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 35 

ABSTRACT 36 

 37 

The Dungeness crab is an economically and ecologically important species distributed 38 

along the North American Pacific coast. To predict how Dungeness crab may 39 

physiologically respond to future global ocean change on a molecular level, we 40 

performed untargeted metabolomic approaches on individual Dungeness crab juveniles 41 

reared in treatments that mimicked current and projected future pH and dissolved 42 

oxygen conditions. We found 94 metabolites and 127 lipids responded in a condition-43 

specific manner, with a greater number of known compounds more strongly responding 44 

to low oxygen than low pH exposure. Pathway analysis of these compounds revealed 45 

that juveniles may respond to low oxygen through evolutionarily conserved processes 46 

including downregulating glutathione biosynthesis and upregulating glycogen storage, 47 

and may respond to low pH by increasing ATP production. Most interestingly, we found 48 

that the response of juveniles to combined low pH and low oxygen exposure was most 49 

similar to the low oxygen exposure response, indicating low oxygen may drive the 50 

physiology of juvenile crabs more than pH. Our study elucidates metabolic dynamics 51 

that expand our overall understanding of how the species might respond to future ocean 52 

conditions and provides a comprehensive dataset that could be used in future ocean 53 

acidification response studies.  54 

 55 
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 67 

INTRO 68 

 69 

The continued increase in anthropogenic carbon dioxide emissions is leading to ocean 70 

acidification, with the ocean absorbing an average of 25% of human-caused emissions 71 

annually1. If atmospheric carbon dioxide concentration continues to rise at the current rate, the 72 

pH of oceans is predicted to fall 0.3-0.4 units by the end of the century2,3. This pH drop could 73 

exacerbate conditions in the U.S. Pacific Northwest, where the ocean pH is lower than that of 74 

the global ocean due to natural oceanographic processes including regional upwelling, and 75 

could pose a greater challenge to the marine inhabitants already coping with this lower pH. An 76 

additional and compounding factor to ocean acidification is ocean deoxygenation, which co-77 

varies with pH and temperature. Given that global ocean temperatures will rise with global 78 

warming from continued greenhouse gas emissions, hypoxic zones are expected to increase in 79 

duration, intensity, and frequency4. It is not certain how future ocean acidification and 80 

deoxygenation environmental stress might affect important Pacific Northwest fisheries like the 81 

Dungeness crab fishery, which is the most lucrative and valued at more than $200 million 82 

annually5.  83 

Ocean acidification is predicted to have negative indirect effects on Dungeness crab 84 

through loss of prey directly affected by ocean acidification6, but knowledge of how ocean 85 

acidification might directly impact Dungeness crab is limited. It has been postulated that 86 

Dungeness crab may exhibit limited tolerance for acid-base disturbances given past 87 

observations of Dungeness crab as weak osmoregulators7–10 and that acid-base balance and 88 

osmoregulation are tightly coupled in decapod crustaceans11. However, it was shown that 89 

following a brief two-week exposure to a future-predicted seawater pH of 7.4, adult Dungeness 90 

crab are able to acclimate by increasing hemolymph ion levels (bicarbonate, calcium, chloride, 91 

sulfate, and sodium), and by decreasing both oxygen consumption and nitrogen excretion12. On 92 

the other hand, Dungeness crab larvae have shown reduced survival and development rate in 93 

response to a 45-day exposure to the projected future seawater pH of 7.5 and 7.113. Moreover, 94 

adult Dungeness crab have shown behavioral responses to declining oxygen conditions (21-1.5 95 

kPa pO2 over a 5-hour period), including reduced feeding and a preference for the area with the 96 

highest pO2 level when placed in a seawater oxygen gradient (2.5-10.5 kPa pO2 for 1 hour)14. 97 

Dungeness crab also have shown physiological responses to declining oxygen conditions (18-3 98 

kPa pO2 over a 6-hour period), including redistributing hemolymph to high-energy-demand 99 

tissues15. Despite these clear biological responses to low pH and oxygen, the biochemical 100 
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mechanisms underlying Dungeness crab response to combined pH and oxygen stress have not 101 

yet been defined.  102 

 One way to gain broad insight into the biochemical processes underlying the 103 

physiological status of organisms is through surveying metabolomes, which is now possible for 104 

nearly any species with the advancement of high-throughput metabolite profiling, also known as 105 

metabolomics. Exploratory untargeted metabolomics approaches can offer unbiased analyses 106 

of the composition of all detectable metabolites for the rapid and quantitative detection of stress 107 

responses, which often leads to the development of targeted approaches and identification of 108 

stress-indicating biomarkers16,17. Functional analyses using pathway inference can 109 

subsequently be performed by integrating metabolomics data with databases and other “-omics” 110 

datasets using bioinformatics tools to ultimately establish causal networks between different 111 

experimental conditions and outcomes. Untargeted metabolomics in the context of 112 

understanding ocean acidification has recently been applied to reef-building coral, and revealed 113 

metabolite profiles that were predictive of primary production activity and molecules that could 114 

be used as potential biomarkers of ocean acidification18.  115 

To better understand which biochemical pathways might be altered in the response of 116 

Dungeness crab to ocean acidification, we applied untargeted metabolomics and lipidomics to 117 

individual Puget Sound juveniles exposed to current pH (7.85) and future pH (7.45) conditions 118 

for an average of 32 days. To account for the dissolved oxygen (DO) levels that naturally co-119 

vary with pH, we included both ambient oxygen (8.9 mg/L or saturated O2 ) and low oxygen (3.0 120 

mg/L or 33% O2 saturation) treatments with our pH conditions in a factorial design to understand 121 

how pH, oxygen, and/or their interaction might influence metabolite abundances.  122 

 123 

RESULTS 124 

Juvenile Dungeness crab general  metabolome and lipidome composition  125 

Untargeted lipidomics and metabolomics were carried out on 60 individual juvenile crabs 126 

exposed to ocean acidification treatments (Table 1 and Supplementary Table 1) through the 127 

entire duration of their first juvenile instar until 2 days after molting to their second juvenile instar 128 

(Supplementary Table 2). From the lipidomics and metabolomics profiles generated by the 129 

West Coast Metabolomics Core using in-house open-access bioinformatics pipelines19,20 (see 130 

Methods for additional details), a total of 3113 lipids and 651 general metabolites were detected 131 

of which 88% (3320/3764 total detected compounds) had spectra that did not match LipidBlast21 132 

or BinBase22 records and were classified as unknown compounds (Supplementary Table 3 133 

and 4). Eighteen lipids were detected in fewer than 50% of individual profiles and were therefore 134 
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excluded from all downstream analyses. The MS identification techniques found 29/281 135 

metabolite classes among the 246 compounds detected and listed in Human Metabolome 136 

Database (HMDB)23 and 13/77 lipid classes among 195 compounds detected and listed in LIPID 137 

MAPS Structural Database24 (Supplementary Fig. 1). Among the largest classes represented 138 

in all identified compounds were LIPID MAPS classes glycerophosphocholines, triradylglycerols, 139 

and fatty acids, and HMDB classes organic acids, carboxylic acids, and organic oxygen 140 

compounds, consistent with previously observed Cancer magister body composition proportions 141 

of these compounds25,26. 142 

  143 

A combination of statistical methods reveal condition-specific responsive compounds 144 

In general, individual metabolite and lipid profiles showed high variation regardless of 145 

treatment group, with no obvious trends revealed by clustering the relative abundance of all 146 

compounds by treatment groups (Supplementary Fig. 2). To identify specific compounds 147 

affected by treatments, we applied both univariate and multivariate statistical approaches, 148 

combining the strengths of different methods27. To assess individual effects as well as 149 

interaction effects from pH and DO treatments on individual compounds, we used a two-way 150 

analysis of variance (ANOVA) on the raw abundance data (Supplementary Table 3 and 4). 151 

Prior to performing ANOVA, we verified compounds showed homogeneity of variances across 152 

treatment groups (>96% compounds showed a Levene test P value > 0.05), and that metabolite 153 

and lipid abundances were mostly (on average 69% compounds showed a Shapiro-Wilks test P 154 

value > 0.05) normally distributed within treatment groups (Supplementary Table 5). Although 155 

about one-third of compounds violated the ANOVA normality assumption, ANOVA can be 156 

considered robust to violations of this assumption when datasets have more than 10 samples 157 

per treatment group28,29. Of all compounds analyzed, 56/651 metabolites (including 24/160 158 

known metabolites) and 98/3095 lipids (including 7/284 known lipids) showed overall model 159 

significance at P < 0.1 and at least one model term (pH, DO, and/or pH x DO interaction) 160 

significant at P < 0.05 (Supplementary Fig. 3 and 4, and Supplementary Table 6). Because 161 

no metabolite or lipid overall model P values passed their respective 10% false discovery rate 162 

Benjamini-Hochberg P value threshold of 1 x 10-4 and less than 3 x 10-5, we chose to use their 163 

uncorrected P values.  164 

To identify discriminatory compounds and model the relationship between metabolite 165 

profiles and exposure treatments using a multivariate linear regression approach, we used 166 

partial least square discriminatory analysis (PLS-DA). For facilitating comparisons of metabolite 167 

composition among treatment groups, compound abundances were centered around the mean 168 
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and scaled by the reference group (ambient pH and DO) compound standard deviations prior to 169 

multivariate analysis30. The PLS-DA model for the metabolite data shows partial separation of 170 

low pH-treated samples from ambient pH-treated samples by the first and second components 171 

accounting for a total of 30.9% (Fig. 1a). Moreover, the metabolite data shows partial separation 172 

of low DO-treated samples in the second and third components, explaining an additional 6.8% 173 

of variation (Fig. 1b). For the lipid data, the PLS-DA model shows less clear treatment group 174 

separation on the first component (Fig. 1c) but shows partial separation of low pH-treated 175 

samples from ambient pH-treated samples on the second and third components explaining 176 

14.7% of variation (Fig. 1d). Because the overall PLS-DA model had weak predictive power 177 

(Supplementary Fig. 5), we used importance thresholds defined by the point of diminishing 178 

returns in the PLS-DA component loadings plots (Supplementary Fig 6. and Methods), and 179 

identified a total of 45 metabolites (including 14/160 known metabolites) and 18 unknown lipids 180 

as compounds important in discriminating between treatment groups.  181 

Finally, we used a multivariate nonlinear-based supervised random forest classification 182 

to predict treatment classes from the metabolomic and lipidomic data (Supplementary Fig. 7a-183 

b). A total of 9 metabolites (including 4/160 known metabolites) and 15 lipids (including 1/284 184 

known lipids) were considered compounds important to predicting treatments based on how 185 

much their removal from the model decreased prediction accuracy (Supplementary Fig. 7c-d, 186 

Supplementary Table 8, and Methods). While no compounds were commonly identified by all 187 

3 statistical methods as was expected given the fundamental differences of the methods, 7 188 

metabolites were commonly identified by ANOVA and PLS-DA, 8 metabolites were in common 189 

between ANOVA and random forest, 1 metabolite overlapped between random forest and PLS-190 

DA, and 4 lipids overlapped between ANOVA and random forest (Fig. 2a-b). This combination 191 

of analyses yielded a comprehensive set of compounds affected by treatments that no one 192 

method was capable of capturing on its own.  193 

 194 

Low oxygen more strongly affects compound abundance than pH 195 

Heatmaps of the statistically identified 94 (including 35 known) metabolites and 127 196 

(including 7 known) lipids, show several compounds respond to low pH and oxygen treatments 197 

by commonly increasing or decreasing abundance relative to the ambient treatment (Fig. 3a-b). 198 

This is also summarized by violin plots of known compound abundances in Figure 4a-c. For 199 

example, 5-methoxytryptamine, butyrolactam, cysteine, cysteine, homoserine, pipecolinic acid, 200 

piperidone, ribose, and xanthine commonly show a decrease in abundance in response to low 201 

DO treatments relative to ambient DO treatments. Glutamic acid, maltose, and maltotriose 202 
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commonly show an increase in abundance in response to low DO treatments relative to ambient 203 

DO treatments (Figure 4a). Overall, metabolite abundance tends to decrease rather than 204 

increase in response to low DO treatments relative to ambient DO treatments, exemplified by 205 

the mostly blue color of compound abundance averages for the low DO treatment group (green) 206 

in Figure 3a. Specific to the low pH treatment, more metabolites show average abundances 207 

similar to ambient treatment signifying pH has a less dramatic effect on metabolites compared 208 

to low DO treatment (Fig. 3a-b and Fig. 4a-b). This is also apparent in the combined low pH 209 

and low DO treatment, where metabolites and lipids show average abundances similar to the 210 

low DO treatment signifying low DO has a more dominant effect on compounds than low pH 211 

(Fig. 3a-b).  212 

 213 

Pathway analysis reveals potential mechanisms of pH and oxygen stress tolerance 214 

To explore the physiological relevance of treatment-responsive compounds, we 215 

performed biochemical pathway analysis on all known compounds. While compounds classified 216 

as sugars and fatty acids were affected by the low pH and DO treatments, most of the 217 

significantly affected compounds were part of the amino acids class, indicating amino acid 218 

metabolism was most significantly altered by the treatments. Abbreviated biochemical pathway 219 

networks focusing on affected amino acids are shown in Figure 5, and the complete 220 

biochemical pathway networks affected by low pH, low DO, and the combined low pH and DO 221 

treatments can be found in Supplementary Figures 8-10. The trends in amino acid 222 

abundances resulting from either low pH, low DO, or the combined low pH and DO treatment 223 

(Fig. 5a-c), suggest different amino acid metabolic pathways are affected in response to each 224 

factor or combination of factors.  225 

Specific to low DO treatment response compared to the normoxic treatment, energy 226 

conservation pathways appear to be most affected (Fig. 5a). The increased lysine with 227 

decreased pipecolinic acid and the piperidine derivative piperidone abundance is suggestive of 228 

downregulation of the lysine degradation pathway31,32. The decreased abundance of both 229 

cysteine and the cysteine homodimer, cystine, suggests that cysteine catabolism is upregulated. 230 

This coupled with the increased abundance of glutamic acid suggests the glutathione synthesis 231 

pathway could be downregulated, as both cysteine and glutamic acid are precursor molecules in 232 

glutathione synthesis33,34. Glutathione itself was not detected, but is typically challenging to 233 

detect by MS techniques in marine animals due to its reactivity35. The glycogen intermediates 234 

maltose and maltotriose show an increase in abundance consistent with previously observed 235 

glycogen synthesis pathway upregulation during hypoxic stress36. Purine and pyrimidine 236 
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metabolic intermediates orotic acid, ribose, and xanthine show decreased abundance 237 

suggesting purine and pyrimidine metabolic pathways could be downregulated37.  238 

Specific to low pH treatment response compared to ambient pH treatment, ATP 239 

generation pathways appeared most affected (Fig 5b). The decreased abundance of aspartic 240 

acid and the subtle decreased abundance of maleic acid may suggest the citric acid cycle 241 

intermediates that they form (oxaloacetate, malic acid, and fumaric acid)38,39 are favored. 242 

Although, oxaloacetate was not detected (likely due to the instability of the alpha keto acid 243 

compound)40, and malic acid and fumaric acid did not show a significant difference across 244 

treatments. However, citric acid did show an increase in abundance. Taken all together, the 245 

altered abundance of these compounds suggest that citric acid cycle activity could be 246 

upregulated in response to low pH41. An increase in glutaric acid in response to low pH 247 

suggests the catabolism of its parent molecule, glutaryl CoA, which produces ATP in addition to 248 

glutaric acid42. Glutaryl CoA catabolism also supports citric acid cycle activity because glutaryl 249 

CoA can uncompetitively inhibit the alpha-ketoglutarate dehydrogenase complex that facilitates 250 

a rate limiting step in the citric acid cycle43.  251 

Among the compounds affected by the combined low pH and DO treatment, 252 

phosphoethanolamine and phophatidylethanolamine (PE(p-34:2) or PE(o-34:3)) show increased 253 

abundance compared to ambient treatment (Supplementary Fig. 10), suggesting that low pH 254 

and DO might alter the glycerophospholipid synthesis pathway of which 255 

phosphatidulethanolamine is a product and phosphoethanolamine is a substrate intermediate in 256 

a rate limiting step44. Alanine shows a decrease in abundance, suggesting that alanine 257 

synthesis is decreased and that its substrate for synthesis, pyruvate, may be limited45. The 258 

increased abundance of cystathionine and subtle increase of methionine suggest cysteine and 259 

homoserine synthesis are likely stalled46 in response to combined low pH and low DO exposure. 260 

This overlaps with the decrease in homoserine abundance and decrease in cysteine synthesis 261 

products (cysteine and cystine) observed in low DO treatment (Fig. 5b-c).  262 

 263 

DISCUSSION 264 

We used metabolomics to explore how the Dungeness crab might respond to the 265 

simultaneous change in oxygen and carbon dioxide in predicted future climate change 266 

scenarios in the Pacific Northwest. Although the untargeted metabolomics and lipidomics 267 

approaches rapidly identified hundreds of different molecular species, the majority of 268 

compounds identified in our study, including most compounds selected by statistical methods, 269 

lack annotations in existing metabolite databases. Thus, our understanding of their role in 270 
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response to low pH and low DO treatment is limited without extensive further validation. Still, 271 

through shedding light on the simultaneous activity of hundreds of known compounds, we were 272 

able to observe a dynamic range of metabolic responses among individuals within treatment 273 

groups that indicates that Dungeness crab have flexibility in how their biochemistry 274 

compensates for environmental change. While we attempted to control for variation between 275 

individuals by collecting animals from the same location within a 2-month period, we were 276 

unable to control for prior environmental exposure or genetic background of the wild-caught 277 

animals we used. Where prior studies have found high genetic variation among individuals 278 

within one sampling site47,48, we suspect that both genetics and prior environmental exposure 279 

likely contributed to the high variation in metabolite abundances among individuals within 280 

treatment groups, which may have obscured the different treatment effects. Within-sample 281 

variation could be reduced by sampling from a specific tissue rather than using whole animals, 282 

however this may be challenging in early stage juvenile Dungeness crabs given their small size.  283 

We applied three different statistical methods (ANOVA, PLS-DA, and random forest) for 284 

selecting important metabolites in order to combine the strengths of powerful univariate and 285 

multivariate analyses27. Although using univariate statistics in the strictest sense with an FDR 286 

correction to control for false discoveries showed no statistically significant variation for 287 

compounds across treatments, not all compounds were identified with the same confidence 288 

level and were subject to the sensitivity of the mass spectrometry method used. Applying an 289 

FDR correction to all detected compounds assumes that all compounds had equal chance for 290 

discovery, which can mask important biology in highly variable datasets49. For this reason and 291 

due to our use of wild-caught whole-animal samples, we chose a more liberal focus on all 292 

compounds showing an overall ANOVA model P value < 0.1 and at least one model term P 293 

value of < 0.05, or identified as important in PLS-DA or random forest models in our pathway 294 

analysis.  295 

While we acknowledge a level of uncertainty in our pathway analysis due to liberal 296 

selection of important treatment-responsive compounds, the resulting proposed affected 297 

pathways are consistent with previous observations of pH and hypoxia effects on different 298 

organisms. In general, amino acid metabolism is a well-documented mechanism for stress 299 

tolerance50,51. This class of compounds contains versatile chemical structures that serve as 300 

buffering molecules, antioxidants, signaling molecules, and chemical building blocks for the 301 

synthesis of proteins important in stress response (i.e., heat shock proteins, unfolded protein 302 

response proteins, ion channels). Under low oxygen conditions, it is in the best interest of the 303 

animal to limit non-essential energy consuming pathways52. One way Dungeness crab may do 304 
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this is through reducing the activity of evolutionarily conserved gamma-glutamyl cycle that 305 

synthesizes glutathione and consumes ATP53,54 by limiting cysteine availability through 306 

catabolism. Interestingly, glutathione reduction in response to hypoxia has been observed in 307 

multiple mammalian cell lines55–58. Also under low oxygen conditions in nature, food can be 308 

scarce, and it is theorized that glycogen storage during low oxygen can help prepare cells for 309 

low nutrient conditions. In multiple mouse and human cancer cell lines36,59,60, increased 310 

glycogen storage has been observed in response to hypoxia, and is induced by highly 311 

evolutionarily conserved hypoxia-inducible factor transcriptional signalling36. It seems that 312 

Dungeness crab may also adopt this strategy in combating low oxygen conditions. Under low 313 

pH, adult Dungeness crab initially develop hypercapnia which then abates over time via 314 

elevated hemolymph bicarbonate likely generated through gill restructuring and the upregulation 315 

of energy consuming ion-exchange proteins12. Our results indicate that this process may occur 316 

in early juveniles in low pH conditions given that we found metabolite profiles that support 317 

energy generation via increased citric acid cycle activity.  318 

Having parsed out effects from low oxygen and low pH, we found that in combined low 319 

oxygen and pH conditions low oxygen has a more dramatic effect on metabolite abundance. 320 

However, the animals in this treatment group still showed pathway alterations similar to the low 321 

pH treatment group including increased abundance of citric-acid-cycle-related metabolites to 322 

potentially increase ATP production. It is not yet clear what the longer-term consequences are 323 

of these metabolic adjustments or how long these responses could be sustained. Future 324 

avenues of research to expand on these findings should include targeted metabolomics to 325 

confirm the compounds identified in this study as well as capture more antioxidants and citric 326 

acid cycle intermediates that were not detected in this study. Targeted expression profiling 327 

would also be helpful in confirming the biochemical pathway activity predictions from this study. 328 

Ultimately, longer-term exposure experiments on crabs reared over generations might best 329 

reveal the maximal duration that these metabolic responses can be sustained and any long-330 

term consequences of low pH and oxygen exposure. This exploratory metabolomics and 331 

lipidomics analysis uncovered potential biochemical pathways affected by experiments 332 

simulating ocean acidification and hypoxia, and can now serve as preliminary hypotheses for 333 

deeper investigations of how the Dungeness crab (and even other crustaceans) may tolerate 334 

global ocean change. 335 

 336 

METHODS  337 

 338 
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Animals 339 

Cancer magister megaolopae were collected from a single site in Puget Sound (47.950232, -340 

122.301784) on several days between the June and September 2016 using light traps that were 341 

set overnight. The contents of each trap were immediately transferred into a 5-gallon bucket that 342 

was, within 5 minutes, pooled into a cooler with ice packs and an air bubbler. After transferring 343 

contents from 7 traps in approximately 1 hour, the cooler containing megalopae was brought 344 

within 5 minutes into the lab and megalopae were individually transferred onto the water flow-345 

through system described below. The total time for transferring megalopae from the cooler onto 346 

the seawater flow-through system was about 2 hours.  347 

 348 

CO2 exposure experiments 349 

Megalopae were held in individual 250 mL customized jars on Mobile Ocean Acidification 350 

Treatment Systems (MOATS). These systems flowed one-micron-filtered, UV-sterilized, Puget 351 

Sound seawater maintained at 12°C. Prior to flowing through jars, seawater was degassed and 352 

oxygen, nitrogen and carbon dioxide gases were resupplied to finely control dissolved gas 353 

levels. Temperature, pH, and dissolved oxygen were continuously monitored throughout the 354 

duration of the experiment by Omega thermistors, Honeywell Durafet III probes, and Vernier 355 

optical dissolved oxygen probes, respectively. The pH was additionally validated by periodic 356 

sampling of water for dissolved inorganic carbon and total alkalinity, and by bi-weekly 357 

spectrophotometric pH measurements using an Ocean Optics USB 230 2000+ Fiber Optic 358 

Spectometer with SpectraSuite software and a 5mM solution of Sigma Aldritch m-cresol purple 359 

indicator dye. MOATS chemistry parameters were automatically adjusted through a data-driven 360 

feedback system. Megalopae were fed Artermia salina (San Francisco Bay brand) at a target 361 

concentration of 1 nauplius per mL every 3 days. Once megalopae transitioned to the first 362 

juvenile instar, they were fed small pieces of squid. Upon transitioning to the second juvenile 363 

instar, crabs were held on the MOATS for an additional 48 hours post-molt in attempt to reduce 364 

variation due to potential stochastic physiological processes associated with molting 61,62. 365 

Juveniles were then immediately frozen and stored at -80°C after lightly blotting with a paper 366 

towel to remove excess seawater. To reduce variation from length of exposure, which in total 367 

ranged from 20-65 days, only 60 crabs with the average exposure time (30-33 days) were 368 

chosen for metabolomics analysis with 15 individuals from each treatment group.  369 

 370 

Water chemistry analysis 371 
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Mean and standard deviation calculations for pH, DO, and temperature (Table 1) were based 372 

on logger data (measured every 10 minutes) with the exception of pH and DO data from 373 

MOATS 5 and 12, where Spectrophotometric pH and Presens DO measurements were instead 374 

used due to incorrectly calibrated pH and DO probes in these MOATS. Temperature logger 375 

readings above 25°C and below 4°C were excluded from the mean and standard deviation 376 

analysis because these were out of the achievable range for the equipment used and were 377 

indicative of a thermistor malfunction. Total alkalinity (TA) and salinity were discrete 378 

measurements, with TA ranging from 2003.4 to 2036.1 μmol/kg and salinity ranging from 29.42 379 

to 29.96 ppt throughout the course of the experiment. The complete data table is included as 380 

Supplementary Table 1. 381 

 382 

Sample preparation 383 

Frozen samples were sent to the West Coast Metabolomics Center, Davis, CA for sample 384 

preparation, metabolomics and lipidomics profiling. Whole animals were thawed, weighed, and 385 

derivatized as previously described63,64 (Supplementary Table 2). Briefly, samples were 386 

extracted at -20°C with 2 mL of degassed acetonitrile/isopropanol/water (3:3:2) solution and 387 

solvents were evaporated to complete dryness with a Labconco Centrivap cold trap 388 

concentrator. Membrane lipids and triglycerides were subsequently removed from dried 389 

samples with 50% acetonitrile, and samples were again concentrated to complete dryness. 15 390 

mg of each sample preparation was used for metabolomic profiling. For lipidomic profiling, 15 391 

mg of the same sample preparation was also used to which internal standards, C8-C30 fatty 392 

acid methyl esters were added. Aliquoted samples were derivatized with methoxyamine 393 

hydrochloride (Sigma-Aldrich) in pyridine (Acros Organics) and then by N-methyl-N-394 

(trimethylsilyl) trifluoroacetamide (Sigma-Aldrich) for trimethylsilylation of acidic protons.  395 

 396 

Metabolite and lipid data acquisition  397 

General metabolite and lipid abundances were quantified from derivatized samples by gas-398 

chromatography, time-of-flight mass spectrometry (GC-TOF/MS) and charged-surface, hybrid-399 

column, electrospray-quadrupole, time-of-flight mass spectrometry (CSH-ESI QTOF MS/MS), 400 

respectively. For metabolites, an Agilent 6890 gas chromatograph (Santa Clara, CA) was used 401 

with a Leco Pagasus IV time-of-flight mass spectrometer running Leco ChromaTOF software 402 

2.32 (St. Joseph, MI). The following temperature profile was used: 50°C to 275°C final 403 

temperature at a rate of 12°C/s and hold for 3 minutes. Injection volume was 0.5 μl with 10 μl/s 404 

injection speed on a splitless injector with a purge time of 25 seconds. Liner (Gerstel #011711-405 
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010-00) was changed after every 10 samples, (using the Maestro1 Gerstel software vs. 406 

1.1.4.18). Before and after each injection, the 10 μL injection syringe was washed 3 times with 407 

10 μL ethyl acetate. For gas chromatography, a 30 m long, 0.25 mm i.d. Rtx-5Sil MS column 408 

(0.25 μm 95% dimethyl 5% diphenyl polysiloxane film) with additional 10 m integrated guard 409 

column was used (Restek, Bellefonte PA). 99.9999% pure Helium with a built-in purifier (Airgas, 410 

Radnor PA) was set at a constant flow of 1 mL/minute. The oven temperature was held constant 411 

at 50°C for 1 minute and then ramped at 20°C/minute to 330°C at which it is held constant for 5 412 

minutes. The transfer line temperature between gas chromatograph and mass spectrometer 413 

was set to 280°C. Electron-impact ionization at 70V was employed with an ion source 414 

temperature of 250°C. Acquisition rate was 17 spectra/second, with a scan mass range of 85-415 

500 Da. 416 

For positively charged lipids, an Agilent 6530 QTOF mass spectrometer with resolution 417 

10,000 was used and for negatively charged lipids, an Agilent 6550 QTOF mass spectrometer 418 

with resolution 20,000 was used. Electrospray ionization was used to ionize column elutants in 419 

both positive and negative modes. Compounds were separated using a Waters Acquity ultra-420 

high-pressure, liquid-chromatography charged surface hybrid column C18 (100 mm length x 2.1 421 

mm internal diameter; 1.7 um particles) using the following conditions: mobile phase A (60:40 422 

acetonitrile:water + 10 mM ammonium formiate + 0.1% formic acid, mobile phase B (90:10 423 

isopropanol:acetonitrile + 10 mM ammonium formiate + 0.1% formic acid), 65°C column 424 

temperature, a flow rate of 0.6 mL/minute, an injection volume of 3 uL, an injection temperature 425 

of 4 C, and a gradient of 0 minutes 15%, 0-2 minutes 30%, 2-2.5 minutes 48%, 2.5-11 minutes 426 

82%, 11-11.5 minutes 99%, 11.5-12 minutes 99%, 12-12.1 minutes 15%, and 12.1-15 minutes 427 

15%. The capillary voltage was set to +3.5 and -3.5 kV, and the collision energy to 25 or 40 eV 428 

for positive and negative modes. Mass-to-charge ratios (m/z) were scanned from 60 to 1700 Da 429 

and spectra acquired every 2 seconds.  430 

 431 

Spectral data processing 432 

Acquired metabolite data were processed using UC Davis’s BinBase workflow, which performs 433 

data processing including peak detection at signal-to-noise levels of 5:1 throughout the 434 

chromatogram. Resulting apex masses are reported for use in the BinBase algorithm to 435 

facilitate metabolite identification and quantification65. Metabolites were identified through 436 

comparison to the BinBase database22 and peak heights were normalized to total metabolite 437 

content66. 438 
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For acquired lipid data, MassHunter (Qual v. B05.00) was used to find peaks from the 439 

raw data in up to 300 chromatograms. These peaks were imported into Mass Profiler 440 

Professional for alignment to determine which peaks occur in at least 30 % of the 441 

chromatograms. These peaks were then quantified with MassHunter. Resulting accurate mass 442 

data and tandem MS/MS spectra were compared to LipidBlast libraries for compound 443 

identification21. All spectra mapping to previously identified compounds are accessible in the 444 

public database MassBank of North America (http://mona.fiehnlab.ucdavis.edu/). Spectra that 445 

did not map to previously identified compounds are accessible by searching their BinBase 446 

identifiers listed in Supplementary Tables 3 and 4 in the BinVestigate database 447 

(http://binvestigate.fiehnlab.ucdavis.edu). 448 

 449 

Statistical analyses 450 

All statistical analyses excluded 18 compounds that were detected in less than half of the 451 

individual crabs surveyed, and were carried out in R, except for PLS-DA and random forest 452 

analyses which were carried out using the MetaboAnalyst web interface.  453 

 454 

Univariate statistics 455 

Prior to applying a univariate statistical test, normality and heteroscedasticity of compound 456 

abundances within treatment groups was first assessed using the Shapiro-Wilks test and the 457 

Levene test, respectively (Supplementary Table 5). After confirming normality and 458 

heteroscedasticity assumptions were correct, a two-way ANOVA was then applied to each 459 

compound. A Benjamini-Hochberg FDR correction was applied to ANOVA P values to correct 460 

for multiple testing, but corrected P values were not used in selecting important compounds. 461 

Metabolites and lipids were selected for pathway analyses if they had an overall model ANOVA 462 

P value less than 0.1 and an effect P value with less than 0.05 without an FDR correction 463 

applied. Results from ANOVA tests are reported in Supplementary Table 6.  464 

 465 

Multivariate statistics 466 

Prior to applying multivariate testing, data were normalized by mean-centering and scaling by 467 

the reference-group standard-deviations of each compound in order to make compounds more 468 

comparable to one another30. Normalized data was then uploaded to MetaboAnalyst with no 469 

further normalizations applied. The PLS-DA function was run with default settings and a table of 470 

component loadings for each compound were exported from MetaboAnalyst (Supplementary 471 

Table 7). Compound loadings were ordered by from greatest variance explained to lowest, and 472 
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plotted for PLS-DA components. Importance thresholds were placed at the point of diminishing 473 

returns in the plot curves (Supplementary Fig. 6). Specifically for metabolites, loadings were 474 

plotted PLS-DA components 1, 2, and 3 (Supplementary Fig. 6a-c) since these PLS-DA 475 

components gave the greatest separation between treatment groups (Fig. 1a-b). The points of 476 

diminishing returns that importance thresholds were placed in the metabolite loadings plots 477 

were as follows: component 1, loadings threshold > 0.05; component 2, loadings threshold > 478 

0.1; and component 3, loadings threshold > 0.05. Specifically for lipids, loadings were plotted for 479 

PLS-DA components 2 and 3 (Supplementary Fig. 6d-e) since these gave the best separation 480 

between treatment groups, while component 1 could only distinguish the ambient from the 481 

altered treatment groups (Fig. 1c-d). The points of diminishing returns that importance 482 

thresholds were placed in the lipids loadings plots were as follows: component 2, loadings 483 

threshold > 0.05; and component 3, loadings threshold > 0.05. For the random forest analysis, 484 

the Random Forest function was run with 2000 decision trees and either 25 predictors for the 485 

metabolite dataset or 56 predictors for the lipid dataset, conforming to the default classification 486 

value being the square root of the number of variables67. The complete table of important 487 

variables and their mean decrease in random forest accuracy prediction exported from 488 

MetaboAnalyst (Supplementary Table 8). The mean decrease in prediction accuracy for each 489 

compound was ordered from largest to smallest and plotted (Supplementary Fig. 7c-d). 490 

Importance thresholds were drawn from the plots at the points of diminishing returns, which for 491 

metabolites was a mean decrease in accuracy > 0.001 and for lipids was a mean decrease in 492 

accuracy > 0.00047.  493 

Heatmaps in Figure 3 and Supplementary Figure 2 were made using the heatmap 494 

function in the MetaboAnalyst web interface with Euclidean distance, ward clustering, plotting 495 

auto-scaled compound abundance averages for each treatment group.  496 

 497 

Pathway analysis 498 

Pubchem and KEGG identifiers were obtained for metabolites and lipid international chemical 499 

identifier keys provided by the West Coast Metabolomics Core using Chemical Translation 500 

Service68 and Pubchem Identifier exchange69. Metamapp70 was then used to map metabolites 501 

by chemical and biochemical relationships. The generated SIF file (Supplementary File 1) was 502 

imported into Cytoscape71. For visualizing the pH, DO, and pH:DO interaction effects, both 503 

mean abundance fold change and Cohen D effect size values were calculated for each 504 

compound within a treatment group relative to the ambient treatment group. Cohen D effect size 505 

(
����������� ��������

�	

���
) was calculated for each compound raw abundance within a treatment group 506 
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relative to the ambient treatment group using the R package effsize72. The treatment group -log2 507 

fold change values and the Cohen D effsize output from R were added to a node attribute file 508 

(Supplementary Table 9) that was also imported into Cytoscape. Low pH, low DO, and low 509 

pH:low DO networks were styled using the following settings: node shapes were set according 510 

to statistical method used to select the compound (ANOVA, triangle; PLS-DA, square; random 511 

forest, diamond; both PLS-DA and ANOVA, hexagon; not selected as important by any method, 512 

circle); node border was color by the treatment group mean compound abundance fold change 513 

relative to ambient (1.25X-2X fold change, yellow gradient’ -1.25X – 1.25X fold change, grey; -514 

1.25X - -10X fold change, blue gradient); node fill was colored by the Cohen D effect size of 515 

treatment on compound abundance relative to ambient (effect size of 0.5-1, yellow gradient; -516 

0.5-0.5, white; and -0.5- -1, blue gradient); node shape size and label size were set to fixed 517 

values (150 height and width with size 50 font for statistically selected compounds, and 30 518 

height and width with size 12 font for compounds not identified by statistics (Supplementary 519 

Fig. 8-10).  520 

 521 

DATA AVAILABILITY 522 

All mass spectra mapping to previously identified compounds are accessible in the public 523 

database MassBank of North America (http://mona.fiehnlab.ucdavis.edu/). Spectra that did not 524 

map to previously identified compounds are accessible by searching their BinBase identifiers in 525 

the BinVestigate database (http://binvestigate.fiehnlab.ucdavis.edu). Processed metabolite and 526 

lipid spectral data are included as Supplementary Table 3 and 4.  527 

 528 

REFERENCES 529 

1. Le Quéré, C. et al. Global Carbon Budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016). 530 

2. Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 531 

(2003). 532 

3. Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. 533 

Science. 305, 362–366 (2004). 534 

4. Gobler, C. J. & Baumann, H. Hypoxia and acidification in ocean ecosystems: coupled 535 

dynamics and effects on marine life. Biol. Lett. 12, (2016). 536 

5. National Marine Fisheries Service. Fisheries of the United States. Fisheries of the United 537 

States, 2016. (2017). 538 

6. Marshall, K. N. et al. Risks of ocean acidification in the California Current food web and 539 

fisheries: ecosystem model projections. Glob. Chang. Biol. 23, 1525–1539 (2017). 540 

7. Hunter, K. C. & Rudy, P. P. Osmotic and ionic regulation in the Dungeness crab, Cancer 541 

magister dana. Comp. Biochem. Physiol. Part A 51, 439–447 (1975). 542 

8. Engelhardt, F. R. & Dehnel, P. A. Ionic regulation in the Pacific edible crab, Cancer 543 

magister (Dana). Can. J. Zool. 51, 735–743 (1973). 544 

9. Freire, C. A., Onken, H. & McNamara, J. C. A structure-function analysis of ion transport 545 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 13, 2019. ; https://doi.org/10.1101/574798doi: bioRxiv preprint 

https://doi.org/10.1101/574798


 17

in crustacean gills and excretory organs. Comparative Biochemistry and Physiology - A 546 

Molecular and Integrative Physiology 151, 272–304 (2008). 547 

10. Jones, L. L. Osmotic regulation in several crabs of the pacific coast of north america. J. 548 

Cell. Comp. Physiol. 18, 79–92 (1941). 549 

11. Henry, R. P. & Wheatly, M. G. Interaction of respiration, ion regulation, and acid-base 550 

balance in the everyday life of aquatic crustaceans. Integr. Comp. Biol. 32, 407–416 551 

(1992). 552 

12. Hans, S., Fehsenfeld, S., Treberg, J. R. & Weihrauch, D. Acid-base regulation in the 553 

Dungeness crab (Metacarcinus magister). Mar. Biol. 161, 1179–1193 (2014). 554 

13. Miller, J. J., Maher, M., Bohaboy, E., Friedman, C. S. & McElhany, P. Exposure to low pH 555 

reduces survival and delays development in early life stages of Dungeness crab (Cancer 556 

magister). Mar. Biol. 163, 118 (2016). 557 

14. Bernatis, J. L., Gerstenberger, S. L. & McGaw, I. J. Behavioural responses of the 558 

Dungeness crab, Cancer magister, during feeding and digestion in hypoxic conditions. 559 

Mar. Biol. 150, 941–951 (2007). 560 

15. Airriess, C. & Mcmahon, B. Cardiovascular adaptations enhance tolerance of 561 

environmental hypoxia in the crab Cancer magister. J. Exp. Biol. 190, (1994). 562 

16. Turi, K. N., Romick-Rosendale, L., Ryckman, K. K. & Hartert, T. V. A review of 563 

metabolomics approaches and their application in identifying causal pathways of 564 

childhood asthma. Journal of Allergy and Clinical Immunology (2016). 565 

doi:10.1016/j.jaci.2017.04.021 566 

17. Lankadurai, B. P., Nagato, E. G. & Simpson, M. J. Environmental metabolomics: an 567 

emerging approach to study organism responses to environmental stressors. Environ. 568 

Rev. 21, 180–205 (2013). 569 

18. Sogin, E. M., Putnam, H. M., Anderson, P. E. & Gates, R. D. Metabolomic signatures of 570 

increases in temperature and ocean acidification from the reef-building coral, Pocillopora 571 

damicornis. Metabolomics 12, (2016). 572 

19. Cajka, T., Smilowitz, J. T. & Fiehn, O. Validating Quantitative Untargeted Lipidomics 573 

Across Nine Liquid Chromatography–High-Resolution Mass Spectrometry Platforms. 574 

Anal. Chem. 89, 12360–12368 (2017). 575 

20. Kind, T. et al. FiehnLib: mass spectral and retention index libraries for metabolomics 576 

based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. 577 

Chem. 81, 10038–48 (2009). 578 

21. Kind, T. et al. LipidBlast in silico tandem mass spectrometry database for lipid 579 

identification. Nat. Methods 10, 755–8 (2013). 580 

22. Skogerson, K., Wohlgemuth, G., Barupal, D. K. & Fiehn, O. The volatile compound 581 

BinBase mass spectral database. BMC Bioinformatics 12, 321 (2011). 582 

23. Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids 583 

Res. 46, D608–D617 (2018). 584 

24. Fahy, E., Sud, M., Cotter, D. & Subramaniam, S. LIPID MAPS online tools for lipid 585 

research. Nucleic Acids Res. 35, W606–W612 (2007). 586 

25. Allen, W. V. Lipid transport in the dungeness crab Cancer magister dana. Comp. 587 

Biochem. Physiol. Part B Comp. Biochem. 43, 193–IN8 (1972). 588 

26. Allen, W. V. Amino Acid and Fatty Acid Composition of Tissues of the Dungeness Crab ( 589 

Cancer magister ). J. Fish. Res. Board Canada 28, 1191–1195 (1971). 590 

27. Grissa, D. et al. Feature Selection Methods for Early Predictive Biomarker Discovery 591 

Using Untargeted Metabolomic Data. Front. Mol. Biosci. 3, 30 (2016). 592 

28. Witte, R. S. & Witte, J. S. Statistics. (J. Wiley & Sons, 2010). 593 

29. Vinaixa, M. et al. A Guideline to Univariate Statistical Analysis for LC/MS-Based 594 

Untargeted Metabolomics-Derived Data. Metabolites 2, 775–95 (2012). 595 

30. Timmerman, M. E., Hoefsloot, H. C. J., Smilde, A. K. & Ceulemans, E. Scaling in 596 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 13, 2019. ; https://doi.org/10.1101/574798doi: bioRxiv preprint 

https://doi.org/10.1101/574798


 18

ANOVA-simultaneous component analysis. Metabolomics 11, 1265–1276 (2015). 597 

31. Broquist, H. P. Lysine-Pipecolic Acid Metabolic Relationships in Microbes and Mammals. 598 

Annu. Rev. Nutr. 11, 435–448 (1991). 599 

32. Cheng, J. et al. Identification of 2-piperidone as a biomarker of CYP2E1 activity through 600 

metabolomic phenotyping. Toxicol. Sci. 135, 37–47 (2013). 601 

33. Orlowski, M. & Meister, A. The gamma-glutamyl cycle: a possible transport system for 602 

amino acids. Proc. Natl. Acad. Sci. U. S. A. 67, 1248–55 (1970). 603 

34. Bodnaryk, R. P. Structure and Function of Insect Peptides. Adv. In Insect Phys. 13, 69–604 

132 (1978). 605 

35. Mika, A., Skorkowski, E. & Stepnowski, P. The Use of Different MS Techniques to 606 

Determine Glutathione Levels in Marine Tissues. Food Anal. Methods 6, 789–802 (2013). 607 

36. Pelletier, J. et al. Glycogen Synthesis is Induced in Hypoxia by the Hypoxia-Inducible 608 

Factor and Promotes Cancer Cell Survival. Front Oncol 2, 18 (2012). 609 

37. Christman, A. A. Purine and pyrimidine metabolism. Physiol. Rev. 32, 303–48 (1952). 610 

38. Winefield, C. S., Farnden, K. J. F., Reynolds, P. H. S. & Marshall, C. J. Evolutionary 611 

analysis of aspartate aminotransferases. J. Mol. Evol. 40, 455–463 (1995). 612 

39. Scher, W. & Jakoby, W. B. Maleate isomerase. J. Biol. Chem. 244, 1878–1882 (1969). 613 

40. Mamer, O. et al. The complete targeted profile of the organic acid intermediates of the 614 

citric acid cycle using a single stable isotope dilution analysis, sodium borodeuteride 615 

reduction and selected ion monitoring GC/MS. Metabolomics 9, 1019–1030 (2013). 616 

41. Engelking, L. R. & Engelking, L. R. in Textbook of Veterinary Physiological Chemistry 617 

208–213 (Elsevier, 2015). doi:10.1016/B978-0-12-391909-0.50034-7 618 

42. Menon, G. K. K., Friedman, D. L. & Stern, J. R. Enzymic synthesis of glutaryl-coenzyme 619 

A. Biochim. Biophys. Acta 44, 375–377 (1960). 620 

43. Sauer, S. W. et al. Bioenergetics in glutaryl-coenzyme A dehydrogenase deficiency: a 621 

role for glutaryl-coenzyme A. J. Biol. Chem. 280, 21830–6 (2005). 622 

44. Gibellini, F. & Smith, T. K. The Kennedy pathway-De novo synthesis of 623 

phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62, n/a-n/a (2010). 624 

45. Mathews, C. K., Van Holde, K. E. (Kensal E. & Ahern, K. G. Biochemistry. (Benjamin 625 

Cummings, 2000). 626 

46. Courtney-Martin, G. & Pencharz, P. B. in The Molecular Nutrition of Amino Acids and 627 

Proteins 265–286 (Elsevier, 2016). doi:10.1016/B978-0-12-802167-5.00019-0 628 

47. Jackson, T. M. & O’Malley, K. G. Comparing genetic connectivity among Dungeness crab 629 

(Cancer magister) inhabiting Puget Sound and coastal Washington. Mar. Biol. 164, 630 

(2017). 631 

48. Jackson, T. M., Roegner, G. C. & O’Malley, K. G. Evidence for interannual variation in 632 

genetic structure of Dungeness crab (Cancer magister) along the California Current 633 

System. Mol. Ecol. (2018). doi:10.1111/mec.14443 634 

49. Chong, E. Y. et al. Local false discovery rate estimation using feature reliability in LC/MS 635 

metabolomics data. Sci. Rep. 5, 17221 (2015). 636 

50. Ding, M.-Z. et al. Proteomic Research Reveals the Stress Response and Detoxification of 637 

Yeast to Combined Inhibitors. PLoS One 7, e43474 (2012). 638 

51. Harding, H. P. et al. An Integrated Stress Response Regulates Amino Acid Metabolism 639 

and Resistance to Oxidative Stress. Mol. Cell 11, 619–633 (2003). 640 

52. Murray, A. J. Metabolic adaptation of skeletal muscle to high altitude hypoxia: How new 641 

technologies could resolve the controversies. Genome Med. 1, (2009). 642 

53. Nava, G. M., Lee, D. Y., Ospina, J. H., Cai, S.-Y. & Gaskins, H. R. Genomic analyses 643 

reveal a conserved glutathione homeostasis pathway in the invertebrate chordate Ciona 644 

intestinalis. Physiol. Genomics 39, 183–94 (2009). 645 

54. Fraser, J. A., Saunders, R. D. C. & McLellan, L. I. Drosophila melanogaster glutamate-646 

cysteine ligase activity is regulated by a modifier subunit with a mechanism of action 647 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 13, 2019. ; https://doi.org/10.1101/574798doi: bioRxiv preprint 

https://doi.org/10.1101/574798


 19

similar to that of the mammalian form. J. Biol. Chem. 277, 1158–65 (2002). 648 

55. Mansfield, K. D., Simon, M. C. & Keith, B. Hypoxic reduction in cellular glutathione levels 649 

requires mitochondrial reactive oxygen species. J. Appl. Physiol. 97, 1358–1366 (2004). 650 

56. Cargnoni, A., Ceconi, C., Gaia, G., Agnoletti, L. & Ferrari, R. Cellular thiols redox status: 651 

A switch for NF-κB activation during myocardial post-ischaemic reperfusion. J. Mol. Cell. 652 

Cardiol. 34, 997–1005 (2002). 653 

57. Murata, Y., Ohteki, T., Koyasu, S. & Hamuro, J. IFN-gamma and pro-inflammatory 654 

cytokine production by antigen-presenting cells is dictated by intracellular thiol redox 655 

status regulated by oxygen tension. Eur. J. Immunol. 32, 2866–2873 (2002). 656 

58. Rajpurohit, R., Koch, C. J., Tao, Z., Teixeira, C. M. & Shapiro, I. M. Adaptation of 657 

chondrocytes to low oxygen tension: Relationship between hypoxia and cellular 658 

metabolism. J. Cell. Physiol. 168, 424–432 (1996). 659 

59. Pescador, N. et al. Hypoxia Promotes Glycogen Accumulation through Hypoxia Inducible 660 

Factor (HIF)-Mediated Induction of Glycogen Synthase 1. PLoS One 5, e9644 (2010). 661 

60. Shen, G. M., Zhang, F. L., Liu, X. L. & Zhang, J. W. Hypoxia-inducible factor 1-mediated 662 

regulation of PPP1R3C promotes glycogen accumulation in human MCF-7 cells under 663 

hypoxia. FEBS Lett. 584, 4366–4372 (2010).  664 

61. Phlippen, M. K., Webster, S. G., Chung, J. S. & Dircksen, H. Ecdysis of decapod 665 

crustaceans is associated with a dramatic release of crustacean cardioactive peptide into 666 

the haemolymph. J. Exp. Biol. 203, 521–36 (2000). 667 

62. Kuballa, A. V, Holton, T. A., Paterson, B. & Elizur, A. Moult cycle specific differential gene 668 

expression profiling of the crab Portunus pelagicus. BMC Genomics 12, 147 (2011). 669 

63. Fiehn, O. & Kind, T. in 3–17 (Humana Press, 2007). doi:10.1007/978-1-59745-244-1_1 670 

64. Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A. & Schwudke, D. Lipid 671 

extraction by methyl- tert -butyl ether for high-throughput lipidomics. J. Lipid Res. 49, 672 

1137–1146 (2008). 673 

65. Fiehn, O., Wohlgemuth, G. & Scholz, M. in 224–239 (Springer, Berlin, Heidelberg, 2005). 674 

doi:10.1007/11530084_18 675 

66. Fiehn, O. et al. Quality control for plant metabolomics: reporting MSI-compliant studies. 676 

Plant J. 53, 691–704 (2008). 677 

67. Breiman, L. & Cutler, A. Breiman and Cutler’s random forests for classification and 678 

regression. Packag. ‘randomForest’ 29 (2012). doi:10.5244/C.22.54 679 

68. Wohlgemuth, G., Haldiya, P. K., Willighagen, E., Kind, T. & Fiehn, O. The chemical 680 

translation service-a web-based tool to improve standardization of metabolomic reports. 681 

Bioinformatics 26, 2647–2648 (2010). 682 

69. Kim, S. et al. PubChem substance and compound databases. Nucleic Acids Res. 44, 683 

D1202–D1213 (2016). 684 

70. Barupal, D. K. et al. MetaMapp: mapping and visualizing metabolomic data by integrating 685 

information from biochemical pathways and chemical and mass spectral similarity. BMC 686 

Bioinformatics 13, (2012). 687 

71. Shannon, P. et al. Cytoscape: a software environment for integrated models of 688 

biomolecular interaction networks. Genome Res. 13, 2498–504 (2003). 689 

72. Torchiano, M. Efficient Effect Size Computation [R package effsize version 0.7.1]. 690 

 691 

 692 

ACKNOWLEDGEMENTS 693 

This material is based upon work supported by the Ocean Acidification Program and Northwest Fisheries 694 

Science Center of the National Oceanic and Atmospheric Administration, and in part by the National 695 

Science Foundation Graduate Research Fellowship Program and Graduate Research Internship Program 696 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 13, 2019. ; https://doi.org/10.1101/574798doi: bioRxiv preprint 

https://doi.org/10.1101/574798


 20

(to S.A.T.). S.A.T. is supported in part by the Mary K. Chapman Foundation. We thank the current and697 

former members of the Ocean Acidification lab at the Northwest Fisheries Science Center Mukilteo698 

Research Station, members of the West Coast Metabolomics Core and Fiehn lab at University of699 

California Davis.  700 

 701 

AUTHOR CONTRIBUTIONS 702 

K.M.N., P.M., and D.S.B conceived the project. K.M.N., P.M., and D.S.B. advised research.703 

M.M. and D.P. performed experiments. S.A.T. performed statistical analyses and pathway704 

analysis. S.A.T. prepared the manuscript with edits from K.M.N., P.M, and D.S.B.  705 

 706 

COMPETING INTERESTS 707 

The authors declare no competing interests. 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

719 

Table 1. Summary of water chemistry for experimental treatments showing the mean ± 
standard deviation for each parameter. Temperature (temp), pH, and DO were 
continuously measured by logger probes. Total alkalinity (TA) and salinity were discrete 
measurements, with TA ranging from 2003.4 to 2043.3 μmol/kg and salinity ranging from 
29.42 to 29.96 ppt throughout the course of the experiment. Refer to Supplementary 
Table 1 for complete data table.  
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 721 
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 723 

 724 

 725 

 726 

Figure 1. Summary of PLS-DA analysis. Metabolite data show partial separation of low pH 
treatment groups (blue and purple) from low DO treatment groups (pink and green) by (a) 
Components 1 and 2 and (b) components 2 and 3. Lipid data show partial separation of 
treatment groups by (c) components 1 and 2 and (d) components 2 and 3. Shapes 
correspond to treatment groups (ambient pH and DO,Δ ; ambient pH and low DO, + ; low pH 
and ambient DO, x ; low pH and low DO, ◊ . Numbers refer to the sample number.  

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 13, 2019. ; https://doi.org/10.1101/574798doi: bioRxiv preprint 

https://doi.org/10.1101/574798


 22

727 
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729 

 730 

Figure 3. Heatmap plots showing the average compound abundance (average peak intensity) for 
each treatment group for the (a) 94 general metabolites and (b) 127 lipids selected by multivariate 
and univariate statistical methods used to evaluate treatment effects. Individual known and 
unknown (“unk”) compound names are listed over the columns and treatment groups are listed 
over the rows (orange, ambient pH, ambient O2; green, ambient pH, low O2; purple, low pH, 
ambient O2; and blue, low pH, low O2). Compound average abundances are shown as auto-scaled 
within each compound (“relative abundance”).  
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 745 

Figure 4. Compound abundance levels (peak intensities) of known metabolites and lipids selected 
by univariate and multivariate statistical methods used to evaluate treatment effects. Violin plots 
with boxplot insets show the distribution of compound abundances within each treatment group for 
compounds statistically showing (a) DO treatment effect, (b) pH treatment effect, and (c) DO:pH 
interaction effect. Binbase names for each known compound are listed across the top of each plot. 
Abundance levels (peak intensities, noted as “quant”) are listed on the y-axis while treatments are 
listed along the x-axis. Statistical methods that each known compound was identified by are noted 
by shapes in the upper corners of each plot (ANOVA, triangle; PLS-DA, square; and random 
forest, diamond).  
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Figure 5. Differential amino acid network effects from (a) low DO, (b) low pH, and (c) combined 
low pH and low DO. Compounds are clustered by chemical similarity. Node fill color is colored by 
Cohen D effect size comparing the treatment group to the ambient pH,ambient DO group, and 
node borders are colored by the treatment group mean fold change relative to the ambient 
pH,ambient DO group. Node shapes indicate the statistical method(s) from which the compound 
was classified as important. Node shape and label size are enlarged if the compound was 
identified as important by a statistical method. Gray edges indicate nodes sharing a KEGG 
biochemical pathway(s).  
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