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Abstract

We propose a novel method to quantify brain growth in 3 arbitrary orthogonal

directions of the brain or its sub-regions through linear registration. This is achieved by

introducing a 9 degrees of freedom (dof) transformation called anisotropic similarity

which is an affine transformation with constrained scaling directions along arbitrarily

chosen orthogonal vectors. This gives the opportunity to extract scaling factors

describing brain growth along those directions by registering a database of subjects onto

a common reference. This information about directional growth brings insights that are

not usually available in longitudinal volumetry analysis. The interest of this method is

illustrated by studying the anisotropic regional and global brain development of 308

healthy subjects betwen 0 and 19 years old. A gender comparison of those scaling

factors is also performed for 4 classes of age. We demonstrate through these

applications the stability of the method to the chosen reference and its ability to

highlight growth differences accros regions and gender.
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Fig 1. Ages covered by different brain volumetry sudies, group comparison between: a - normal / mental
retardation, b - male / female, c - normal / motor disturbances, d - normal /
premature. [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [6], [19], [20], [21], [22], [23], [24]

Introduction 1

In pediatric image analysis, the study of brain development provides insights in the 2

normal trend of brain evolution and enables early detection of abnormalities. Many 3

types of morphometric measurements based on structural images have been explored 4

and have shown their reliability as biomarkers in clinical use as established in [1]. 5

Evaluated on a database of subjects covering a period of interest, it allows to better 6

model the brain development and to highlight changes in growth, shape, structure, etc. 7

Those measurements can be conducted on geometrical objects of different dimensions. 8

Unidimensional ones such as the bicaudate ratio (minimum intercaudate distance 9

divided by brain width along the same line) have been explored in [2] and [3] but also 10

biparietal, bifrontal and transverse cerebellar diameters in [4], as well as more areal 11

quantities such as cortical surface in [5] or corpus callosum mid-sagittal area in [6]. 12

However, the vast majority of studies are based on 3D features through the assessment 13

of region of interest (ROI) volumes. Volumetry measures of different regions of the 14

brain have been considered for specific ages or various temporal ranges. A far from 15

exhaustive list is presented in Figure 1. Studied regions are very heterogeneous from 16

large areas such as the whole brain itself, cerebellum, lobes or partitions of those to 17

smaller ones such as basal ganglia, hippocampus, thalamus sometimes even separated 18
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according to the composition of their tissues (white matter (WM), gray matter (GM), 19

cerebro-spinal fluid (CSF)). Some group comparisons have also been performed mostly 20

between male and female or between preterm and term newborns. 21

Morphometric measurements can be determined manually. However, this requires 22

the intervention of a medical expert able to select specific landmarks or perform 23

segmentation. These tasks are highly time consuming with a potentially large 24

inter-expert variability. Advances in computational medical imaging allow nowadays the 25

use of semi-automated (requiring some human intervention) or fully-automated 26

techniques. They involve algorithms able to automatically perform operations such as 27

registration and segmentation. 28

A major drawback of purely volumetric measurements is that they do not provide 29

any information on the shape of the regions or about the anisotropy of their 30

development. In this paper, a new method is proposed that aims at quantifying global 31

and regional brain growth in three arbitrary orthogonal directions of the brain (or ROI) 32

through linear registration. To do so, a transformation called anisotropic similarity is 33

introduced in section 1. It is an affine transformation with scaling directions constrained 34

by orthogonal vectors arbitrarily chosen. A method to estimate, in a 3 dimensional 35

space, the optimal anisotropic similarity for the least squares problem of distances 36

between two sets of paired points is presented in section 2. Those results will then be 37

used to create a registration algorithm based on this transformation. By registering a 38

database of subjects onto a common basis (i.e. an atlas segmented in different ROIs) 39

using anisotropic similarity, we have the opportunity to extract global or regional 40

scaling ratios for all those subjects along arbitrary chosen orthogonal directions. 41

A direct application is, using the pipeline exposed in section 3, the exploration of 42

regional scaling ratios growth charts along three fixed orthogonal directions through the 43

ages highlighting anisotropic brain development. Resulting curves for whole brain and 44

ROIs (lobes, basal ganglias, cerebellum...) are presented in section 4.2. A comparison of 45

scaling factors from males and females is performed for 4 different classes of age 46

between 0 and 19 years old in section 4.3. Finally, the influence of the common 47

reference image on the resulting scaling factors is studied in section 4.4. 48

Anisotropic similarity registration algorithm as well as other image processing tools 49
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used in this paper are publicly available in Anima1 (open source software for medical 50

image processing). 51

1 Theoretical background 52

1.1 Generalities about linear transformations and anisotropic 53

similarity especially 54

An affine transformation is a composition of a linear map A (N ×N matrix) and a 55

translation t (in RN ) operating on coordinates: y = Ax+ t. Using singular value 56

decomposition (SVD) on A, we obtain: 57

A = V DWT (1)

where W and V are unitary matrices and D is a positive diagonal matrix. By 58

introducing R = V.Det(V ), U = W.Det(W ) and S = Det(V ) Det(W )D, we get a 59

modified decomposition: 60

A = RSUT (2)

where U is a rotation matrix defining the directions of scaling, S is a diagonal scaling 61

matrix and R is a rotation matrix. We define a new linear transformation, hereafter 62

named anisotropic similarity, which is an affine transformation with constrained 63

directions of scaling. In other words, we define an anisotropic similarity transformation 64

as an affine one where U is fixed. Summing up, we have the following in 3D space: 65

• An affine transformation has 12 degrees of freedom: 66

– a rotation (3 dof): the matrix U determines scaling directions. 67

– an anisotropic scaling (3 dof): matrix S. 68

– a rotation (3 dof): matrix R. 69

– a translation (3 dof): vector t. 70

• For an anisotropic similarity, the directions of scaling defined by U are 71

constrained. This leaves 9 dof: 3 for rotation, 3 for scaling and 3 for translation. 72

1Anima: github.com/Inria-Visages/Anima-Public/
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• For a similarity, the scaling part is constrained to have identical values on the 73

diagonal i.e. S = s Id with s ∈ R leading to a linear part of the form sRUT . This 74

leaves 7 dof: 3 for rotation, 1 for scaling and 3 for translation. 75

• For a rigid transformation, the scaling part is constrained to identity leading to a 76

linear part of the form RUT which is a rotation matrix since rotation matrices 77

form a group for matrix multiplication. This leaves 6 dof: 3 for rotation and 3 for 78

translation. 79

1.2 Generalities about linear registration 80

Registration consists in finding an optimal transformation that matches a moving image 81

onto a reference image. This transformation is usually obtained by maximizing a 82

similarity criterion. Many rigid (or linear in general) registration methods have been 83

developed. They can be divided into two families: the ones that try to match 84

geometrical features such as contours or surfaces, and those called iconic that are based 85

on voxel intensities. Some of them use a global similarity measure between the two 86

images such as mutual information in [25] and [26], while others rely on local similarities. 87

Among this second category of approaches, block matching strategies exposed in [27] 88

and [28] have gained in popularity. In those methods, two steps are iterated: 89

1. Matching: for a set of blocks established in the reference image, homologous 90

blocks best satisfying a similarity criterion are searched in the moving image. 91

2. Aggregation into a global transformation: an optimization is performed in order 92

to find the global transformation minimizing a distance between the sets of blocks 93

and is then applied to the moving image. Usually, the weighted sum of squared 94

euclidean distance is chosen for the cost function. 95

In order to perform an anisotropic similarity registration using the block-matching 96

method, the two steps mentioned above have to be iterated. The first one (matching) is 97

performed the same way it would be for any regular linear transformation. It outputs 98

two sets of paired points: x and y that are in our case the centers of the homologous 99

blocks. The second step (aggregation onto a global transformation) however is 100

dependent on the type of linear transformation we want to determine leading to an 101
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adapted optimization in each case. 102

This optimization step consists in finding, in the set of eligible transformations, the 103

one that best maps x onto y. Let x = {x1, . . . , xM} and y = {y1, . . . , yM} be two sets 104

of M paired points coming from the matching step. For a global transformation with 105

linear part A and translational part t, the least squares problem associated to the 106

matching of x and y consists in the minimization of the following criterion: 107

C(A, t) =
∑
i

‖yi − (Axi + t)‖2 (3)

Remark. For the sake of clarity we presented a version with a non-weighted least 108

squares problem but the reasoning is the same with a weighted one. 109

The optimal translation t̂ can be directly obtained from the optimal linear part 110

(independently of the type of linear transformation) from the barycenters of the two sets 111

of points as developed in [29]. Let x̄ = 1
N

∑N
i xi and ȳ = 1

N

∑N
i yi, we have then: 112

t̂ = ȳ − Âx̄ (4)

Let x′i = xi − x̄ and y′i = yi − ȳ be the barycentric coordinates, the problem can then be 113

simplified as: 114

C(A, t) =
∑
i

‖y′i −Ax′i‖
2

(5)

In the case of the linear part being affine, there is no constraint. A closed form solution 115

can therefore be easily found as shown in [29]. For rigid and similarity transformations, 116

constraints lead to more complicated lagrangians but a closed form solution can be 117

found as well using unit quaternions in 3D space as a representation of rotations like 118

in [30] and [29]. 119

2 Optimal anisotropic similarity between two sets 120

of paired points 121

To our knowledge, the optimization procedure in the case of anisotropic similarities has 122

not been considered in the literature. We thus present a method also based on 123
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quaternions to find the optimal anisotropic similarity between two sets of paired points. 124

Writing A as its decomposition, the goal is to minimize the following criterion: 125

C(R,S) =
∑
i

∥∥y′i −RSUTx′i∥∥2 (6)

Where U is fixed. Let x̃i = UTx′i, ξi = Sx̃i 126

C̃(R,S) =
∑
i

‖y′i −Rξi‖2 (7)

R can be expressed using quaternions following [30] and [29] and the problem then 127

becomes (see A.1): 128

C̃(q, S) =
∑
i

||y′i ∗ q − q ∗ ξi||2 (8)

Where q is a unit quaternion and ∗ is the quaternion multiplication. Let p and q be 129

quaternions. There is a matricial representation of quaternions allowing to express 130

quaternion product as a matrix product. Matricial quaternions P and Q are defined 131

such that: Qpq = p ∗ q and Ppq = q ∗ p̄⇔ PTp q = q ∗ p. 132

Qp =


p1 −p2 −p3 −p4
p2 p1 −p4 p3
p3 p4 p1 −p2
p4 −p3 p2 p1

 and Pp =


p1 p2 p3 p4
−p2 p1 −p4 p3
−p3 p4 p1 −p2
−p4 −p3 p2 p1

 (9)

Using those matricial quaternions on y′i and ξi taken as pure quaternions, we have 133

y′i ∗ q = Qy′iq and −q ∗ ξi = −PTξi q = Pξiq. Thus, we obtain the following criterion (see 134

A.2): 135

C̃(q, S) = qT

(
−
∑
i

(Qy′i + Pξi)
2

)
q (10)

For further computation, we denote Bi = −(Qy′i + Pξi)
2 and B =

∑
iBi. A lagrangian 136

with unit constraint qT q = 1 has then to be added to ensure a unit quaternion: 137

Λ = qTBq − λ(qT q − 1) (11)
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The derivatives of this new formulation can then be written as: 138


∂Λ

∂q
= (B − λI4)q

∂Λ

∂sj
= −qT

(∑
i

Qy′i
∂Pξi
∂sj

)
q + sj

∑
i

x̃2ji

(12)

Derivative with respect to q depends upon sj and vice versa. Therefore, a direct 139

solution to the problem of minimizing C̃(q, S) is difficult to find if not impossible. 140

However, separating the problem between S and q leads to an alternate optimization 141

scheme, each having an analytical solution. 142

Rotation: 143

∂Λ

∂q
= 0⇔ (B − λI4)q = 0 (13)

Solving this equation amounts finding the eigen vectors of B. More precisely, the global 144

minimum q̂ is the one associated to the smallest eigen value of B as shown in [30], [29]. 145

Scaling: (see A.3) 146

∂Λ

∂sj
= 0⇔ ŝj =

1∑
i x̃

2
ji

qT

(∑
i

Qy′i
∂Pξi
∂sj

)
q (14)

Now, interestingly the matrices Qy′i
∂Pξi
∂sj

have a quite trivial form. They are all 147

symmetric, only the placing and indexes change (see A.4). We finally get the following 148

iterative alternate optimization scheme: 149

• For a fixed value of Ŝ, estimate the new optimal rotation quaternion: q̂ as the 150

eigenvector with the smallest eigenvalue of B 151

• For a fixed value of q̂, estimate the new optimal scaling matrix 152

Ŝ = Diag(ŝ1, ŝ2, ŝ3) following: 153

ŝj =
1∑
i x̃

2
ji

q̂T

(∑
i

Qy′i
∂Pξi
∂sj

)
q̂ 154

3 Material and methods 155

In the previous section, a method to find the optimal anisotropic similarity between two 156

sets of paired points has been depicted. This gives the opportunity to register a database 157
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of subjects onto a common reference image using this type of linear transformation to 158

extract scaling factors along chosen orthogonal directions and to study the variation of 159

these factors on different ROIs between populations or among normal subjects. 160

3.1 Material 161

308 T1-weighted images of healthy subjects between 0 and 19 years old have been used, 162

coming from three different studies: ASLpedia (section 6.1.1), C-MIND (section 6.1.2) 163

and the Developing Human Connectome Project (dHCP) (section 6.1.3). Details on age 164

repartition among databases and on image characteristics are given in Figure 2.

Study dHCP c-mind ASLpedia

Voxel size (mm)
(axial, coronal, sagittal)

0.5x0.5x0.5 1x1x1 0.5x0.5x1

Number of subjects
selected

37 197 74

Age range of subjects
(years)

<0.1 [0, 19] [0, 16]

Fig 2. Repartition of the subjects selected from three studies over age

165

3.2 Methods 166

We developed a pipeline composed of 5 steps to extract scaling factors for 3 orthogonal 167

directions on ROIs from a database of subjects. 168

1. Choice and construction of the common reference image 169

2. Segmentation of the common reference image into different ROIs 170

3. Choice of the constrained directions of scaling for the anisotropic similarity 171

registration 172

4. Anisotropic similarity registration of a database of subjects to each ROIs of the 173

common reference image to extract relative scaling factors 174
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5. Renormalization of the relative scaling factors to obtain absolute scaling factors 175

The above numbers associated to the steps are also associated to the subsections 176

numbering below and to the numbers in Figure 3. 177

3.2.1 Creation of the common reference image 178

For genericity, the common reference image has been chosen to be an atlas made from 179

all the subjects using a modified version of the atlas creation algorithm from [31] 180

available in Anima-Scripts2 (open source scripts for medical image processing). The 181

original method computes an atlas up to an affine transformation, biased in that sense 182

by the reference image. This is due to the fact that, in the process, only the residual 183

local transformations are averaged, ignoring global affine ones. Our method, developed 184

in [32], takes advantage of the log-Euclidean framework developed in [33] and the 185

Baker-Campbell-Hausdorff formula, mentionned in [34] and [35], allowing to average the 186

composition of an affine transformations and a diffeomorphism. This adjustment leads 187

to the creation of atlases up to a rigid transformation. 188

Fig 3. Pipeline for the extraction of scaling factors of a database of subjects using anisotropic similarity
registration onto an atlas based on them as common reference image

2Anima-Script: github.com/Inria-Visages/Anima-Scripts-Public/
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3.2.2 Segmentation of the common reference image 189

The atlas has then been segmented into 21 regions of interest (ROIs): whole brain, 190

hemispheres, frontal lobe, parietal lobe, temporal lobe, occipital lobe, basal ganglias, 191

cerebellum, insulas, ventricules, corpus callusum and brainstem. All structures were also 192

separated in their left and right sides. To do this segmentation, ALBERTs manual ones 193

( [36] and [37], see acknowledgments 6.1.4) have been used: 20 brains segmented into 50 194

regions manually drawn based on MRI brain scans that we fused to obtain the wider 195

desired regions. The T1 weighted images of those brains have been registered onto our 196

atlas through affine then diffeomorphic registration. The outputs have then been used 197

to transfer all the segmentations onto our atlas which have been then merged using 198

majority voting following [38]. The segmented atlas is shown Figure 4. 199

3.2.3 Choice of the constrained directions of scaling 200

The fixed scaling directions (characterized by the column vectors of the matrix U) are 201

chosen on the reference image such that the first direction (blue in figure 4) is 202

orthogonal to the mid-sagittal plane (determined using [39]) for symmetry reasons. The 203

others two directions are set using principal component analysis (PCA) on the non zero 204

voxels coordinates projected onto the mid-sagittal plane. The second direction (red in 205

figure 4) corresponds to the principal direction from the PCA while the third (green in 206

figure 4) corresponds to the secondary one. 3 orthogonal directions are now chosen: one 207

through iconic considerations and the other ones based on purely geometrical features. 208

In our application, the matrix U is the same for all ROIs of the reference image and is 209

defined using the whole brain. However, it is possible to define a different U for each 210

ROI independently. Chosen directions of scaling are shown Figure 4. 211

3.2.4 Anisotropic similarity registration 212

For each ROI, all subjects undergo an anisotropic similarity registration onto the 213

reference image masked by this ROI. This registration is performed in two steps using in 214

each case our block matching algorithm implemented in Anima3: 215

1. A similarity from whole brain subjects onto whole brain common reference is first 216

3Anima: github.com/Inria-Visages/Anima-Public/
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ROI ID color

whole brain 0
left hemisphere 01
right hemisphere 02
left temporal 1
right temporal 2
left parietal 3
right parietal 4
left frontal 5
right frontal 6
left cerebellum 7
right cerebellum 8
left occipital 9
right occipital 10
left basal ganglia 11
right basal ganglia 12
left insula 13
right insula 14
left ventricule 15
right ventricule 16
corpus callossum 17
brainstem 18

direction ID color

orthogonal to the mid-sagittal plane 1
principal direction of voxels coordinates projected on mid-sagittal plane 2
secondary direction of voxels coordinates projected on mid-sagittal plane 3

Fig 4. Regions of interest (ROIs) segmented and represented on the common reference image (top), chosen
directions of scaling for anisotropic similarity registration defined and represented on the common reference
image (bottom)

estimated. 217

2. An anisotropic similarity initialized from the previous step output is then 218

computed to bring the subjects onto the atlas masked by the current ROI. 219

The first transformation, a similarity, is computed indirectly during a process of 220

affine registration. Let A be the linear part of an affine transformation TA. We consider 221

the following SVD: A = V DWT with D diagonal positive, V and W unitary matrices. 222

We define TB (the nearest similarity associated to TA) as the transformation with linear 223

part B = d̄V WT with d̄ being the average of the singular values namely the mean of 224

the diagonal of D, and translation part t = ȳ −Bx̄. We chose the initialization to be a 225

similarity since the composition of a similarity TB and an anisotropic similarity TC 226

associated to a matrix U is still an anisotropic similarity associated to the same U : 227

TBTC = (sBRB)(RCSCU
T ) = (RBRC)(sBSC)UT = RSUT . 228
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sub i 
affine

registration

anisotropic
similarity

registration

moving

reference

moving reference

Transformations:

ROI j 

affine

anisotropic similarity
nearest similarity from

anisotropic similarity
Fig 5. Two steps registration process: first an affine from which a nearest similarity is deduced, then an
anisotropic similarity

Remark. Transformations are composed and represented with arrows from destination 229

to start since the interpolations occurring in the resampling process are done using the 230

backward mapping. The inverse transformation is actually used on each voxel of the 231

output images to determine the position in the input image from which a value is 232

sampled. 233

3.2.5 Extraction of absolute scaling factors 234

From the output transformations of the registration step, the relative scaling parameters 235

along the three fixed directions are extracted. A normalization is then applied such that 236

the scalings at age 0 are close to 1. To this end, the fact that all dHCP subjects are 237

very young (less than 1 month) is exploited. All relative scaling factors are divided by 238

the average of the ones associated to the dHCP subjects considered as the “root” of the 239

brain expansion. Those new scaling factors will now be considered as absolute scaling 240

factors. At this stage, for each subject, an absolute scaling factor has been determined 241

for each ROI. Those absolute scaling factors are used to model the expansion of the 242

brain toward the chosen directions. 243
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4 Experiments and results 244

4.1 Model selection 245

Several models are traditionally used to represent growth in biostatistics such as the 246

exponential or Weibull models. The second one has been considered by [24] as the best 247

suited to model brain growth in terms of volume. Our case however is different: it can 248

be viewed as a 3-way unidimensional approach. In our quest to find the function best 249

suited to model growth curves for our data, we decided to consider, as a prior, that the 250

brain expansion is stopping at some point. Therefore, we restricted the spectrum to 251

functions that have an horizontal asymptote at infinity. The selected candidates to 252

model brain growth in the chosen directions are the following: 253

• Rational with polynomials of degree 1 as numerator and denominator : 254

y =
ax+ b

x+ c
255

• Weibull: y = a− be−cxd

256

• Gompertz: y = ae−be
−cx

257

• Exponential: y = a+ be−cx 258

For each candidate, the optimal coefficients are estimated through nonlinear 259

regression using the Levenberg-Marquardt iterative weighted least squares algorithm 260

from [40]. In this process, weights are chosen to compensate for local gender repartition. 261

For each subject i, a window of width l = 2 years centered on the subject age is 262

considered. Let nf , nm and n be the number of female, male and total subjects 263

respectively in that window. A correction coefficient cf =
nm
n

is applied if i is a female 264

and cm =
nf
n

if i is a male. Let {y1, . . . , yn} be the observations (i.e. here the obtained 265

scaling factors), ȳ be the average of those and {ŷ1, . . . , ŷn} be the fitted values. 266

Based on these statistics, the chosen candidate for the modeling will be the one that 267

best satisfies a criterion quantifying the goodness of fit. This indicator should evaluate 268

the accuracy of the model i.e. how close the model is to the observation while 269

discouraging overfitting. It therefore consists in a tradeoff between accuracy and 270

parsimony. It has been shown in [41] that the coefficient of determination is not, at 271

least when considered alone, an appropriate measure for the goodness of fit in the case 272
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of nonlinear model selection. A more adapted goodness of fit for nonlinear model 273

selection is the Akaike information criterion (AIC) developed in [42] and [43]. Based on 274

information theory, it proposes to estimate the information loss induced by each 275

candidate model to represent an unknown process that supposedly generated the data 276

as shown in [44]. This is made possible through the estimation of the Kullback-Leibler 277

divergence related to the maximized log-likelihood. AIC is defined by: 278

AIC = −2p− 2 ln(L̂), where L̂ is the maximum likelihood of the candidate model and 279

the first term penalizes a large number of parameters p. Therefore, the preferred model 280

among the candidates is the one with the lower AIC. Note that AIC of a model taken 281

alone is meaningless, it makes sense only when compared to the one of the other models. 282

This is why it is recommended to consider it along with an other statistic that 283

quantifies the error between the model and the data like mean of squared errors (MSE): 284

MSE = 1
n

∑
i(yi − ŷi)2 which is the average of the residuals. A corrected version of the 285

AIC has been developed to avoid overfitting in the case of small sample sizes: 286

AICc = AIC +
2p(2p+ 1)

n− p− 1
. To facilitate the interpretation that can be quite obscure 287

using raw AIC, following [45], it is possible to transform those values into conditional 288

probabilities for each model called Akaike weights. Defined for each model i by 289

wi,AIC =
e−

1
2 (AICi−AICmin)∑

j e
− 1

2 (AICj−AICmin)
, those weights represent the probability for each 290

candidate i to be the best suited in the sense of AIC to model the data among all the 291

candidates.

Fig 6. Goodness of fits for each candidate to model the ouputed scaling factors averaged in the 3 directions.
Boxplots are performed along the ROIs, ROI IDs are displayed on the left. Akaike weights are computed on
mean (blue) and median (red) AICc

292
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All the goodness of fit depicted above as well as MSE have been evaluated for each 293

of our candidates to model the scaling factors for each ROI. We present the results of 294

this evaluation Figure 6. The Gompertz and exponential models are largely below the 295

other two. Even though the Weibull model behaves relatively well, the rational one 296

shows better scores whatever the tested goodness of fit. 297

4.2 Directional growth curves 298

From the previous sections, scaling factors in each direction for each ROI are now 299

modeled using a rational function with polynomials of degree 1 as numerator and 300

denominator chosen after model selection. Results for all regions studied are presented 301

in figure 7. The method presented by [46] is used to compute simultaneous 99% 302

confidence intervals for fitted values. The black curve represents the average brain 303

growth computed as the mean of the directional models (Figure 7). 304
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Fig 7. Resulting scaling factors as a function of the age for differents ROIs, along direction 1 (blue), 2 (red),
3 (green). Fitted using rational model together with 99% confidence intervals for fitted values.
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4.3 Male vs female comparison 305

Gender, like age, is a characteristic of the subjects available in all the studies we 306

considered. The aim of this section is to evaluate if differences in terms of scaling factor 307

can be found between genders. We divided our data into four classes based on the age 308

of the subjects. The first one contains dHCP participants (newborns), the second one is 309

composed of all non-newborn subjects between 0 and 6 years old, the third one between 310

6 and 12 and the fourth superior to 12 years old. Repartition of the subjects in terms of 311

gender, age class and study is shown Table 1. 312

dHCP ]0, 6] ]6, 12] > 12

male
dHCP

22
22

51
0

48
0

26
0

147c-mind 0 29 37 24

ASLpedia 0 22 11 2

female
dHCP

15
15

54
0

57
0

35
0

161c-mind 0 43 43 21

ASLpedia 0 11 14 14

37 105 105 61 308

Table 1. Repartition of the subjects in term of age class, gender and study

For each of these classes, and each of the chosen scaling directions, and each ROI, we 313

performed a test to evaluate if the scaling factors for male subjects are greater than 314

scaling factors for female subjects. Since these data are not normally distributed in 315

those subdivisions, we used two-tailed Wilcoxon-Man-Whitney U-tests. For each of 316

those tests, the null hypothesis H0 is the following: the distribution of the scaling 317

factors between males and females are equal, while the alternative hypothesis H1 states: 318

the distributions of males and females are different. We performed 252 tests in total: 4 319

age classes × 21 ROIs × 3 directions whose results are shown figure 8. 320

A type 1 error, or false positive, occurs when H0 is incorrectly rejected. Since we are 321

doing multiple comparisons, rejecting H0 based on the risk of type 1 error α = 5%, may 322

lead in our case to an expected number of false positives superior to 12. Instead of using 323

α, we therefore adopted the false discovery rate (FDR) that controls the proportion of 324

false positives among the tests where H0 has been rejected. Therefore, we stated the 325

acceptance or rejection of H0 based on a FDR at level 5%. This has been done using 326

Benjamini and Hochberg procedure from [47] and corresponds to reject H0 when the 327

p-value is less than 0.0077 (Figure 8). FDR has been preferred to family-wise error rate 328
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(FWER), that controls the risk of at least 1 false positive among the whole family of 329

tests, because of the over-conservatism of this last type of procedure leading to poor test 330

power (probability of correctly rejecting H0). Additionally, we calculated, for each test, 331

the effect size d following: d =
median({Sm})−median({Sf})

σ({Sm}) + σ({Sf})
(Figure 8), where {Sm} 332

(resp. {Sf}) is the set of scaling factor of males (resp. females) used for the test. We 333

preferred the use of median instead of mean due to the fact that we do not know the 334

distribution of the data a priori and we performed ranksum type tests. 335

7.7 FDR 
threshold

Fig 8. Male vs female comparison using Wilcoxon-Man-Whitney U-test and H0: the distrubution of the
scaling factors of males and females are equal, H1: the distributions of males and females are differents. In
color: p-values for H0 rejection for FDR at level 5% (Benjamini and Hochberg method). Numericaly: the
size of the effect d for each test.

For all the tests that lead to a rejection of the null hypothesis, scaling factors were 336

higher for males both in terms of means and medians. Tests show that scaling factors of 337

males seem higher in the second age class (0-6), brainwise and mainly in temporal and 338

cerebellum areas along the direction 1. This is also notable in the same regions between 339

6 and 12 years, this time along direction 3. For the older class (12-19), this phenomenon 340

essentially appears brainwise along the direction 3 and in the parietal lobes along 341

direction 1. 342
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4.4 Influence of the common reference 343

To evaluate the influence of the common reference image, the whole process described 344

previously is reproduced using six different reference images. Those are atlases for 345

different time-points t1, . . . , t6 based on the previously depicted population. Atlas for 346

time ti is created using subjects with ages close to ti weighted according to their 347

temporal distance to ti using kernel regression. Time-points are chosen such that five of 348

them cover the period in which the majority of the brain expansion occurs, the last is 349

positioned later, in a stabilized area (Figure 9). 350

Atlas ID 1 2 3 4 5 6

Time point 0.5 1 1.5 2 2.5 13

Number of subjects 60 26 24 21 26 21

Age range of subjects [0.003, 1.23] [0.53, 1.57] [1.02, 1.98] [1.57, 2.47] [1.98, 3.14] [12.07, 13.67]

Atlas

Weights on subjects

0.5 1 1.5 2 2.5 13
0

0.05

0.1

Fig 9. Characteristics of the 6 atlases used as reference image (time is displayed in years).

The method developed in section 3.2 is used for each of these reference images, on 351

which directions of scaling for the anisotropic similarity registration have been 352

established the same way. A scaling factor s(i, j, d, k) is thus computed for each ROI j 353

of each subject i based on each reference image k along each chosen direction d. To 354

quantify the influence of the reference image on absolute scaling factors, the results, 355

using the six reference images previously depicted, are compared through two 356

approaches: 357

1. A pairwise study to evaluate whether or not reference atlases closer to each other 358

in age are more likely to generate closer results. 359

2. A study of the standard deviation among results for all reference atlases to 360
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evaluate how far they are from the average results. 361

4.4.1 Study of pairwise distances between scaling factors by reference 362

images in each direction for each ROI 363

Our aim is to determine whether or not reference images closer to each other (atlases at 364

shorter temporal distances) are more likely to generate less important absolute 365

differences between their results. We therefore to compute the absolute difference of the 366

resulting scaling factors between each pairwise combinations of reference images. Then, 367

those distances are normalized by the average of corresponding scaling factors between 368

the two atlases such that it can be seen as a percentage of it (relative distance). The 369

relative distance between scaling factors from reference atlases k and l is then computed 370

as: 371

Dk,l(i, j, d) = 2
|s(i, j, d, k)− s(i, j, d, l)|
s(i, j, d, k) + s(i, j, d, l)

(15)

Fig 10. Relative distances between reference atlas 1 and 2 (top), 1 and 6 (bottom). Boxplots among
subjects for each ROI j, each direction d: boxplot(Dk,l(., j, d)).

After examination of all the pairwise combinations, the temporal distance between 372

the reference images does not seem to have an impact on the distance of the scaling 373

ratios associated to each other (figure 10). The highest median of relative distance 374
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happens to be between atlases 2 and 5 for right basal ganglia, but does go above reach 375

8% of difference. 376

4.4.2 Study of the standard deviation among reference images in each 377

direction for each ROI 378

This method gives an average measure of the distances between the results for each 379

atlas and the average results. Those distances are normalized by the average of 380

corresponding scaling factors of all the atlases. The relative standard deviation between 381

scaling from all reference atlases is then computed as: 382

D(i, j, d) =
σ(s(i, j, d, .))

s(i, j, d, .)
(16)

Fig 11. Relative standard deviation between reference atlases. Boxplots among subjects for each ROI j,
each direction d: boxplot(D(., j, d)).

383

The graphs (figure 11) suggest that the method, when applied to large regions such 384

as whole brain and hemispheres, is really robust to reference image change. Occipital 385

lobes and cerebellum however seem to be more vulnerable areas. Those two regions 386

share a common border and we believe that the segmentation process is a crucial step in 387

that case. The cerebellum position indeed varies quickly in early stages of life and our 388

decision to use segmentations based on neonates can be a bit inadequate for this area in 389

particular. We also think that the way we chose to define the constrained directions of 390

scaling (especially those using purely geometrical considerations through PCA on voxel 391
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coordinates) may not be the best suited for robustness in those areas. More anatomical 392

features could lead to even smaller influence of the reference image. 393

5 Discussion 394

The choice of the scaling directions, characterized by the matrix U , is crucial. If our 395

decision to pick a vector orthogonal to the mid-sagittal plane seems meaningful due to 396

symmetry reasons, the selection of the other two could be more debatable since they are 397

based on purely geometric features ignoring iconic or anatomical considerations. A more 398

anatomically-oriented approach could be to ask a medical expert to point, on the 399

reference image, the anterior commissure - posterior commissure (AC-PC) line. This has 400

been well adopted as a standard by the clinical neuroimaging community even though it 401

is mostly a convention for visualization and at the cost of introducing a human 402

interaction or a preprocessing step. There is no absolute good choice though and this 403

choice depends on the purpose of the study. It is also possible to define specific 404

directions for each ROI that could bring additional information for further studies. This 405

method is therefore very flexible in the choice of the scaling directions and the ROIs, yet 406

it has shown oneself robust concerning the choice of the common reference image. 407

We focused on the expansion of structures of a database of healthy subjects but we 408

can also imagine using this method for patients. Intra-individual surveys are also 409

possible, for subjects that had multiple scans through time, to monitor the evolution of 410

a brain sub-region or any part of the body and infer the way it is going to expand. 411

Finally, although it does not call into question the method itself, there is room for 412

improvements in the way we segmented the ROIs. The main difficulty is to find a 413

method that is reproducible while being adaptable to brains from subjects scanned 414

across a wide range of ages, which induces a large variability in contrast and shape. 415

Conclusion 416

We have presented a method that allows the extraction of regional and global scaling 417

factors along arbitrary chosen orthogonal directions. This is done through linear 418

registration using a 9 dof transformation, anisotropic similarity, which is an affine 419
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transformation with constrained directions of scaling. 420

The main methodological contribution of this paper concerns the resolution of the 421

problem of finding the optimal anisotropic similarity that best matches two sets of 422

paired points. This result has made possible the development of a block-matching 423

registration algorithm based on this transformation. 424

Given this new type of registration, our second contribution was to map a database 425

of subjects between 0 and 19 years old using anisotropic similarity onto a common 426

reference image on which the constrained directions of scaling of our choosing have been 427

fixed. Registrations have been performed brainwise and ROI wise (lobes, cerebellum, 428

basal ganglias...). For genericity purpose, we chose this reference image to be an atlas 429

made from the subjects. Based on symmetry and geometrical considerations, we defined 430

the same constrained directions of scaling for all ROIs even though it is possible to 431

choose different ones for each. As an output, we obtained for each subject, for each ROI, 432

for each chosen direction a scaling, a scaling factor that we normalized such that it 433

represents an expansion factor from birth. 434

Those scaling factors have been used to model the anisotropic development of the 435

brain. After model selection, it has been determined that rational function with 436

polynomials of degree 1 as numerator and denominator is the best suited among the 437

tested candidates for that modeling. Curves representing scaling factors as a function of 438

the age for each ROIs, each chosen direction, along with associated confidence intervals 439

have then beeen computed on a combination of four databases. 440

Tests to determine the influence of gender in those scaling factors have been 441

performed for different age classes. Finally, two experiments have been conducted to 442

evaluate the influence of the aforementioned common reference image. The results have 443

shown small relative differences depending on the choice of the reference image leading 444

to the conclusion that the method is robust in that aspect. 445
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6 Acknowledgments 446

6.1 Databases 447

6.1.1 ASLpedia 448

A retrospective ASL study on routine pediatric MRI performed at Rennes University 449

Hospital Neuropediatric radiology Department. 450

6.1.2 C-MIND 451

Data Repository created by the C-MIND study of Normal Brain Development. This is a 452

multisite, longitudinal study of typically developing children from ages newborn through 453

young adulthood conducted by Cincinnati Children’s Hospital Medical Center and 454

UCLA and supported by the National Institute of Child Health and Human 455

Development (Contract HHSN275200900018C). A listing of the participating sites and a 456

complete listing of the study investigators can be found at: 457

https://research.cchmc.org/c-mind. 458

6.1.3 The Developing Human Connectome Project (dHCP) 459

Led by King’s College London, Imperial College London and Oxford University, aims to 460

make major scientific progress by creating the first 4-dimensional connectome of early 461

life. 462

https://data.developingconnectome.org/ 463

6.1.4 ALBERTs 464

See [36] and [37] for details about segmentations. Copyright Imperial College of Science, 465

Technology and Medicine and Ioannis S. Gousias 2013. All rights reserved. 466

http://brain-development.org/brain-atlases/neonatal-brain-atlas-albert/ 467
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A Detailed calculations for optimizing anisotropic similarity

between two sets of paired points

A.1

Let R be a rotation matrix. Then, an associated unit quaternion q is defined such as if Rx = q ∗ x ∗ q̄. Thus:

C̃(q, S) =
∑
i

||y′i − q ∗ ξi ∗ q̄||2

=
∑
i

||y′i ∗ q − q ∗ ξi||2
(17)

A.2

If p is a vector, the associated quaternion is pure: p1 = 0 which implies that Qp and Pp are skew-symmetric.

Yet y′i and ξi are vectors, thus:

C̃(q, S) =
∑
i

||y′i ∗ q − q ∗ ξi||2

= qT

(∑
i

(Qy′i + Pξi)
T (Qy′i + Pξi)

)
q

= qT

(
−
∑
i

(Qy′i + Pξi)
2

)
q

(18)

A.3

If p is a vector, the associated quaternion is pure: p1 = 0 which implies that Qp and Pp are skew-symmetric

and Q2
p = P 2

p = −pT pI4.
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Yet y′i and ξi are vectors, thus:

C̃(q, S) = −qT
(∑

i

(Qy′i + Pξi)
2

)
q

= −qT
(∑

i

(Q2
y′i

+ 2Qy′iPξi + P 2
ξi)

)
q

= −qT
(∑

i

(−y′i
T
y′iI4 + 2Qy′iPξi − ξ

T
i ξiI4)

)
q

= −qT
(∑

i

(−y′i
T
y′iI4 + 2Qy′iPξi − x̃

T
i S

2x̃iI4)

)
q

(19)

Thus:

∂C̃

∂sj
= −qT

(∑
i

(2Qy′i
∂Pξi
∂sj

− 2x̃Ti sjEjj x̃i)

)
q

Ejj being the matrix with a 1 at the intersection of the jth row and the jth column and 0 elsewhere.

= −2qT

(∑
i

Qy′i
∂Pξi
∂sj

)
q + 2qT

(
sj
∑
i

x̃2ji

)
q

yet
∑
i

x̃2ji scalar and qT q = 1

= −qT
(∑

i

Qy′i
∂Pξi
∂sj

)
q + sj

∑
i

x̃2ji

∂C̃

∂sj
= 0⇔ ŝj =

1∑
i x̃

2
ji

qT

(∑
i

Qy′i
∂Pξi
∂sj

)
q

(20)

A.4

Qy′i
∂Pξi
∂s1

= x̃1i


y′1i 0 −y′3i y′2i
0 y′1i y′2i y′3i
−y′3i y′2i −y′1i 0
y′2i y′3i 0 −y′1i

 , Qy′i
∂Pξi
∂s2

= x̃2i


y′2i y′3i 0 −y′1i
y′3i −y′2i y′1i 0
0 y′1i y′2i y′3i
−y′1i 0 y′3i −y′2i


and Qy′i

∂Pξi
∂s3

= x̃3i


y′3i −y′2i y′1i 0
−y′2i −y′3i 0 y′1i
y′1i 0 −y′3i y′2i
0 y′1i y′2i y′3i


(21)
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