shape, 404 

similar to the simulated outbreak that was disproportionately sampled (Fig 5). On the other 405 

hand, the DTA and SC models gave less accurate transmission estimates for the 12 outbreaks 406 

with equal intra-population transmission rates and infectious periods between host 407 

populations than for the 23 simulations where these parameters varied, with larger mean 408 

squared errors, a lower proportion of known parameter within their 95% HPD intervals, and 409 

mean estimates that were less positively correlated or negative correlated with the known 410 

parameters. 411 

 412 

Fig 12. The proportion of outbreak simulations that the models included the known 413 

parameter within their 95% highest posterior density (HPD) intervals (A); the correlation 414 

coefficients between known parameters and the models’ mean estimates (B); the mean 415 

squared error between known parameters and the models’ mean estimates (C); and the size of 416 

the models’ 95% HPD intervals (D), for the population and transmission estimates made by 417 

the DTA (red) and SC (blue) models for 12 EPTI simulated outbreaks that 100 isolates were 418 

randomly sampled from. 419 

 420 
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Fig 13. The proportion of time spent in the animal (A and E) and human (B and F) 421 

host populations, and the proportion of inter-population transmissions made up of animal-to-422 

human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC 423 

(blue: A-D) and DTA (red: E-F) models versus the true parameters for 12 EPTI simulated 424 

outbreaks that 100 isolates were randomly sampled from. The diagonal line represents 425 

accurate estimates of the sampled outbreaks, the dots represent the mean, and the error bars 426 

represent the 95% HPD interval. 427 

 428 

The phylogenetic trees estimated for the 12 EPTI outbreaks (Fig 14) were like those 429 

of previous simulated outbreaks (Fig 8). They also demonstrated that the DTA model was 430 

unable to estimate ancestral branch states that were a different host population to daughter 431 

branches and tips. The SC model could estimate the state of ancestral branches that differed 432 

to the tips, but often estimated these branches inaccurately. 433 

 434 

Fig 14. Sampled transmission tree (A), maximum clade credibility tree produced by 435 

the DTA model (B) and maximum a posteriori tree produced by the SC model (C), for a EPTI 436 

simulated outbreak that 100 isolates were randomly sampled from. The blue areas represent 437 

time spent in the human population and the red areas represent time spent in the animal 438 

population. 439 

 440 

Host sampling effect on the models’ estimates 441 

To determine the effect of host sampling on the SC and DTA models’ estimates, the 442 

correlation coefficient between the proportion of samples isolated from each host population 443 

and the mean estimates for the simulated outbreaks were calculated (Fig 15; S1-S3 Fig). The 444 

DTA model’s mean population and transmission estimates were more positively correlated 445 
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with the proportion of samples isolated from each population, than the SC model’s. The DTA 446 

model’s mean estimates displayed similar correlation coefficients for the 12 EPTI simulations 447 

and the 23 simulated outbreaks that were sampled randomly and equally over time, whilst the 448 

SC model’s estimates gave different correlation coefficients for these datasets. 449 

 450 

Fig 15. Bar graph of the correlation coefficients between the SC and DTA models' 451 

mean estimates and the proportion of isolates sampled from each host population for 12 EPTI 452 

simulated outbreaks that 100 isolates were randomly sampled from, and 23 simulated 453 

outbreaks that 100 isolates were sampled randomly and equally over time. 454 

  455 

To determine if the difference in sampling fraction could account for the DTA 456 

model’s estimates for the simulated outbreaks, the correlation coefficient between the 457 

proportion of samples isolated from each host and the known parameters were calculated (Fig 458 

16; S4-S6 Fig). The known population parameters for the 12 EPTI simulated outbreaks and 459 

the sampling proportions were highly correlated, accounting for the more accurate estimates 460 

of these known parameters by the DTA model (Fig 13) compared to the known transmission 461 

parameters and other outbreak datasets where there was less correlation (Fig 7, 10, 13). 462 

 463 

Fig 16. Bar graph of the correlation coefficients between the proportion of isolates 464 

sampled from each host population and the known population and transmission parameters 465 

for 12 EPTI simulated outbreaks that 100 isolates were randomly sampled from, and 23 466 

simulated outbreaks that 100 isolates were sampled randomly and equally over time. 467 

 468 

DT160 outbreak 469 
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The SC and DTA models both predicted that DT160 spent most of the time in the 470 

animal host population over the course of the DT160 outbreak in New Zealand (Fig 17). 471 

However, the SC model predicted that there were relatively equal amounts of transmission 472 

between the animal and human host populations, whilst the DTA model predicted that there 473 

was a large amount of animal-to-human transmission and relatively less human-to-animal 474 

transmission. The phylogenetic trees estimated for the DT160 outbreak also displayed larger 475 

intervals between coalescent events later in the outbreak compared to the outbreaks simulated 476 

in this study (Fig 18). 477 

 478 

Fig 17. Estimates of the proportion of time spend in the animal (A) and human (B) 479 

host populations, and the proportion of inter-population transmissions made up of animal-to-480 

human (C) and human-to-animal (D) transmissions for the DT160 outbreak, as estimated by 481 

the SC (blue) and DTA (red) models on 109 isolates. The circles represent the mean and the 482 

error bars represent the 95% HPD interval. 483 

 484 

Fig 18. Maximum clade credibility tree produced by the DTA model (A) and 485 

maximum a posteriori tree produced by the SC model (B), based on 109 DT160 isolates. 486 

 487 

Discussion 488 

The DTA and SC models are ancestral state reconstruction models that were designed 489 

to estimate the ancestral state of a group of organisms based on their evolutionary history 490 

(3,4). In this study we demonstrated using simulated outbreaks and a previously described 491 

salmonellosis outbreak that neither of these models could accurately estimate known 492 

population and transmission parameters for these outbreaks. 493 
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The DTA model assumes that the proportion of samples from each host population is 494 

proportional to its relative size (6). This is a problem for outbreaks involving multiple host 495 

populations, as the host populations may be sampled at different rates, resulting in samples 496 

disproportional to the number of individuals infected within each host population. The 497 

simulated outbreaks in this study were stratified by host population before random sampling 498 

in efforts to meet this assumption. However, differing intra-population transmission rates and 499 

infectious periods between the host populations resulted in inter-population transmission rates 500 

and length of times spent in host populations disproportionate to the number of individuals 501 

infected within each host population and thus the proportion of each population sampled. 502 

This may explain why the DTA model consistently over-estimated the length of time in the 503 

animal host population and the number of animal-to-human transmissions for the initial 23 504 

simulated outbreaks, as the human host populations of these outbreaks were simulated to 505 

have longer infectious periods than the animal host populations. This resulted in longer 506 

periods spent in the human host population and a larger number of human-to-animal 507 

transmissions relative to the number of humans sampled. 508 

The DTA model appeared to estimate population parameters more accurately when 509 

the parameter was directly proportional to the number of isolates from each host population 510 

sampled. In these instances, the population estimates and simulated outbreak parameters 511 

shared a sigmoid-like relationship due to the model's ancestral branch estimates: the DTA 512 

model usually predicts that all the ancestral branches are one host population, until the 513 

majority of the tips are another host population, where all the ancestral branches switch (11). 514 

The correct population parameters were also only estimated when simulating outbreaks with 515 

equal intra-population transmission rates and infectious periods, parameters that usually 516 

differ between Salmonella host populations (15,16). However, even in these instances the 517 
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DTA model inaccurately estimated ancestral host population states and transmission 518 

parameters. 519 

The SC model gave similar estimates for all the simulated outbreaks.  It was poor at 520 

estimating simulated outbreaks known parameters, only accurately estimating them when 521 

they were within the range that it consistently estimated. The SC model’s inaccurate 522 

estimates are possibly due to the model's assumption that the effective population size of the 523 

host populations were consistent throughout the outbreak (10), which does not apply to 524 

salmonellosis outbreaks whose effective population size varies over the course of the 525 

outbreak (11). There may be other reasons why the SC model was unable to detect a signal, 526 

but it is difficult to test for these without first accounting for the model's effective population 527 

size assumption. 528 

The inability of the SC and DTA models to accurately estimate salmonellosis 529 

outbreak parameters highlights the need for outbreak-specific models. These models would 530 

need to be able to take into consideration variable sampling between host populations, like 531 

the SC model, and changes in the effective population size, like the DTA model. In addition, 532 

they would need to be able to take into consideration variation in infectious periods and intra-533 

population transmission rates. 534 

The MASTER package of BEAST2 allowed many salmonellosis outbreaks to be 535 

simulated using the stochastic SIR model. The simulated outbreaks contained a large amount 536 

of variation in the amount of time spent in the animal and human host populations, but less 537 

variation in inter-population transmissions due to only simulating two host populations. 538 

Therefore, unequal transmission values were only simulated using one very high and one 539 

very low inter-population transmission value. This in part explains why the SC model was 540 

more likely to provide estimates that matched known simulation parameters because it always 541 

gave similar mean estimates around the 0.35-0.65 range, which most of the known 542 
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transmission parameters for the simulated outbreaks were within. Further work with multiple 543 

host populations may help better understand these models’ application to salmonellosis 544 

outbreaks. 545 

The DTA and SC models’ estimates of the DT160 outbreak underline some of the 546 

limitations of this study. The DTA model estimated that DT160 spent most of its time in the 547 

animal host population and that there was a larger amount of animal-to-human transmission 548 

than human-to-animal transmission, which is to be expected as the DTA model is affected by 549 

sample size and a larger number of animal isolates were analyzed than human isolates in the 550 

DT160 study. The SC model estimated similar amounts of animal-to-human transmission 551 

than human-to-animal transmission, which is also to be expected as our study shows it 552 

usually gives similar transmission rates between two host populations. However, the SC 553 

model estimated that DT160 spent over 90% of its time in the animal host population and less 554 

than 10% of its time in the human host population, outside the 20-80% range estimated for 555 

simulated outbreaks, and both models produced phylogenetic trees with larger distances 556 

between coalescent events towards the later part of the outbreak than simulated outbreaks. 557 

The effective population size affects the timing of coalescent events for randomly sampled 558 

individuals (17). This suggests that the DT160 outbreak had a much larger effective 559 

population size than any of the simulated outbreaks in this study. It also indicates that the SC 560 

model's estimates maybe influenced by branch length. Simulations with larger effective 561 

population sizes are required to test this. 562 

In conclusion, our comparison of applicability of the SC and DTA models to 563 

salmonellosis outbreaks between the known parameters of simulated outbreaks and the 564 

models’ estimates suggest neither model is appropriate for this analysis. Our findings 565 

highlight the need for outbreak-specific models that can also take into consideration intra-566 
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population transmission rates, infectious periods, disproportionate sampling and changes in 567 

the effective population size. 568 
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S1 Appendix - Simulated outbreak parameters 650 

 651 

S1 Fig. The proportion of time spent in the animal (A and E) and human (B and F) 652 

host populations, and the proportion of inter-population transmissions made up of animal-to-653 

human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC 654 

(blue: A-D) and DTA (red: E-F) models versus the proportion of samples made up of animal 655 

(A, C, E and G) and human (B, D, F and H) host populations for 12 EPTI simulated 656 

outbreaks that 100 isolates were randomly sampled from. The dots represent the mean, and 657 

the error bars represent the 95% HPD interval. 658 

 659 

S2 Fig. The proportion of time spent in the animal (A and E) and human (B and F) 660 

host populations, and the proportion of inter-population transmissions made up of animal-to-661 

human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC 662 

(blue: A-D) and DTA (red: E-F) models versus the proportion of samples made up of animal 663 

(A, C, E and G) and human (B, D, F and H) host populations for 23 simulated outbreaks that 664 

100 isolates were randomly sampled from. The dots represent the mean, and the error bars 665 

represent the 95% HPD interval. 666 
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 667 

S3 Fig. Scatterplots of the proportion of time spent in the animal (A and E) and 668 

human (B and F) host populations, and the proportion of inter-population transmissions made 669 

up of animal-to-human (C and G) and human-to-animal (D and H) transmissions as estimated 670 

by the SC (blue: A-D) and DTA (red: E-F) models versus the proportion of samples made up 671 

of animal (A, C, E and G) and human (B, D, F and H) host populations for 23 simulated 672 

outbreaks that 100 isolates were sampled equally over time from. The dots represent the 673 

mean, and the error bars represent the 95% HPD interval. 674 

 675 

S4 Fig. The proportion of samples made up of animal (A and C) and human (B and 676 

D) host populations, versus the known population (A and B) and transmission (C and D) 677 

parameters for 12 EPTI simulated outbreaks that 100 isolates were randomly sampled from. 678 

 679 

S5 Fig. The proportion of samples made up of animal (A and C) and human (B and 680 

D) host populations, versus the known population (A and B) and transmission (C and D) 681 

parameters for 23 simulated outbreaks that 100 isolates were randomly sampled from. 682 

 683 

S6 Fig. The proportion of samples made up of animal (A and C) and human (B and 684 

D) host populations, versus the known population (A and B) and transmission (C and D) 685 

parameters for 23 simulated outbreaks that 100 isolates were sampled equally over time from. 686 
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