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Abstract 20 

A platform for highly parallel direct sequencing of native RNA strands was recently described by 21 

Oxford Nanopore Technologies (ONT); in order to assess overall performance in transcript-level 22 

investigations, the technology was applied for sequencing sets of synthetic transcripts as well as 23 

a yeast transcriptome. However, despite initial efforts it remains crucial to further investigate 24 

characteristics of ONT native RNA sequencing when applied to much more complex 25 

transcriptomes. Here we thus undertook extensive native RNA sequencing of polyA+ RNA from 26 

two human cell lines, and thereby analysed ~5.2 million aligned native RNA reads which 27 

consisted of a total of ~4.6 billion bases. To enable informative comparisons, we also performed 28 

relevant ONT direct cDNA- and Illumina-sequencing. We find that while native RNA sequencing 29 

does enable some of the anticipated advantages, key unexpected aspects hamper its 30 

performance, most notably the quite frequent inability to obtain full-length transcripts from single 31 

reads, as well as difficulties to unambiguously infer their true transcript of origin. While 32 

characterising issues that need to be addressed when investigating more complex 33 

transcriptomes, our study highlights that with some defined improvements, native RNA 34 

sequencing could be an important addition to the mammalian transcriptomics toolbox.   35 
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Introduction 36 

The extent and observed complexity of cellular mRNA splicing patterns appear to have 37 

generally expanded during the course of evolution 1, and in more advanced species, several 38 

subtly different mRNA transcript isoforms are likely to exist for most genes 2–4. Within a 39 

biological organism, the observed pattern of mRNA splicing for a given gene also frequently 40 

varies between tissues and cell types, and can even respond to external cues or changes to the 41 

environment 5. Thus, the ability to readily perform transcript-level functional investigations will 42 

almost certainly enrich our understanding of a number of important biological processes. To 43 

enable this to be accomplished in a reliable manner, methods that can unequivocally distinguish 44 

and quantify the presence of transcript isoforms from the raw sequence reads are required. 45 

 46 

Recently, long-read sequencing methodologies have been introduced into the transcriptomics 47 

field, offering the opportunity to directly generate individual reads that can span the full length of 48 

transcripts 6–12. This could, for example, ameliorate problems associated with earlier 49 

technologies' needs for DNA-mediated amplification and computational transcript assembly from 50 

short sequence reads 13,14. Notably, the newer long-read Oxford Nanopore Technologies (ONT) 51 

platform now also provides the ability to sequence native RNA strands directly 15. In their study, 52 

ONT described the efficient use of native RNA sequencing to yield reliable abundance 53 

estimates of full-length transcripts from a yeast polyA+ transcriptome as well as sets of 54 

standardized synthetic transcripts. However, larger transcriptome sizes, and in particular the 55 

much higher complexity of splicing patterns that can be observed in higher organisms, might 56 

potentially pose additional challenges during such transcript-level investigations.  57 

 58 

With the aim to characterize the gene- and transcript-level composition of complex 59 

transcriptomes, in this study, we applied ONT long-read native RNA-sequencing to samples 60 

from two human cell lines; HAP1 and HEK293. We also performed matched ONT direct (PCR-61 

free) cDNA sequencing as well as regular Illumina RNA-seq to enable relevant comparisons 62 

and assessments. For computational analysis, considering the lower accuracy of Nanopore 63 

sequencing, we primarily employed a reference-based approach, estimating abundances of a 64 

set of annotated transcript isoforms and genes. An additional motivation for this was that also in 65 

situations where a reference-free approach is used for transcript identification, reference-based 66 

methods are often useful for subsequent quantification of transcript abundances. We present 67 

our findings relating to differences between the performance of a variety of analysis algorithms, 68 
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and the potential advantages that current ONT direct RNA-seq brings over the traditional 69 

Illumina sequencing, as well as current limitations of the technology. 70 

Results 71 

Overall data characteristics 72 

We utilized three distinct ONT library preparation workflows in this study, all having in common 73 

that RNA or cDNA molecules are sequenced directly without PCR. For our initial efforts, during 74 

which direct cDNA sequencing kits were not available from ONT, we modified the regular ONT-75 

NSK007 2D PCR-based workflow in order to enable 1D direct cDNA sequencing (see Methods) 76 

(Fig. 1A). We also made use of the subsequently released ONT-DCS108 kit for direct cDNA 77 

sequencing, incorporating enrichment for full-length cDNAs (Fig. 1B). Most of the data 78 

presented in this study, however, was obtained using the ONT-RNA001 kit for native RNA 79 

sequencing (Fig. 1C). All ONT sequencing was performed using R9.4 flow cells, and the ONT 80 

Albacore package was used for basecalling. We noted concerns of previous studies reporting 81 

that filtering of reads during basecalling often results in a significant number of useful good-82 

quality reads being discarded 10. Indeed, in subsequent versions of available ONT Albacore 83 

basecalling packages, filtering was either turned off as default or offered as an option. As 84 

sequencing depth would likely be the key limiting factor influencing our downstream analyses, 85 

and reasoning that true low-quality reads would be filtered during the alignment step, we thus 86 

made use of the Albacore non-filtering option.   87 
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 88 

Figure 1. Overview of library preparation workflows used in this study. A. In the ONT-NSK007 cDNA 89 

library preparation method, polyA RNA is used as a template for first strand cDNA synthesis which is 90 

initiated from an oligodT primer. The NEB second strand cDNA synthesis module (E6111) is then used to 91 

generate double-stranded cDNAs; here random primers are used to initiate cDNA synthesis, the products 92 

of which are stitched together by DNA ligase. Note that since priming of second strand synthesis occurs 93 

randomly, as depicted here this may not always begin from the very end of the first strand template. 94 

Adaptor-motor complexes are then ligated to the double-stranded cDNA ends prior to direct sequencing 95 

(the motor is an enzyme which will feed the nucleic strand into the nanopore). Note that instances where 96 

the first strand overhang might be particularly long, as in the example depicted here, it is probably unlikely 97 

that the adaptor-motor complex will ligate efficiently to enable sequencing of the second strand, though 98 

the first strand will still be sequenced. B. To better enrich for full length cDNAs, the ONT-DCS108 direct 99 

cDNA sequencing kit, which leverages the template switching phenomenon 16, was used. When the first 100 

strand cDNA synthesis reaches the end on the RNA molecule, the reverse transcriptase will add a few 101 

non-template Cs to the end of the cDNA. A Strand Switching Primer (SSP) present in the reaction binds 102 

to these non-templated Cs, and the reverse transcriptase then switches template from the RNA to the 103 

SSP. The second cDNA strand, presuming its synthesis continues to the end of the first strand template, 104 

will also span the full length of the primary polyA RNA template. Following adaptor ligation, the double 105 

stranded cDNAs are then sequenced directly. C. The ONT-RNA001 workflow enables sequencing of 106 

native RNA strands. Here an oligodT-adaptor-motor complex is ligated to the polyA end of the RNA. In 107 

order to relax the secondary structure of the RNA (and thus help ensure efficient translocation of the RNA 108 

strand through the nanopore), a cDNA synthesis step is performed. Since only the RNA strand has a 109 

motor ligated, the RNA molecule but not the cDNA strand is always sequenced.  110 

 111 

 112 

The yield from the different ONT protocols varied between approximately 500,000 and 113 

1,500,000 unfiltered reads per sample (Supplementary Fig. 1A), and the read length 114 

distributions were overall similar among the libraries, with a peak close to 1,000 bases 115 

(Supplementary Fig. 1B). The distribution of average base qualities per read varied between the 116 
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different types of libraries (Supplementary Fig. 1C), with cDNA libraries as expected 8 showing 117 

higher base qualities than native RNA libraries. We also noticed an association between the 118 

read length and the average base quality, with both very short and very long reads often having 119 

lower quality (Supplementary Fig. 2). 120 

Genome and transcriptome alignment 121 

The ONT reads were aligned to the human reference genome and transcriptome using 122 

minimap2 (see Methods). The N50 values for the portion of a read aligned to the genome were 123 

907, 1,210, 1,043 and 941 bases for the ONT-NSK007-HAP, ONT-DCS108-HAP, ONT-124 

RNA001-HAP, and ONT-RNA001-HEK data sets, respectively (median aligned lengths for the 125 

respective data sets were 633, 765, 621 and 596 bases, and the longest aligned read parts 126 

were 75,756, 20,681, 12,839 and 14,692 bases in the four data sets). As we aligned unfiltered 127 

reads, the alignment rates across library types were unsurprisingly only modest, varying 128 

between 55 and 76% for the genome alignment, and from 45 to 73% for the transcriptome 129 

alignment (Fig. 2A). As expected, the unaligned reads were enriched for low base qualities 130 

(Supplementary Fig. 3A), and thus largely represented reads that would have been classified as 131 

‘failed’ during automatic filtering. In comparison, for the four matching Illumina libraries, STAR 132 

aligned between 89 and 94% of the reads uniquely to the genome, with an additional 2-2.5% of 133 

the reads aligning in multiple locations. The ONT-DCS108-HAP libraries showed the largest 134 

differences between the genome and transcriptome alignment rates (60-69% vs 45-51%), 135 

whereas the rates for the other data sets were more similar. It is possible that one explanation 136 

for the large difference in genomic and transcriptomic alignment rates for this data set could be 137 

a contamination with genomic DNA. In the ONT-DCS108-HAP libraries, compared to the set of 138 

all reads aligning to the genome, the reads aligning exclusively to the genome showed a slight 139 

enrichment for long reads with a lower average base quality but where a larger portion of the 140 

read aligned. This pattern, however, was not reproduced in the other data sets, where the reads 141 

aligning exclusively to the genome were rather shorter and showed a poorer agreement with the 142 

reference (Supplementary Fig. 3).  143 
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 144 

Figure 2. Characterization of aligned reads. A. Total number of reads and the number of reads with a 145 

primary alignment to the genome or transcriptome, respectively, in each of the ONT libraries. The number 146 

displayed in each bar represents the alignment rate in % (the fraction of the total number of reads for 147 

which minimap2 reports a primary alignment). B. Fraction of the reads with a primary alignment to the 148 

genome or transcriptome, respectively, that also have at least one reported secondary or supplementary 149 

alignment. The lighter shaded parts of the secondary transcriptome alignment bars correspond to reads 150 

where all primary and secondary alignments are to isoforms of the same gene, while the darker shaded 151 

parts correspond to reads with reported alignments to transcripts from different genes. C. Investigation of 152 

supplementary genome alignments. Each supplementary alignment is categorized based on whether it is 153 

on the same chromosome and strand as the primary alignment, and if the alignment positions of the 154 

primary and supplementary alignments overlap. 155 

 156 

Approximately 40% of the reads with a primary genome alignment could be mapped to multiple 157 

places in the genome, i.e., had also at least one reported secondary genome alignment (Fig. 158 

2B). For most libraries, a single secondary alignment was most common, while for the ONT-159 

DCS108-HAP libraries, a larger fraction of reads had more than five secondary genome 160 

alignments (Supplementary Fig. 4A). As expected, due to the high similarity among transcripts, 161 

the fraction of reads with at least one secondary alignment increased to approximately 80% for 162 
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the transcriptome alignment (Fig. 2B). Again, a small number of secondary alignments was 163 

most common (Supplementary Fig. 4B). The secondary alignment rate was only marginally 164 

affected by increasing the -p argument of minimap2, which sets the minimal accepted ratio 165 

between the alignment score of secondary and primary alignments, to 0.99 instead of the 166 

default 0.8 (Fig. 2B). For a majority of the reads, the target transcripts of all primary and 167 

secondary transcriptome alignments were isoforms of the same gene (Fig. 2B), suggesting that 168 

the main source of ambiguity is on the individual isoform level rather than on the gene level. 169 

Only a small part of the secondary alignments (typically less than 5% of the reads) arose due to 170 

the presence of multiple fully identical transcripts in the Ensembl reference catalog; in all 171 

remaining cases there was at least some difference between the target transcripts of the 172 

reported primary and secondary alignments. ‘Unavoidable’ secondary alignments may also be 173 

the result of reads stemming from reference transcripts that are proper subsequences of other 174 

reference transcripts. Among the 1,044,960 possible pairs of reference transcripts annotated to 175 

the same gene in our annotation catalog, there are 64,437 such pairs (6.2%). In these 176 

situations, in theory, a read could still be considered ‘unambiguously assignable’ to the shorter 177 

transcript if it is similar enough, under the assumption that all ONT reads represent full-length 178 

transcripts. Without this strong assumption, effective automated disambiguation would require a 179 

reliable model of the read generation process, accounting for the probability of fragmentation of 180 

RNA or cDNA molecules in the library preparation step and/or read truncation during the 181 

sequencing-basecalling process. To investigate to what extent the secondary alignments in our 182 

libraries could be the result of nested sets of reference transcripts, we extracted all reads with at 183 

least one secondary transcriptome alignment, and among all primary and secondary 184 

alignments, we selected the one for which the covered portion of the target transcript by the 185 

read was highest. If the secondary alignments are the result of the true transcript of origin being 186 

contained in the other target transcripts, we expect this maximally covered portion to be close to 187 

1. Interestingly, for all the data sets except ONT-NSK007-HAP, while there is a clear peak close 188 

to 1, there is also a broad distribution of lower coverage degrees (Supplementary Fig. 5). The 189 

large number of secondary transcriptome alignments with alignment scores similar to the 190 

reported primary alignment suggests that, despite the long read length, unambiguously inferring 191 

the true transcript of origin for any given read is still highly non-trivial, and simply selecting the 192 

reported primary alignment for downstream analysis can give misleading results.  193 

 194 

While secondary alignments represent possible mapping positions of a read beyond the one 195 

reported in the primary alignment, supplementary alignments arise when a read cannot be 196 
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mapped in a contiguous fashion, and consequently minimap2 splits the alignment into multiple 197 

parts. We observed a comparatively large number of supplementary alignments in the ONT-198 

DCS108-HAP data set, both for genome and transcriptome alignments (Fig. 2B). Further 199 

investigation revealed that in this data set, as well as in ONT-NSK007-HAP, a relatively large 200 

fraction of the supplementary alignments overlapped the corresponding primary alignment, but 201 

on the opposite strand (Fig. 2C). This observation is interesting, as we note that the ONT ‘1D2’ 202 

sequencing mode (https://nanoporetech.com/) exploits the observation that the second strand 203 

(which also has a motor enzyme attached) of a double-stranded DNA molecule often enters the 204 

sequencing nanopore immediately following the first strand during 1D sequencing. 1D2 
205 

sequencing chemistry is designed to further promote this observed phenomenon, and the 206 

associated 1D2 base-caller is specifically designed to efficiently split reads according to each 207 

strand sequenced. Thus our findings of frequent overlapping supplementary alignments on 208 

opposite strands may reflect un-split reads by the standard 1D basecaller. Accordingly, this type 209 

of self-chimeric supplementary alignments were almost completely absent in the native RNA 210 

samples where single strands, as opposed to double-stranded cDNAs, are present in libraries. 211 

For the ONT-NSK007-HAP libraries, where often only one of the strands of the double-stranded 212 

cDNAs will have a motor enzyme attached (Fig. 1), the relative frequency of this type of 213 

supplementary alignments was somewhat lower than in the ONT-DCS108-HAP libraries (in 214 

addition to the total rate of supplementary alignments begin considerably lower), adding further 215 

support to this speculated cause.  216 

 217 

A peak of short low-quality unfiltered reads was consistently observed in the native RNA 218 

libraries (Supplementary Fig. 1B), and the majority of these did not align adequately to either the 219 

genome or the transcriptome (Supplementary Fig. 3A-B). More generally, for aligned reads, in 220 

particular those shorter than 10,000 bases, most of the individual bases could be matched to a 221 

position in the reference sequence, indicated by a large fraction of “M”s and consequently a low 222 

fraction of insertions, deletions and soft-clipped bases in the CIGAR string (Fig. 3, 223 

Supplementary Fig. 3C-D). Reads longer than 10,000 bases, which were mostly found in the 224 

cDNA libraries, typically did not align end-to-end (Fig. 3). For the ONT-DCS108-HAP libraries, a 225 

large fraction of the bases in the primary alignments were soft-clipped, corresponding to the 226 

large number of supplementary alignments discussed above.  227 
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 228 

Figure 3. Total read length (x) vs aligned length (y, the sum of the number of “M” and “I” characters in the 229 

CIGAR string) for the primary genome alignment of each read, in each of the ONT libraries. The colour 230 

indicates point density. 231 

 232 

Incorporating the genomic coordinates of the annotated genes, we observed differences in the 233 

gene body read coverage distribution between the libraries (Supplementary Fig. 6), with a 234 

stronger 3’ coverage bias in the cDNA libraries than in the native RNA libraries. While given the 235 

nature of the library preparation this was expected for the NSK007 cDNA libraries, it is also 236 

quite possible that the template switching mechanism does not work to full efficiency in the 237 

DCS108 cDNA protocol.  238 

Coverage of full-length transcripts by individual ONT reads 239 

To investigate to what extent individual ONT reads could be expected to represent full-length 240 

transcripts, we selected the “best” target transcript for each read, starting from the set of all 241 

primary and secondary transcriptome alignments obtained with minimap2, with -p set to 0.99. 242 

For each read, we kept all alignments for which the number of aligned nucleotides was at least 243 

90% of the maximal such number across all alignments for the read, and among these, we 244 

selected the one with the largest transcript coverage degree (number of “M” and “D” characters 245 
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in the CIGAR string of the alignment, divided by the annotated transcript length). While this 246 

alignment does not necessarily represent the "true" origin of the read, the procedure gives an 247 

upper bound of the degree of transcript coverage achieved by individual reads. As expected 248 

from the ONT-NSK007-HAP library preparation, which does not involve full-length cDNA 249 

enrichment (Fig. 1), reads from this sample achieved a lower degree of full-length transcript 250 

coverage across the range of transcript lengths (Fig. 4A). While shorter transcripts could often 251 

be completely covered by a single read in the ONT-RNA001-HAP, ONT-RNA001-HEK and 252 

ONT-DCS108-HAP libraries, this was rarely the case for long transcripts (Fig. 4A, 253 

Supplementary Figure 7). This observation, that many of the raw ONT reads do not appear to 254 

represent full-length transcripts, needs to be taken into account during transcript identification 255 

and quantification. Applying the same procedure to the SIRV and ERCC data sets from Garalde 256 

et al. 15 revealed that a majority of these synthetic transcripts were well covered by single reads 257 

(Fig. 4B-C), confirming observations from previous studies 9,15; importantly, however, all 258 

transcripts in the SIRV and ERCC catalogs are shorter than 2,500 bases. In the Ensembl 259 

GRCh38.90 catalog, approximately 17% of the transcripts are longer than that, and the 260 

coverage degree of these transcripts by single reads were generally less than 50%. This 261 

suggests that while the synthetic transcript catalogs provide useful information about the 262 

performance of long-read transcriptome sequencing and analysis methods, extrapolation of the 263 

results to real, complex transcriptomes should be done with care.  264 
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 265 

Figure 4. Transcript coverage fraction by individual reads. A. Distribution of coverage fractions of 266 

transcripts by individual reads, for each of the four ONT data sets, stratified by the length of the target 267 

transcript. The 'target transcript' was selected to maximize the coverage fraction, among all reported long 268 

enough alignments (see text), and thus the reported coverage fractions represent upper bounds of the 269 

true ones. The number above each violin indicates the number of processed alignments to transcripts in 270 

the corresponding length category. B-C. Distribution of coverage fractions of transcripts by individual 271 

reads for the SIRV and ERCC data sets. D. Observed distribution of raw read lengths (for ONT data sets) 272 

and expected distribution of transcript molecule lengths based on annotated transcript lengths and 273 

estimated abundances in the Illumina samples. Values are aggregated across all samples within each 274 

data set. 275 

 276 

To further investigate the degree to which individual ONT reads are likely to represent full-length 277 

transcripts, we compared the observed raw ONT read length distribution with the ‘expected’ 278 

transcript length distribution in these samples, obtained by weighting the annotated transcript 279 

lengths by the estimated transcript abundances (in transcripts per million - TPM) estimated by 280 

Salmon in the Illumina samples. This analysis showed an apparent shortage of ONT reads in 281 

the length range of the longest transcripts inferred to be expressed in the Illumina data (Fig. 282 

4D). The ONT-DCS108-HAP samples were the exception; however, for many of the reads in 283 

these libraries, the primary alignment does not cover the entire read (Fig. 3). This holds true 284 

both for reads with a supplementary alignment and for those without one (Supplementary Fig. 285 
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8A-C). Further inspection of the longer annotated transcripts with high estimated abundances in 286 

the Illumina samples revealed consistent base pair coverage by Illumina reads along the length 287 

of these transcripts (Supplementary Fig. 8D), indicating that these were indeed likely to be truly 288 

present in samples. Moreover, these transcripts were from ‘standard’ genes in that the vast 289 

majority of the long transcripts with high estimated abundance in the Illumina samples were 290 

annotated as protein coding, and they were found on almost all chromosomes. Overall, such 291 

observations further illustrate that using current library preparation and sequencing workflows, 292 

long transcripts are often not represented by single ONT reads.  293 

Reference-based transcript detection and abundance quantification 294 

Four reference-based methods were used to estimate transcript and gene abundances in each 295 

of the ONT libraries. For two of these methods, we specifically evaluated the impact of data 296 

preprocessing: for minimap2 followed by Salmon in alignment-based mode (denoted 297 

salmonminimap2), we investigated the effect of setting the -p argument of minimap2 to different 298 

values (the default of 0.8 as well as 0.99) in the transcriptome alignment step, and for Salmon in 299 

quasi-mapping mode, we evaluated the effect of providing only the aligned bases of the reads 300 

with a primary alignment anywhere in the genome (see Methods). Increasing -p to 0.99 led to a 301 

slightly improved correlation between ONT transcript read counts and estimated transcript 302 

abundances from the Illumina samples (obtained by Salmon in quasi-mapping mode), and thus, 303 

in the following analyses, we set -p equal to 0.99 for Salmon following minimap2 304 

(Supplementary Fig. 9). Removing the non-aligned bases before running Salmon did not 305 

improve the correlations notably (Supplementary Fig. 9). Since this is a more involved 306 

procedure, and further introduces a dependency on the genome alignments, we use the Salmon 307 

quantifications obtained using the original, non-truncated reads for the rest of the analyses.  308 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/574525doi: bioRxiv preprint 

https://doi.org/10.1101/574525
http://creativecommons.org/licenses/by/4.0/


13 

 309 

Figure 5. Detection of annotated transcripts and genes. A-B. Number of detected transcripts and genes 310 

with the applied abundance estimation methods, in each library. Here, a feature is considered detected if 311 
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the estimated read count is ≥1. C. Fraction of transcripts detected (with estimated count ≥1) in at least 312 

one sample, stratified by transcript length, in the respective data sets. D-E. Saturation of transcript and 313 

gene detection, in ONT and Illumina libraries. For each library, we subsampled the reads and recorded 314 

the number of transcripts and genes detected with an estimated salmonminimap2 count (ONT libraries) or 315 

Salmon count (Illumina libraries) ≥1. The Illumina curves are truncated to the range of read numbers 316 

observed in the ONT libraries. 317 

 318 

We observed a large difference between the numbers of reads that were assigned to features 319 

by the different quantification methods (Supplementary Fig. 10). The highest assignment rates 320 

were consistently obtained with salmonminimap2, where all reads that were aligned to the 321 

transcriptome were also subsequently assigned to features. featureCounts assigned a slightly 322 

lower fraction of the reads to genes, while Salmon in quasi-mapping mode and Wub assigned 323 

considerably fewer reads. However, the relatively low number of reads assigned by Salmon in 324 

quasi-mapping mode were distributed across as many, sometimes more, genes and transcripts 325 

as the reads assigned by salmonminimap2 (Fig. 5A-B), suggesting that no category of genes or 326 

transcripts was consistently missed. In general, the transcript-level detection rate increased with 327 

transcript length, both for ONT and Illumina libraries (Fig. 5C). Counting the number of 328 

"detected" transcripts and genes, defined as the number of features with an expected read 329 

count of at least 1 with salmonminimap2 (ONT) or Salmon (Illumina), at various degrees of 330 

subsampling (Fig. 5D-E) suggested that the current sequencing depth of approximately 0.5 331 

million mapped ONT reads per library was not enough to detect all expressed genes or 332 

transcripts. Furthermore, the number of observed genes were similar to the number observed in 333 

the Illumina libraries if these were subsampled to comparable sequencing depths. With the aim 334 

of investigating whether there are systematic ‘blind spots’ in the detection of features in the ONT 335 

data (in which case we expect the same set of transcripts to be detected in all libraries) or if the 336 

lack of saturation is purely a result of undersampling (in which case we would expect differences 337 

in the set of detected transcripts across libraries), we compared the saturation curves obtained 338 

from individual samples to that obtained by first pooling the reads across all replicates within a 339 

data set, and subsequently sampling from this pool (Supplementary Fig. 11). On the transcript 340 

level, pooling the samples improved the degree of saturation for a given number of reads, while 341 

no improvement could be seen on the gene level.  342 

 343 

Next, we calculated the correlation between abundance estimates among replicates of the HAP 344 

cell line, within and between data sets. As expected, the correlation between replicates was 345 
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higher on the gene level than on the transcript level, and higher within a data set than between 346 

data sets (Supplementary Fig. 12). On the gene level, correlation between replicates was 347 

almost as high in the ONT data as in the Illumina data, for all quantification methods, while for 348 

transcript-level abundances, higher correlations were observed in the Illumina data. Overall, 349 

Wub showed the highest correlation of abundance estimates between replicates in the ONT 350 

data sets. Notably, correlations between cDNA and native RNA samples were as high as those 351 

among samples obtained with different cDNA protocols. 352 

 353 

Comparing the abundance estimates obtained for the same library with different quantification 354 

methods showed that, perhaps unsurprisingly, Salmon in quasi-mapping mode and 355 

salmonminimap2 had the highest correlation (Supplementary Fig. 13). Stratifying transcripts and 356 

genes by the annotated biotype suggested that certain biotypes (in particular, short transcripts 357 

such as miRNAs) were consistently assigned very low abundances with ONT, while they were 358 

observed in the Illumina libraries (Supplementary Fig. 14).  359 

Transcript identifiability 360 

Next, we focused on specific transcriptomic features that are useful for discriminating similar 361 

isoforms. First, we extracted the junctions observed after aligning the ONT reads to the 362 

genome. The majority of the junctions that were covered by at least 5 ONT reads were already 363 

annotated in the reference transcriptome, while this was more rarely the case for lowly-covered 364 

junctions (Fig. 6A-B). Junctions that were observed in the ONT reads but did not correspond to 365 

annotated junctions were less likely than those already annotated to be observed in the Illumina 366 

data, and also less likely to harbor a canonical splice junction motif (GT-AG) (Supplementary 367 

Fig. 15). Not surprisingly, individual ONT reads generally spanned more junctions than Illumina 368 

reads (Supplementary Fig. 16), which should provide improved ability of correct transcript 369 

identification. 370 
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 371 

Figure 6. A-B. Annotation status of junctions observed in each ONT and Illumina library. A junction is 372 

considered observed if it is supported by at least 1 (A) or 5 (B) reads. For each observed junction, the 373 

distance to each annotated junction was defined as the absolute difference between the start positions 374 

plus the absolute difference between the end positions. This distance was used to find the closest 375 

annotated junction. C. Distribution of the number of transcripts contained in the Salmon equivalence class 376 

that a read is assigned to, across all reads, for each ONT and Illumina library. D. As C, but zoomed in to 377 

the range [0, 15]. The black diamond shape indicates the mean. 378 

 379 

In order to further investigate if the longer length of ONT reads compared to Illumina reads in 380 

fact improved their unambiguous assignment to specific transcripts, we tabulated the number of 381 

transcripts included in the equivalence class that each read was assigned to when running 382 

Salmon in quasi-mapping mode. A read being assigned to a large equivalence class indicates 383 
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that the read sequence is compatible with many annotated transcripts, and consequently that 384 

unambiguous assignment is difficult. While fewer ONT reads were assigned to equivalence 385 

classes with a very large number of transcripts compared to the Illumina counterparts, the 386 

average number of transcripts in the equivalence class, across all reads, was almost identical 387 

for the ONT and Illumina libraries (Fig. 6C-D). To investigate to what extent this was an effect of 388 

the high redundancy among the annotated transcripts, we ran Salmon with the same index, but 389 

using the annotated transcript catalog as a proxy for error-free, full-length ‘reads’. In this case, 390 

87% of the reads were assigned to equivalence classes containing a single transcript. This 391 

illustrates both that even in this idealized situation, not all reads would be unambiguously 392 

assignable to a single annotated transcript, due to redundancies in the annotation catalog, and 393 

that for our ONT reads, the ambiguity is still considerably higher than in the ideal situation. 394 

Together with the large number of secondary transcriptome alignments observed above, this 395 

illustrates the challenging nature of reference-based transcript identification based on ONT 396 

reads. Furthermore, the read generation model used by Salmon is adapted to Illumina reads, 397 

and thus is likely suboptimal for inferring transcript abundances from ONT reads.  398 

Reference-free transcript identification 399 

In addition to the reference-based transcript identification and quantification discussed above, 400 

we generated a set of high-confidence consensus transcripts for each ONT data set using 401 

FLAIR (https://github.com/BrooksLabUCSC/flair). For this analysis, only reads with a 5’ end 402 

close to a known promoter region were considered, and only transcript sequences supported by 403 

at least 3 ONT reads were retained. The identified transcripts from FLAIR were compared to the 404 

annotated reference transcriptome using gffcompare 405 

(https://ccb.jhu.edu/software/stringtie/gffcompare.shtml). This comparison identified the most 406 

similar reference transcript for each FLAIR transcript that showed at least some overlap with the 407 

reference transcriptome, and further assigned a class code describing the type of relationship to 408 

this most similar reference transcript (see https://ccb.jhu.edu/software/stringtie/gffcompare.shtml 409 

for a description of all class codes). Interestingly, only a relatively low fraction of the identified 410 

transcripts in each data set contained a junction chain that was identical to that of an annotated 411 

transcript (Fig. 7A, class code ‘=’), while a larger fraction of the identified transcripts contained a 412 

junction chain that was consistent with an annotated transcript, but only contained a subset of 413 

the junctions. This corroborates the previous observations that many ONT reads may not 414 

represent full-length transcript sequences. There is a marked difference compared to the set of 415 

transcripts assembled with StringTie from the Illumina samples, a larger fraction of which 416 
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contain a complete intron chain match with an annotated transcript. There is also a larger 417 

fraction of Illumina-derived transcripts that do not overlap known transcripts (Fig. 7A, class code 418 

‘u’). FLAIR transcripts with a junction chain perfectly matching an annotated transcript (class 419 

code ‘=’) spanned a range of lengths and number of junctions (Fig. 7B-C), suggesting that 420 

transcript identification is not limited to, e.g., short isoforms. Overall, the set of transcripts 421 

assembled by StringTie from the Illumina data were more often multi-exonic than those from the 422 

ONT libraries, and also spanned a broader range of transcript lengths. A random selection of 423 

FLAIR transcript sequences (from the ONT-RNA001-HAP library) corresponding to annotated 424 

transcripts are shown in Supplementary Fig. 17, to illustrate the variety of transcripts that could 425 

be identified.  426 
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 427 

Figure 7. Characterization of transcripts identified by FLAIR. A. Class code distribution for de novo 428 

identified transcripts from FLAIR (for ONT libraries) or StringTie (for Illumina libraries), compared to the 429 

set of annotated transcripts using gffcompare. The number above each bar represents the number of 430 

assembled transcripts. The class code for a transcript indicates its relation to the closest annotated 431 

transcript. B. Number of exons in each transcript identified by FLAIR/StringTie, stratified by the relation to 432 

the annotated transcripts (represented by the assigned class code). C. Length distribution of transcripts 433 

identified by FLAIR/StringTie, stratified by the relation to the annotated transcripts (represented by the 434 

assigned class code). 435 

 436 

Comparing the set of annotated reference transcripts that could be identified by at least one 437 

FLAIR transcript (class code ‘=’ or ‘c’) in the respective ONT data sets showed that a large 438 

fraction of these transcripts were only identified in a single data set (Fig. 8A). In addition, 439 
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reference transcripts identified by the native RNA-sequencing protocol in the two different cell 440 

lines showed a higher degree of similarity to each other than to those identified with the cDNA 441 

protocols in the HAP cell line, suggesting that transcript identification can be strongly affected by 442 

the library preparation protocol. Of note, the native RNA protocols provide information about the 443 

strandedness of the reads, which is not the case for the cDNA protocols employed here. 444 

Reference transcripts with junction chains corresponding to at least one FLAIR transcript 445 

generally showed a higher expression level in the Illumina samples than the reference 446 

transcripts that were not identified in any ONT data set (Fig. 8B), suggesting that one possible 447 

explanation for the discrepancy between the transcripts identified in the different ONT data sets 448 

could be the limited sequencing depth, and that a larger number of ONT reads may be 449 

necessary to identify a stable set of expressed transcripts.  450 

 451 

Figure 8. Comparison of annotated transcripts identified by FLAIR in the four ONT data sets. A. UpSet 452 

plot representing overlaps between the annotated transcripts that are identified by FLAIR in the different 453 

ONT data sets. An annotated transcript is considered to be identified if at least one FLAIR transcript is 454 

assigned to it with a class code of either '=' or 'c'. These sets of annotated transcripts are then compared 455 

between data sets. Horizontal bars indicate the total number of identified annotated transcripts in the 456 

respective data sets, and vertical bars represent the size of each intersection of one or more sets of 457 

identified transcripts. B. Average abundance across the Illumina samples, for annotated transcripts that 458 

are considered 'identified' or not by FLAIR. An annotated transcript is considered to be identified if at least 459 

one FLAIR transcript from at least one data set is assigned to it with a class code of either '=' or 'c'. 460 

 461 
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Discussion 462 

We have performed a detailed evaluation of reads from Nanopore native RNA sequencing as 463 

well as complementary direct cDNA sequencing, from the perspective of transcript identification 464 

and quantification. The libraries were prepared from human cell lines, which adds a level of 465 

complexity compared to many previous studies focusing on either less complex model 466 

organisms or synthetic transcripts. In addition, matched Illumina data was generated for 467 

comparison.  468 

 469 

We observed that despite the fact that ONT reads are around an order of magnitude longer than 470 

typical Illumina reads, identification of their transcript of origin is still highly nontrivial, and a large 471 

number of secondary transcriptome alignments with mapping scores very close to the primary 472 

alignments were observed for all libraries. This suggests that quantification methods that focus 473 

exclusively on the reported primary alignment are likely to be suboptimal, and can be highly 474 

biased depending on how the primary alignment is selected among a set of equally-good 475 

mappings. We expect that reference-based transcript abundance estimation methods that are 476 

able to incorporate information about these multi-mapping reads are more likely to produce 477 

reliable abundance estimates; however, to our knowledge no ONT-specific such method, with a 478 

read generation model adapted to the ONT library generation, currently exists.  479 

 480 

De novo as well as reference-based identification of transcripts suggested that a considerable 481 

number of the raw ONT reads are likely to not represent full-length reference transcripts. This 482 

can have implications for transcript identification and quantification. For example, it is difficult to 483 

determine whether a truly truncated version of a reference transcript is present in a sample, or if 484 

the reads rather are fragments of a longer transcript molecule. In addition, by attempting to 485 

mitigate this issue, e.g. by filtering the ONT reads to only retain those that overlap a known 486 

promoter region, the quantitative nature of the data, as well as the number of usable reads, may 487 

be reduced. While our manuscript was in preparation for submission, a preprint authored by 488 

Workman and colleagues 17 was published that highlighted some of key benefits of Nanopore 489 

native RNA sequencing, but also indeed reported the very frequent presence of truncated 490 

Nanopore reads in native RNA libraries. They were also able to estimate that a significant 491 

proportion of transcripts may be truncated by nanopore signal noise, caused for example by 492 

electrical signals associated with motor enzyme stalls or by otherwise stray current spikes of 493 

unknown origin. These surprising findings are supported by our observations that single native 494 
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RNA reads frequently fail to cover the full length of transcripts. We also agree that nanopore 495 

native RNA read truncation is unlikely due to some fundamental limitation of nanopore-based 496 

sequencing, especially considering that ONT 1D genomic DNA sequence reads of several 497 

kilobases are consistently achieved without issue using the current pore-type 18–20 used to 498 

sequence both DNA and RNA. Further, such problems could conceivably be addressed, to at 499 

least some extent, by training basecallers to reliably recognize relevant nanopore signal noise 500 

events which might cause single molecule sequence reads to be truncated or split.  501 

 502 

An inability to read approximately 10-15 nucleotides at the 5′ end of each strand, and relatively 503 

higher error rates, were identified as the two principal drawbacks of Nanopore native RNA 504 

sequencing by the Workman et al study, although these are potentially readily addressable 17. 505 

Here we highlight that the sequencing depths achieved from native RNA libraries, typically 506 

~0.5M aligned reads per flow cell, are likely not enough to saturate transcript detection, either 507 

using reference-based or de novo approaches. Further, our attempts at relevant differential 508 

expression analyses from native RNA sequencing data during a parallel study suffered from low 509 

power and high variability (data not shown), most likely due to the limited coverage within each 510 

library replicate. Improving throughput (the amount of sequence rendered per unit cost and unit 511 

time) is a critical issue: if ONT sequencing throughput remains low, uptake and thus impact 512 

within the transcriptomics field will likely remain limited, even given its distinguished benefits. 513 

Although protein-pore sequencing can be scaled to considerably higher levels (i.e. either on the 514 

ONT GridION or PromethION instruments), the associated consumable nanopore array costs 515 

remain high. Thus, native RNA-seq throughput characteristics that are deemed acceptable by 516 

the transcriptomics community at large will likely require a highly-optimized RNA motor enzyme, 517 

or ultimately a shift to a lower cost nanopore array type. When characterization of complex 518 

transcriptomes at transcript-level comprises the project remit, our study here describes that 519 

Nanopore direct RNA-seq remains a roundly promising but fledgling analysis tool. 520 

Methods 521 

Cell lines and culture 522 

HEK293 cells (ATCC) were cultured in Dulbecco’s Modified Eagles Medium (DMEM) 523 

supplemented with 10% FBS and penicillin/streptomycin. HAP1 cells (Horizon Discovery) were 524 

grown in Iscove’s Modified Dulbecco’s Medium (IMDM) supplemented with 10% FBS and 525 
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penicillin/streptomycin. All cultures were maintained at a temperature of 37oC in a humidified 526 

incubator with 5% CO2. When required, exponentially growing cells were harvested by washing 527 

in Phosphate Buffered Saline (PBS) and then incubating with Trypsin-EDTA, followed by further 528 

washing of pelleted cells in PBS. 529 

Library preparation and sequencing 530 

For the Nanopore libraries, total RNA was extracted from cell pellets using Trizol, and the 531 

polyA+ fraction isolated using oligodT dynabeads (Invitrogen). The ONT kits NSK007, DCS108, 532 

and RNA001 were then used for PCR-free 1D library preparations. For RNA001, 500ng of input 533 

polyA+ RNA was used per sample and the libraries were made following ONT instructions. For 534 

DCS108, 100ng of input polyA+ RNA was used per sample and the libraries were prepared 535 

according to ONT instructions. For NSK007, 100 ng of input polyA+ RNA was used per sample 536 

and libraries were made according to ONT instructions, except that the hairpin adaptor (HPA) 537 

ligation and PCR steps were omitted as described previously 18, in order to enable 1D and direct 538 

cDNA sequencing respectively. The prepared libraries were sequenced on the MinION using 539 

R9.4 flow cells with the relevant MinKNOW script to generate fast5 files. All generated fast5 540 

reads were then basecalled in Albacore (version 1.2 for NSK007 libraries and version 2.1 for 541 

DCS108 and RNA001 libraries) using the relevant script to yield fastq files. As Albacore only 542 

contained a 2D script for NSK007 basecalling, only the generated NSK007 fastq ‘raw’ reads (i.e. 543 

complement and template) were taken forward for analysis, while any attempted ‘consensus’ 544 

reads present were discarded. 545 

 546 

For the Illumina samples, all libraries were made using the Illumina TruSeq stranded mRNA kit. 547 

The mRNA libraries were prepared from 500 ng of Trizol-extracted total RNA using the Illumina 548 

TruSeq® Stranded mRNA Sample Preparation Kit with 15 PCR cycles applied. Libraries were 549 

quantified and quality checked using qPCR with Illumina adapter specific primers and Agilent 550 

2200 TapeStation, respectively. Diluted indexed mRNA-seq (10nM) libraries were pooled, used 551 

for cluster generation (Illumina TruSeq PE Cluster Kit v4-cBot-HS) and sequenced [Illumina 552 

HiSeq 4000, Illumina TruSeq SBS Kit v4-HS reagents, paired-end approach (2x150bp) with 40-553 

55 million reads per sample]. 554 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/574525doi: bioRxiv preprint 

https://doi.org/10.1101/574525
http://creativecommons.org/licenses/by/4.0/


24 

Genome and transcriptome alignment 555 

ONT reads were aligned to the human genome (Ensembl primary assembly GRCh38) and 556 

transcriptome (combined cDNA and ncRNA reference fasta files from Ensembl GRCh38.90) 557 

using minimap2 v2.12 21. The genome alignments were performed with the arguments -ax 558 

splice -N 10, to allow spliced alignments and up to 10 secondary alignments per read. 559 

Alignment files from minimap2 were converted to bam format, sorted and indexed using 560 

samtools v1.6 22. The Bioconductor package GenomicAlignments (v1.32.0) 23 was used to 561 

extract junctions from the alignments. For each observed junction, we calculated the distance 562 

(the absolute difference between the start positions plus the absolute difference between the 563 

end positions) to the closest annotated junction. For the transcriptome alignment, we used the 564 

arguments -ax map-ont -N 100 to allow more secondary alignments, given the high 565 

similarity among transcript isoforms. The minimap2 -p argument, representing the minimal ratio 566 

of the secondary to primary alignment score that is allowed in order to report the secondary 567 

mapping, has a default value of 0.8. For transcriptome alignment, we investigated the effect of 568 

increasing this value in order to restrict the number of reported “suboptimal” secondary 569 

alignments. To evaluate the alignments, we recorded the alignment rates, defined as the 570 

fraction of reads with a reported primary alignment, as well as the aligned fraction of each read, 571 

which we defined as the sum of the number of “M”and “I” characters in the CIGAR string, 572 

divided by the full length of the read. For some reads, minimap2 also reported supplementary 573 

alignments. For each supplementary genome alignment, we compared the alignment position to 574 

that of the corresponding primary alignment, and recorded whether these were on the same or 575 

different chromosome and/or strand, and whether the primary and supplementary alignments 576 

overlapped each other. Finally, we generated reduced FASTQ files by retaining only reads with 577 

a primary alignment to the genome, and for each such read, we removed all bases that were 578 

(soft-)clipped in the primary alignment. The resulting bam files were converted to FASTQ format 579 

using bedtools bamtofastq v2.27.0 24, and the reads were subsequently shuffled using bbmap 580 

v38.02 (https://sourceforge.net/projects/bbmap/). RSeQC v2.6.5 25 was used to examine the 581 

coverage profile along gene bodies for each library, based on the GENCODE basic v24 bed file 582 

downloaded from https://sourceforge.net/projects/rseqc/files/BED/Human_Homo_sapiens/ on 583 

October 23, 2018. 584 
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Gene and transcript abundance estimation 585 

Four different computational methods were used to estimate transcript and gene abundances 586 

for the ONT libraries. First, we applied Salmon v0.11.0 26 in quasi-mapping mode, with an index 587 

generated from the combined Ensembl cDNA and ncRNA reference fasta files and using the 588 

default k value of 31 (denoted salmon31 below). For comparability across pipelines, we 589 

retained any duplicate transcripts in the index generation. The mean and maximal fragment 590 

lengths were set to 600 and 230,000, respectively, and the flag --dumpEq was set to retain 591 

equivalence class information. Salmon was also run in quasi-mapping mode on the modified 592 

FASTQ files, containing only the aligned part of the primary alignments as described above. 593 

Second, we applied Salmon in alignment-based mode to the output bam files from the 594 

minimap2 transcriptome alignment, using the flag --noErrorModel to disable the default 595 

short-read error model of Salmon in the quantification (denoted salmonminimap2). Third, we 596 

applied the bam_count_reads.py script from the Wub package 597 

(https://github.com/nanoporetech/wub) to the output files from the transcriptome alignment, 598 

setting the minimal mapping quality (-a argument) to 5 (denoted wubminimap2). Finally, we 599 

applied featureCounts (from subread v1.6.0) 27,28 to the primary genome alignments, requiring a 600 

minimum overlap of 10 bases and using the -L argument to enable the long-read mode 601 

(denoted fCminimap2primary). While the Salmon variants and Wub provided transcript-level 602 

abundance estimates, which were also aggregated to the gene level, featureCounts provided 603 

only gene-level counts and was therefore not considered for transcript quantification.  604 

De novo transcript identification 605 

In addition to the reference-based quantification described above, we also performed reference-606 

free, de novo transcript identification using FLAIR (obtained from 607 

https://github.com/BrooksLabUCSC/flair on December 16, 2018), applied to the combined 608 

primary genome alignments from all libraries in each ONT data set. The minimap2 bam files 609 

were converted to bed format using the bam2bed12.py script provided with FLAIR, and 610 

identified junctions were subsequently corrected by comparison to the reference annotation, 611 

using the default window size of 10. Next, the corrected reads were collapsed using FLAIR, 612 

requiring that the 5’ end of the read falls close to a promoter and retaining only transcripts 613 

represented by at least 3 reads. The promoter bed file was obtained by combining active, weak 614 

and poised promoters identified in nine cell lines by the ENCODE consortium (obtained from 615 

https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHmm and lifted over to 616 
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hg38 coordinates using the UCSC Genome Browser liftOver tool) The identified transcripts from 617 

each data set were compared to the annotated transcripts using gffcompare 618 

(https://ccb.jhu.edu/software/stringtie/gffcompare.shtml), whereby each FLAIR transcript was 619 

assigned a class code, detailing the way in which it is related to the most similar reference 620 

transcript.  621 

Processing of Illumina libraries 622 

Sequencing adapters were removed from the Illumina libraries with TrimGalore! v0.4.4 623 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/, using cutadapt v1.13 29), with 624 

quality and length cutoffs both set to 20, and aligned to the Ensembl GRCh38.90 primary 625 

genome assembly using STAR v2.5.1b 30. Abundances of annotated transcripts were estimated 626 

using two different methods: first, with StringTie v1.3.3b 31 using reads aligned with HISAT2 627 

v2.1.0 32 (with the --dta flag set and using a known splice site file), and second, with Salmon in 628 

quasi-mapping mode, using the same index as for the ONT libraries, and including adjustments 629 

for GC content and sequence bias. Abundances were read into R using tximport (v1.8.0) 33. In 630 

addition, we used StringTie to assemble new transcripts (without the -e flag, provided with the 631 

reference gtf file) for comparison with the transcripts identified by FLAIR from the ONT libraries. 632 

For this analysis, we merged the HISAT2 bam files from all four Illumina samples to use as the 633 

input for StringTie. We used the default coverage cutoff of 2.5 to determine which assembled 634 

transcripts to retain in the output file. 635 

Public data 636 

In addition to the ONT and Illumina data generated in-house, we processed the SIRV E0 (SRA 637 

accession number SRR6058584) and ERCC Mix1 (SRA accession number SRR6058582) ONT 638 

dRNA libraries from Garalde et al. 15. The reads were aligned to the respective transcriptomes 639 

using minimap2 with the same settings as above. The SIRV data set was also aligned to the 640 

corresponding genome using minimap2 with the settings described above, and additionally 641 

setting --splice-flank=no to accommodate the non-canonical splice sites present in this 642 

data.  643 
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