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Abstract 

Rodents emit various social ultrasonic vocalizations (USVs), which reflect their 

emotional state and mediate social interaction. USVs are usually analyzed by manual 

or semi-automated methodologies categorizing discrete USVs according to their 

structure in the frequency-time domains. This laborious analysis hinders effective use 

of USVs for screening animal models of human pathologies associated with modified 

social behavior, such as autism spectrum disorder (ASD). Here we present a novel, 

automated methodology for analyzing USVs, termed TrackUSF. To validate 

TrackUSF, we analyzed a dataset of mouse mating calls and compared the results 

with a manual analysis by a trained observer. We found that TrackUSF was capable 

of detecting most USVs, with less than 1% of false-positive detections. We then 

employed TrackUSF to social vocalizations in Shank3-deficient rats, a rat model of 

ASD and found, for the first time, that these vocalizations exhibit a spectrum of 

deviations from pro-social calls towards aggressive calls.   
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Introduction 

Vocal communication is fundamental to social interactions of most vertebrate species 

(Krams et al., 2012; McComb and Semple, 2005; Pollard and Blumstein, 2012). In 

humans, vocal communication is highly dynamic, with distinct vocal signals 

characterizing different types of social interactions and reflecting distinct emotional 

states (Liebenthal et al., 2016; Nygaard and Queen, 2008). In diverse social contexts 

and activities, such as parenting, mating, fighting and playing, mice and rats also emit 

various types of vocal signals, mostly at the ultrasonic range (Portfors, 2007). Such 

ultrasonic vocalizations (USVs) reflect the animal's emotional state and facilitate or 

inhibit social interaction (Brudzynski, 2013; Knutson et al., 2002; Wohr and 

Schwarting, 2013). Therefore, they have gained interest as a proxy model for speech 

and language (Arriaga et al., 2012; Castellucci et al., 2016; Fischer and 

Hammerschmidt, 2011a) as well as for affective vocal communication in humans 

(Burgdorf et al., 2011; Panksepp, 2007).  

Notably, USVs can be easily recorded and followed across extended periods of time, 

by simply positioning an ultrasonic microphone in the animals' vicinity. The easiness 

of this approach makes the identification of modified social vocalizations in animal 

models of pathological conditions a promising method for monitoring changes in 

social behavior and for screening potential therapeutics for such conditions (Scattoni 

et al., 2009; Schwarting and Wohr, 2012; Wohr and Scattoni, 2013). Indeed, modified 

social vocalization activity was previously studied in various mouse models of autism 

spectrum disorder (ASD), where impairment in social communication is a core 

symptom (Fischer and Hammerschmidt, 2011b; Kazdoba et al., 2016; Wohr, 2014). 

However, the analysis of social vocalizations in animal models is usually performed 

by manual or by semi-automated methodologies aiming to extract discrete USVs from 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 13, 2019. ; https://doi.org/10.1101/575191doi: bioRxiv preprint 

https://doi.org/10.1101/575191
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

the audio recording and to categorize them according to their structure in a 

spectrogram (Brudzynski, 2009; Heckman et al., 2016; Portfors, 2007). These highly 

laborious and observer-dependent methodologies hinder an efficient and large-scale 

use of such approach for monitoring changes in social communication in animal 

models.  

Here we present a novel methodology; the TrackUSF, and tools that we have 

developed to analyze ultrasonic vocal communication in rodents in an automated 

manner. This methodology, which avoids detection and characterization of discrete 

USVs, is based on a technology that is commonly used for human speech detection 

(see for example Arias-Londono et al., 2011; Mei et al., 2019; Nasr et al., 2018; 

Vergin et al., 1999). We validated the usefulness of our TrackUSF methodology by 

using it to analyze mouse mating calls and comparing the results to those obtained by 

the traditional USV-based approach. While doing this, we revealed a difference in the 

frequency of mating calls between two common laboratory mice trains. We then 

demonstrated the efficacy of our methodology in identifying modified social 

vocalizations in animal models, by revealing, for the first time, impaired reciprocal 

vocal communications in adult male Shank3-deficient rats. 

 

Results 

Validation of the novel TrackUSF methodology using mice mating calls 

The TrackUSF methodology, designed to process and analyze an auditory recording 

in an automated manner, is schematically described in Fig. 1A. Briefly, the auditory 

clip is segmented into 6-msec fragments. All fragments that pass a 15 kHz high-pass 

filter and contain signals above a predetermined power threshold in the ultrasonic 

range (up to 100 kHz) are collected, and are herein termed ultrasonic fragments 
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(USFs). The power spectrum between 15-100 kHz of these USFs is then transformed 

to mel-frequency cepstral coefficients (MFCCs). USFs from all audio clips of the 

experiment are then analyzed together using a 3-dimentional (3-D) T-distributed 

Stochastic Neighbor Embedding (t-SNE) tool for visual clustering of the multi-

dimensional dataset (see Methods).  

We validated our methodology by comparing the analysis of mice mating calls 

between TrackUSF and the traditional USV-based methodology. To that end, we 

audio recorded six pairs of male and female mice from two inbred strains (C56BL/6J 

and BalbC, three pairs per strain), which generated six 10-min long audio clips (one 

per pair). Notably, analysis of these audio clips using the manual USV-based 

methodology took a well-trained observer about 30 hours of work, while analysis of  

the same audio clips using TrackUSF on a standard computer took only 15 min. 

Moreover, the TrackUSF software allowed us to generate a 3D t-SNE representation 

of all USFs (Fig. 1B, each USF is represented by a single dot), which revealed an 

apparent separation between USFs emitted by C57BL/6J pairs (red) and those emitted 

by BalbC pairs (blue). It also allowed us to visually define various clusters of USFs 

(Fig. 1B, grey lines) and to overlay the detected USFs onto the spectrogram of each 

audio-clip, thus to inspect the appearance and timing of each USF in respect to its 

corresponding USV. This is demonstrated by the examples shown in Fig. 1C, where 

groups of USFs, depicted as numbers based on their cluster affiliation in Fig. 1B, 

represent distinct USVs. The first example (Fig 1Ci) includes only non-vocal sounds 

and was enriched with USFs from cluster 1, which was clearly separated from all 

other clusters in our t-SNE analysis (Fig. 1B), suggesting that cluster 1 is mostly 

composed of non-vocal  sounds (herein termed noise). The other examples include 

USVs represented by USFs originating from clusters 2-14 (Fig 1Cii-iv). 
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Figure 1. Automated analysis of mouse mating calls using TrackUSF. 

A) The processing pipeline used for analysis of ultrasonic vocalizations by TrackUSF. 

B) 3D t-SNE analysis of all USFs recorded from three C57BL/6J and three BalbC mice pairs, 

following MFCC transformation. Each UFS is represented by a dot, color-coded for the strain. 

Black numbers represent the distinct clusters, defined by the manually drawn grey lines. Note 

the clear separation of cluster 1, which include non-vocal signals defined as noise. 

C) Examples spectrograms showing USFs from all clusters, each marked as the number of the 

cluster it is associated with, superimposed by the TrackUSF software on their corresponding 

noise (i) or USVs (ii-iv) signals. 

D) PSD analysis of the distinct clusters shown in B. The total number of USFs in each cluster is 

detailed in the legend. Note the unique profile of cluster 1, which is mainly enriched with non-

vocal signals (noise). 

To further analyze each of the clusters defined in Fig. 1B, we used Power Spectral 

Density (PSD) analysis to characterize the power spectrum of USFs from each of the 

clusters, while focusing our analysis the ultrasonic range between 20-100 kHz. As 

apparent in Fig. 1D, all clusters, except for cluster 1, showed clear distinct peaks at 

specific frequencies. In contrast, cluster 1 included USFs of variable frequencies, 

mostly at the lower range. Given this and our findings suggesting that these USFs 

represent noise, cluster 1 was excluded from all downstream analyses.  

To directly compare the results obtained using TrackUSF to those achieved with the 

manual USVs-based methodology, we plotted the distribution of both, the TrackUSF-

detected USFs for each cluster and the manually detected USVs over time. As 

exemplified in Fig 2A, USVs (manually detected) appeared in sequences, with 

prolonged periods of silence between them. Notably, almost all USVs were 

represented by at least one USF (from cluster 2-5), with no false positive USFs. To 

examine the influence of the power threshold used for TrackUSF on the overlap 

between USVs and USFs, we employed TrackUSF to analyze the data using five 
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distinct threshold levels (1, 1.5, 2.2, 2.7 and 3.5 [arbitrary units]). It is noteworthy to 

mention that the time it took our software to analyze the data set ranged between 10 

min for the highest and 120 min for the lowest threshold. The percent of manually 

detected USVs which were represented by at least one USF ranged between 84% in 

the lowest threshold (threshold=1) to 46% in the highest threshold (threshold=3.5) 

(Fig. 2B). The total duration of manually defined USVs that was also covered by 

USFs ranged between 48% of time in the lowest threshold to 19% in the highest (Fig. 

2C). Among the six audio clips and for all threshold levels there was a statistically 

significant correlation between the number of USVs detected manually and the 

number of USFs detected automatically by TrackUSF (R2=0.81, 0.88, 0.91, 0.92, 0.93 

respectively, p<0.001 for all, Fig. 2D). Regardless of threshold level, we found that 

only very few USFs (<1% of all USFs) were false positive (not representing any real 

USV, Fig. 2E). Thus, for threshold of 2.7 and below, Track USFs was able to detect 

most manually extracted USVs with very high accuracy. 

We then compared the PSD analysis of the various USF clusters for two additional 

threshold (1.5 and 3.5). As presented in Fig. 2F-G, PSD analyses using a either of 

these thresholds generated a very similar output to that generated using a threshold of 

2.7 (Fig. 1D). Taken together, we conclude that PSD characterization of the USFs is 

relatively insensitive to the threshold applied.  
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Figure 2. TrackUSF accurately captures most of the manually detected USVs and enables their 

further characterization 

A) Above: co-localization of USFs (colored dots) and USVs (black dots) during a whole 10-min 

long audio recording of mouse mating calls. Note the various sequences of USVs, separated 

by prolonged silent periods. Below – One USV sequence displayed in higher resolution, with 

the co-localized USFs (excluding cluster 1). Note the accurate detection of most USVs by the 

various types of USFs. 

B) Percent of manually defined USVs that are detected by at least one USF, using different 

thresholds (1, 1.5, 2.2, 2.7, 3.5) for TrackUSF for analyzing the same mating calls dataset. 

C) Percent coverage of the total duration of manually defined USVs by the various USFs, for the 

various thresholds. 

D) Number of detected USFs plotted as a function of number of manually detected USVs, for the 

various thresholds.  

E) Percent of all detected USFs from all clusters, except for cluster 1, that were found to 

represent non-USV fragments (false-positive USFs), using different thresholds. Each point 

represent a distinct audio clip. Note that in none of the audio clips we observed >1% false 

positive USFs, regardless of threshold level. 

F) PSD analysis of the various clusters using a very high threshold of 3.5, as compare to 2.7 in 

Fig. 1D. 

G) As in F, for a low threshold of 1.5. Note that the PSD profile seems to be insensitive to the 

threshold applied.  

H) PSD analysis of the manually detected USVs analyzed separately for USVs emitted by 

C57BL/6J (red) and BalbC (blue) mice pairs, showing a tendency of BalbC mice for higher-

pitch mating calls.  

I) As is H, for the distinct clusters of USFs detected by TrackUSF using a threshold of 2.7. Note 

the very high similarity with H, showing that TrackUSF properly characterize the main 

frequency of the USVs underlying the detected USFs. 

Finally, as noted above and as presented in Fig. 1B, USFs generated from recordings 

of C57BL/6J pairs showed a distribution on the t-SNE analysis that was distinct from 
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the distribution of USFs of BalbC pairs. Therefore, we next compared the PSD 

analyses of the manually extracted USVs between these two strains, (Fig. 2H). 

Interestingly, this analysis demonstrated a clear difference between the two strains, 

with the USVs of C57BL/6J mice showing tendency towards lower pitch (40 kHz) as 

compared to the higher pitch (60 kHz) of the BalbC USVs. To verify that similar 

tendencies are also seen using the TrackUSF methodology (using a threshold of 2.7), 

we scaled the PSD curve of each cluster to the number of USFs in this cluster and 

then summed the curves of the scaled clusters, separately for C57BL/6J and BalbC 

mice. This analysis yielded PSD curves (Fig. 2I) that were highly similar to those 

achieved using the manually extracted USVs (Fig. 2H), also demonstrating a clear 

differences between the two strains thus further validating the reliability of the 

TrackUSF methodology. 

Overall, the TrackUSF methodology enabled automated and time efficient analysis of 

mating calls in mice in a manner that accurately capture most emitted USVs. 

Moreover, the number of USFs identified using this methodology correlated very well 

with the number of USVs detected by the traditional USV-based analysis and the 

spectral characterization of calls were shown to be very similar between both 

methodologies.  

 

TrackUSF reveals modified vocalizations during social interactions in Shank3-

deficient rats 

Following the validation of the TrackUSF methodology using mice mating calls, we 

examined the ability of this methodology to reveal modified vocalization activity 

during social interactions in Shank3-deficient rats, a novel rat model of ASD (Harony-

Nicolas et al., 2017). During male-male social interactions, adult rats emit relatively 
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high rate of variable USVs, generally divided into two categories: (1) the "22 kHz 

alarm calls", which are associated with negative states and aversive situations and are 

characterized by low pitch (20-30 kHz) and prolonged durations (150-3000 ms) and 

(2) the pro-social "50 kHz play calls", which are further divided into flat and highly 

modulated (trills) USVs and are associated with positive states and appetitive 

situations and are characterized by high pitch (40-80 kHz) and short durations (10-150 

ms) (Brudzynski, 2009; Knutson et al., 2002; Portfors, 2007; Wohr et al., 2017). To 

record such USVs, we conducted experiments comprised of 10-min long encounters 

between dyads of adult male rats of the same genotype. The encounters were 

simultaneously video- and audio-recorded by a video camera and an ultrasonic 

microphone, respectively, located both above the arena (Supplemental Fig. 2). About 

half of the experiments comprised encounters between unfamiliar (novel) animals and 

the other half between familiar animals (cage-mates). Besides the three genotypes of 

Shank3-deficient rats (wild-type (WT), heterozygous (Het) and homozygous (KO)), 

we performed similar experiments with age-matched adult male Sprague Dawley 

(SD) rats. Overall, we recorded 109 experimental sessions. The number of 

experiments conducted with each genotype in each familiarity level (cagemate/novel) 

is detailed in Fig. 3A. Note that the relatively larger number of Het sessions reflects 

their abundance in the litters. 
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Figure 3: Modified pitch of ultrasonic vocalization activity revealed by our novel methodology in 

Shank3-Het and KO  

A) A table that details the various types of social encounters and the number of sessions analyzed 

for each encounter type. 
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B) 3D t-SNE analysis of all USFs recorded during all sessions, following MFCC transformation. 

Each UFS is represented by a dot, color-coded for the genotype and familiarity level. Black 

numbers represent the distinct clusters. Note the clear separation of cluster 1, which included 

non-vocal signals defined as noise. 

C) PSD analysis of all distinct clusters shown in B. The number of sessions represented by >10 

USFs in each cluster, as well as the total number of USFs in each cluster, are detailed in the 

figure legend. Note the continuous spectrum in the 25-45 kHz range created by clusters 4-14. 

D) Examples spectrograms showing USFs from several clusters, each marked as the number of 

the cluster it is associated with, superimposed by the TrackUSF software on their 

corresponding noise (i) or USVs (ii-vi) signals. Note the trill-like appearance of USFs from 

cluster 16. 

E) Examples of vicinity curves describing the probability of a USF from any cluster (color coded 

for the distinct clusters) to appear before or after USF from a given cluster, across the three 

genotypes of Shank3-deficient rats. Note the stability across genotypes exemplified for 

clusters 9 (left) and 15 (middle), in contrast to the growing tendency of other clusters to 

combine with cluster 16 in Het and mainly KO animals. 

All audio clips were pooled and analyzed together by TrackUSF using a threshold of 

2.7. As apparent in Fig. 3B, where each USF is represented by a single dot, color-

coded for genotype/familiarity level, some clusters of USFs (e.g. 15, 16) included 

significant representation of all types of experimental sessions (all genotypes and both 

familiarity levels). Nonetheless, other clusters (e.g. 4-14) included almost solely USFs 

of Het or KO rats. These results suggested a distinct type of USVs emitted during 

social encounters between Shank3-deficient rats and their WT littermates or SD rats. 

To further examine this possibility, we separately analyzed the USFs represented in 

each cluster by PSD analysis (Fig. 3C). Similar to our analysis of mice mating calls 

(Fig. 1), cluster 1, which was clearly separated from all other clusters and included 

data from all genotypes, comprised USFs of variable frequencies at the lower range. 

By examining their appearance in the spectrograms, USFs of cluster 1 were found 
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again (like in mice mating calls) to be non-vocal sounds (noise, see example in Fig. 

3Di), and therefore this cluster was excluded from all further analyses. Clusters 2 and 

3 were also excluded from this and other downstream analysis because they included 

USFs originated from only two experimental sessions (the number of experimental 

session representing each cluster are detailed in Fig. 3C). Clusters 4-14, which 

contained mainly USFs from Het and KO rats, displayed relatively sharp, well-

defined peaks between 20-40 kHz. By their appearance in the spectrograms, USFs of 

these clusters seem to represent variations on the so-called "22 kHz alarm calls" (Fig. 

3Dii-iv), thought to be associated with aggression and alarm (Brudzynski, 2013; 

Knutson et al., 2002; Portfors, 2007; Wohr and Schwarting, 2013). In contrast, 

clusters 15 and 16, which showed much wider PSD peaks ranging between 50-90 kHz 

(Fig. 3C), were found by us to represent the so called "50 kHz play calls" (Fig. 3Dv-

vi), which as noted above, were previously associated with pro-social affiliative 

behavior (Brudzynski, 2013; Knutson et al., 2002; Portfors, 2007; Wohr and 

Schwarting, 2013). In order to examine if USFs from all other clusters (4-16) tend to 

appear in certain combinations, we calculated their likelihood to appear before or after 

a USF from a given cluster (hereafter termed vicinity), within a time window of 0.5 

sec for each direction (Fig. 3E, Supplemental Fig. 3, color coded for each cluster). We 

found that USFs from clusters 4-14  had variable tendencies to appear in certain 

combinations (see for example Fig. 3E – left panels, for cluster 9), but the highest 

likelihood was for repetitive appearance of USFs from the same cluster, as reflected 

by the high amplitude of their own vicinity peak (middle peak in each representative 

graph in Fig. 3E and Supplemental Fig. 3). This likelihood is called by us 

repeatability and is further explored below. USFs of cluster 15 showed low vicinity 

with USFs from other clusters in all genotypes (Fig. 3E – middle panels). 
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Interestingly, while cluster 16 in WT rats showed the same pattern as of cluster 15, in 

Het and even more in KO animals this cluster showed moderate vicinity with USFs 

from other clusters (Fig. 3E – right panels), suggesting a deviation from pure pro-

social calls in Het and KO animals, which will be further explored below. It is 

important to note, however, that no clear aggressive behavior was spotted by 

observers that examined all video clips.  

 

Shank3-deficient rats emit higher numbers of low-pitch vocalization fragments 

 

 

Figure 4: Higher numbers of 

USFs detected for Shank3-Het 

and KO rats, as compared to 

WT littermates and SD rats. 

A) Distributions of the 

sessions of each of the four 

genotypes examined based on 

the total number of USFs 

(excluding noise) that was 

detected in each session.  

B) Proportions of sessions 

with more (red) or less (blue) 

than 600 USFs of all clusters for 

the Shank3-Het and KO rats and 

their WT littermates, analyzed 

separately for dyads of novel 

animals and cagemates. 
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We next examined if the number of detected USFs ranged between the various 

genotypes (Fig. 4A). Our analysis demonstrated that while all SD rats displayed <200 

USFs, a tri-modal distribution was found in the Shank3-Het, KO and WT littermates, 

with many of them displaying >200 USFs. Nevertheless, it became clear that there 

were only few sessions of WT rats with >400 USFs, while most KO sessions had 

>600 USFs. To further explore this tendency, we categorized each session of the three 

genotypes of Shank3-deficient rats according to the number of detected USFs to low 

(<600) and high (>600) and examined the proportions of each genotype in these 

categories separately for cagemates and novel sessions. As apparent in Fig. 4B, while 

WT and Het animals showed a rather similar proportion of 14-27% sessions with 

>600 USFs, in KO animals more than 50% of the sessions were with >600 USFs. This 

tendency was apparent in all sessions, regardless of the familiarity between the 

animals (novel animals or cagemates). Statistical analysis revealed a significant 

difference between the three genotypes (Chi-square test, χ2 (5)=14.874, p=0.0109), 

with no familiarity-dependent differences. We therefore combined the two familiarity 

levels and analyzed the statistical differences between the three genotypes. We found 

a statistically significant difference between the three genotypes (Chi-square test, χ2 

(2)=12.412, p=0.002). A post hoc analysis revealed a significant difference between 

KO animals and the two other groups (KO:Het - p=0.003; KO:WT - p=0.019), with 

no difference between WT and Het animals. We further examined this tendency 

separately for each of the clusters using a slightly more detailed categorization. As 

shown in Fig. 5A for every second cluster (see Supplemental. Fig. 4 for all 4-14 

clusters), quantities of USFs from clusters 4-14, which seemed to represent the 22 

kHz-like USVs, were differentially distributed between the genotypes. While WT 

animals showed very restricted numbers of sessions with >50 USFs, KO animals 
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displayed high numbers of such sessions and Het animals were in between WT and 

KO animals. In contrast, clusters 15 and 16, which seemed to represent the 50 kHz-

like USVs, were similarly distributed between the 

three distinct genotypes (Supplemental Fig. 5A). 

Thus, Shank3-deficient rats emit more 22 kHz-like 

USVs as compared to their WT littermates. 

Figure 5: The abundance and 

repeatability of USFs associated with 

Shank3-Het and KO rats, correlates 

with their pitch. 

A) Proportions of sessions according 

to the numbers of USFs of every second 

cluster of clusters 4-14 for Shank3-Het and 

KO rats and their WT littermates 

(combining sessions of novel animals and 

cagemates). Note the gradual increase in 

proportion of sessions with high numbers 

of USFs, specifically exhibited by Het and 

KO animals. 

B) A statistically significant positive 

correlation was found between the number 

of sessions and PSD peak frequency of all 

the 4-14 clusters for Shank3-Het and KO 

rats, combined. 

C) Repeatability curves of each of 

the clusters shown in A, combined for 

Shank3-Het and KO animals. Note the 

gradual decrease in curve width with 

cluster number. 

D) A statistically significant negative 

correlation was found between the half-

width of the repeatability curve and PSD 

peak frequency of all the 4-14 clusters for 

Het and KO animals, combined. 
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A closer look into these results suggested that there is a gradient in the number of 

sessions contributing for more than 50 USFs in the various clusters, with generally 

higher numbers of sessions for clusters representing high-pitch calls (Fig. 5A). In 

agreement with this observation, our statistical analysis revealed a statistically 

significant positive correlation (Pearson correlation, R2=0.77, p<0.0001) between the 

number of sessions contributing >10 USFs for a given cluster and the PSD peak 

frequency of this cluster (Fig. 5B), suggesting that high-pitch calls are more common 

among the various sessions. We also noticed a similar gradient, when calculating the 

probability of USFs to follow or precede other USFs of the same cluster 

(repeatability) (Fig. 5C, Supplemental. Fig. 5B for clusters 15,16). We therefore 

calculated the half-width of this repeatability curve for each cluster, and used it as a 

proxy for the duration of USVs composed of repeated appearances of the same USF. 

This analysis was done for Het and KO animals together, as they showed very similar 

repeatability curves (Supplemental. Fig. 4B), while for WT animals we did not have 

enough calls to perform such analysis for all clusters. A statistically significant 

negative correlation (Pearson correlation, R2=0.78, p<0.0001) was revealed between 

the PSD peak frequency and repeatability half-width of each cluster (Fig. 5D), 

suggesting that longer USVs underlie low-pitch USFs. Taken together, these results 

suggest that Shank3-deficient animals (Het and KO animals) exhibit spectrum of a 

behavioral impairment expressed by their modified social vocalization. Within this 

spectrum, a stronger impairment, exhibited by fewer animals is reflected by calls 

closer to 22 kHz USVs in both their pitch (low) and duration (high), while weaker and 

more common levels of impairment are reflected by USVs that are closer to 50 kHz 

calls in both pitch and duration.  
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The modified vocalizations of Shank3-deficient rats are associated with social 

interactions 

Finally, in order to assess whether the modified vocalization activity of Shank3-

deficient rats is related to interaction between the animals, we examined, separately 

for each genotype, the distribution of USFs between periods of interaction and periods 

of no interaction. We first analyzed the video data using automated tracking system to 

identify events of physical interaction within each dyad (Fig. 6A and Methods). We 

then divided the interaction time to 50 msec bins and examined for each time bin 

whether it did or did not contain any USFs. As shown in Fig. 6B left panel, we found 

a statistically significant higher proportion of interaction time associated with USFs in 

KO animals, as compared to both WT and Het animals (Kruskall-Wallis test: χ2 

(2)=6.713, p=0.022). No such difference was found when the same analysis was 

performed for time of no interaction between the animals (Fig. 6B right panel; χ2 

(2)=4.912, p=0.0857). When this analysis was separately done for each cluster (Fig. 

6C), it became apparent that this is mainly due to clusters 4-14, representing the 22 

kHz-like USVs. Taken together, our data suggest that compared to their Het and WT 

littermates, Shank3-KO animals have an especially high tendency to emit 22 kHz-like 

USVs while interacting with each other. As these calls are associated with aggressive 

or defensive behaviors (Brudzynski, 2013; Knutson et al., 2002; Portfors, 2007; Wohr 

and Schwarting, 2013), this may suggest that as compared to interactions between 

their WT and Het littermates, Shank3-KO rats are less affiliative.  
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Discussion 

Mice and rats are commonly used to model human pathological conditions. Under 

specific social contexts, these rodents emit various kinds of vocalizations, mostly 

within the ultrasonic range, which reflect the animal's affective state and modulate 

social interactions (reviewed in Portfors, 2007). Given the relative simplicity of audio 

recording from animal cages, modified social vocalizations of rats and mice may 

serve as an excellent readout of changes in social behavior or emotional state 

following various manipulations (Fischer and Hammerschmidt, 2011b; Schwarting 

Figure 6: Shank3-KO rats show higher 

tendency for modified ultrasonic 

vocalization during social interaction. 

A) Representative pictures of 

animals during interaction (left) or no 

interaction (right) states, as captured by 

the video camera. Note the software-

generated body contours used for the 

behavioral analysis. 

B) Left: The fraction of social 

interactions time that involves ultrasonic 

vocalizations (analyzed in 50 ms bins), 

averaged across all session separately for 

each genotype (combining sessions of 

novel animals and cagemates).  

Right: Same as left, for time of no social 

interaction. 

C) As in A, separately analyzed for 

each cluster.  
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and Wohr, 2012; Wohr and Scattoni, 2013). Yet, the efficiency of such approach is 

limited, mainly due to the laborious methodologies used for analysis of rodents' 

ultrasonic vocalizations. (Brudzynski, 2009; Heckman et al., 2016; Portfors, 2007). 

Recently, several computerized tools for automated or semi-automated detection and 

categorization of USVs were reported (Barker et al., 2014; Burkett et al., 2015; 

Grimsley et al., 2013; Reno et al., 2013; Van Segbroeck et al., 2017). Nevertheless, 

these methodologies are focused on deciphering the specific behavioral information 

encoded by the highly variable structures of USVs, the repertoire of which seem to 

get wider and wider with more and more studies performed (Burkett et al., 2015; Holy 

and Guo, 2005; Scattoni et al., 2011; Van Segbroeck et al., 2017; Wright et al., 2010). 

Yet, USV-focused analysis, as performed by current methodologies, is not suited for 

identifying social behavioral changes associated with pathological conditions or 

therapeutic interventions. To be able to identify such changes, there is a need for an 

efficient and automated methodology to detect differences in social vocalizations 

between experimental and control groups of animals. Here we developed a novel 

approach to explore changes in vocalization activity between groups of animals, by 

avoiding a direct identification of discrete USVs and rather analyzing the signature of 

vocalization activity in an automated manner. To this end, we adopted a methodology 

commonly used for human speech detection (Arias-Londono et al., 2011; Mei et al., 

2019; Nasr et al., 2018; Vergin et al., 1999) and embedded it in our TrackUSF 

software. This methodology is based upon breaking the audio recording to short (6 

msec) fragments, identifying ultrasonic fragments (USFs), transforming them using 

MFCC and clustering them via t-SNE analysis. The graphical user interface (GUI) of 

our open-source software enables loading a large number of audio clips for analysis. 

This feature is crucial for detecting changes between groups of animals, as the t-SNE 
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analysis requires the inclusion all the examined audio clips at once to allow clustering 

relative to the entire ensemble of detected USFs. Following the t-SNE analysis, our 

software allows an easy extraction of specific clusters for further analysis as well as 

examination of USFs from any combination of clusters by their overlay on the 

spectrogram of a given audio clip. 

We tested the efficiency of TrackUSF by analyzing two distinct sets of vocalization 

types, mice mating calls and rats male-male interaction calls, recorded using two 

different ultrasonic microphones. In both cases (Fig. 1B and Fig. 3B), we found that 

USFs representing non-vocal noise appeared in a distinct cluster, separated from all 

other USFs, which enabled their automated exclusion from further analysis. The 

ability of TrackUSF to automatically separate noise from all other types of 

vocalizations is a substantial advantage over previous methods, which spares the 

tedious manual steps of de-noising that is critical for analyzing these type of datasets. 

Furthermore, we found that USFs of other clusters, aside from the noise cluster, 

represent genuine USVs of various structures, with distinct clusters representing 

mainly USFs of different frequencies (Fig. 1C and Fig. 3D).  

To further validate our methodology, we directly compared the analysis of mice 

mating calls using TrackUSF to the analysis of the same audio clips using the 

traditional methodology of manual USVs extraction by a trained observer. We found 

that even with the highest threshold used by us (threshold=3.5), TrackUSF was able to 

detect about 50% of the manually detected USVs and that this proportion rose to 

above 80% with lowering the threshold to 1 (Fig. 2C), with no change in the false 

positive detection rate (<1% of all detected USFs; Fig. 2E). The relatively low 

proportion (<50%) of total USV duration which is covered by USFs may be due to the 

fact that many USVs are broken by short periods of silence, which are not covered by 
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USFs (see Fig. 1Ciii for an example). We also found a high correlation between the 

numbers of USFs and those of manually detected USVs, suggesting that changes in 

the number of USFs can reliably reflect changes in the number of the USVs 

underlying them (Fig 2D). Finally, by analyzing the mean frequency for each cluster 

and combining it for all clusters, we could detect the same differences in main USV 

frequency between C57Bl/6J and BalbC mice, as identified by analyzing manually 

detected USVs (Fig. 2H-I). These results confirm the efficiency of TrackUSF not only 

for detection of changes in ultrasonic vocalization activity but also for 

characterization of these changes.  

To demonstrate the efficiency of TrackUSF for detecting modified social 

vocalizations in animal models of pathological conditions, we used it to study 

possible modified social vocalizations during male-male social interactions in a 

recently presented rat model of ASD, the Shank3-deficient rat (Harony-Nicolas et al., 

2017). These rats were previously reported to exhibit impaired social approach 

behavior following playback of pro-social ultrasonic vocalization (Berg et al., 2018). 

The TrackUSF analysis revealed a significant number of clusters (4-14) that were 

mostly enriched with USFs generated by Het and KO animals (Fig. 3B) and displayed 

sharp peaks ranging between 25-45 kHz in the PSD analysis (Fig. 3C). In contrast, 

clusters 15 and 16 that included similar numbers of USFs from all genotypes, created 

wider peaks ranging between 50-90 kHz. This frequency range and the unique trill-

like appearance of USFs from cluster 16 align well with  the characteristics of the 50 

kHz pro-social USVs, associated with social approach and reward (Brudzynski and 

Pniak, 2002; Burgdorf et al., 2001; Willuhn et al., 2014; Wohr and Schwarting, 2007, 

2013). Yet, clusters 4-14 could not be simply identified as 22 kHz alarm calls, 

associated with aggressive behavior (Burgdorf et al., 2008; Saito et al., 2016; 
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Schwarting and Wohr, 2012; Takeuchi and Kawashima, 1986), as their peaks created 

a rather continuous spectrum between 25-45 kHz (Fig. 3C). 

We therefore further analyzed the duration of the USVs underlying clusters 4-14. To 

that end, we used the ability of TrackUSF to inform about the time point of each USF 

and calculated the tendency of USFs from each cluster to appear in a repeated 

manner, termed by us repeatedly (Fig. 5C). We then examined the relationships 

between the PSD peak frequency of each cluster and the half-width of its repeatability 

curve, which served us as a proxy for the duration of the underlying USV and found a 

negative correlation for clusters 4-14 |(Fig. 5D). Accordingly, USVs associated with 

clusters with low-frequency peaks tended to be extended, thus resembling the 

prolonged 22 kHz calls, while USVs associated with clusters with high-frequency 

peak were relatively short, similarly to 50 kHz calls (Fig. 3D). Opposite relationship 

was found between the frequency of the cluster PSD peak and the number of sessions 

contributing USFs to it; the higher the PSD peak frequency of a given cluster, the 

more sessions it comprised (Fig. 5B). Moreover, by counting the number of the 

distinct types of USFs for the distinct session we revealed that Het, and especially KO 

animals, emit many more USFs from clusters 4-14, than their WT littermates (Fig. 

5A). Thus, during male-male interactions, Shank3-deficient rats seem to make 

enhanced use in a spectrum of vocalizations, leaning towards lower frequencies and 

longer durations (22 kHz-like calls). Such calls are rare in WT animals and absent 

from vocalizations made by SD rats, which make almost only 50 kHz pro-social call 

in similar experimental conditions.  

To summarize, we presented here a novel methodology and open-source 

computerized tool, termed TrackUSF that enables automated analysis of ultrasonic 

vocalization activity of rats and mice. This methodology, which avoids analyzing 
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discrete USVs, is mainly suited for detecting differences in vocalization activity 

between groups of animals. We validated this methodology by analyzing mice mating 

calls and showing that TrackUSF is capable of identifying most manually detected 

USVs and characterizing differences between C57BL/6J and BalbC mice. We then 

demonstrated the capability of TrackUSF to detect and characterize, for the first time, 

modified social vocalization activity in Shank3-deficient rats, a rat model of ASD. We 

believe that this methodology would enable large-scale analysis of modified social 

vocalization activity in animal models of pathological conditions. 
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Materials and Methods 

Animals 

Mice: BalbC and C57B animals were bred in a clean plastic chambers 

(GM500, Tecniplast, Italy) at 22°C and a 12-h light/12-h dark cycle (light on at 7 am) 

and received food and water ad libitum. All cages contain standard wood chip 

bedding, and cotton wool bedding material.  

Rats: Subjects were naive Sprague Dawley (SD) male rats (8–12 weeks), 

commercially obtained (Envigo, Israel) and housed in groups of three to five animals 

per cage. Shank3-deficient rats, were a generous gift by Dr, Joseph Buxbaum at the 

Icahn School of Medicine at Mount Sinai. They were bred in a local colony and 

housed under the same condition described above. Wildtype (WT), heterozygous 

(Het) and knock-out (KO) littermates were offspring of heterozygous mating pairs. 

All rats were kept on a 12-h light/12-h dark cycle, light on at 9 p.m., with ad libitum 

access to food and water. Behavioral experiments took place during the dark phase 

under dim red light.  

All experiments were approved by the Institutional Animal Care and Use Committee 

(IACUC) of the University of Haifa. 

Experiments 

Mice: Vocal communications were recorded using a 1/4 inch microphone, connected 

to a preamplifier and an amplifier (Bruel & Kjaer) in a custom-built sound-shielded 

box. Vocalizations were sampled at 250 kHz with a CED Micro 1401-3 (Cambridge 

Electronic Design Limited, Sunnyvale, CA). 

In each session, a pair of mice were kept in their home cage and the cage was placed 

within a custom soundproof box to minimize background noise. The microphone, 

inserted through the soundproof box lid, was suspended just above the home cage. 
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The system was programmed to record 10 minutes every hour for a duration of 12 

hours that started after the first encounter between the animals. The audio clips were 

then analyzed offline in two stages (see below). Collectively, we recorded from 6 

mice pairs. For each of these pairs, one clip that comprised the highest amount of 

vocalizations among all other clips was used for the comparison with the data 

obtained by our TrackUSF software. 

Rats: The experimental setup consisted of a black Plexiglass arena (50 × 50 × 40 cm) 

placed in the middle of an acoustic chamber (90 × 60 × 85 cm). A compute-connected 

high-quality monochromatic camera (Flea3 USB3, Point Grey), equipped with a 

wide-angle lens, was placed at the top of the acoustic chamber, enabling a clear view 

and recording of the rat’s behavior using a commercial software (FlyCapture2, Point 

Grey). Video recordings were carried at a rate of 30 frames per second. Ultrasonic 

vocalizations were recorded using a condenser ultrasound microphone 

(Polaroid/CMPA, Avisoft) placed high enough above the experimental arena 

(Supplemental Fig. 2) so the receiving angle of the microphone can cover the whole 

arena. The microphone was connected to an ultra-sound recording interface 

(UltraSoundGate 116Hme, Avisoft), which was plugged into a computer equipped 

with the recording software Avi-soft Recorder USG (sampling frequency: 250 kHz; 

FFT-length: 1024points; 16-bit format). Synchronization between the video and audio 

recordings was achieved by making a hand click under the camera immediately after 

introducing the two rats to the arena.   

Video analysis (rats) 

To track the interaction between dyads of same-age and same-genotype rats, we 

developed a new algorithm written in MATLAB (2017a) and added it to our 

previously published (Netser et al., 2017) Tracking software (“TrackRodent”, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 13, 2019. ; https://doi.org/10.1101/575191doi: bioRxiv preprint 

https://doi.org/10.1101/575191
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

https://github.com/shainetser/TrackRodent). The main goal of this algorithm was to 

track the boundaries of the animals and determine for each frame whether they are 

merged (thus only one is detected = “interaction”) or not (thus two boundaries are 

detected = “no interaction”, Fig 6A).  

All video analyses were done after correcting the raw behavioral data by skipping any 

gap of < 15 frames (0.5 s) in investigation and not considering it as breaking the 

investigation bout.  

Audio analysis 

Manual analysis of mouse mating calls: Audio clips were analyzed offline in two 

stages. In the first stage single calls were extracted and the second stage of analysis 

was set to determine the spectral and temporal characteristics of each call in order to 

evaluate the vocal repertoire of the recorded mice. Spectral and temporal analysis of 

each mouse strain vocalizations was performed by creating spectrograms of the 

recorded files and marking the onset and offset of each calls within each recording. It 

was found in previous researches (Liu, Miller et al. 2003) that the minimal time 

interval between two distinct calls is approximately 800 msec, therefore we 

determined that a call ends and a new begins when there is at least an inter syllable 

interval of 1000 msec between the last syllable of the call and the first syllable of the 

following call. Time stamps were extracted and single call clips were created. These 

clips underwent further analysis of syllable extraction process in which every onset 

and offset of each syllable were listed to extract data regarding the temporal 

properties of the calls and aid in filtering the audio files and extracting spectral 

properties.  

Filtering the audio vectors was possible using the syllable extraction process 

mentioned above, it allowed us to separate the audio files into two vectors: one 
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containing emitted vocalizations with background noise and the second containing the 

inter-syllable intervals segments which contained only the background noise. 

Subtracting the later vector from the former produced a cleaner audio vector that was 

used for spectral analysis. All vectors of ultrasonic vocalizations were normalized to 

the peak value in the range of 30-100 kHz. 

TrackUSF  

Algorithm: Mel-frequency features represent the short-term power spectrum of a 

sound based on a linear cosine transform of a log power spectrum on a nonlinear Mel-

scale of frequency. In this method, the frequency bands are equally spaced according 

to the Mel-scale. In our study, we expanded the Mel-frequency Cepstrum approach to 

represent rodents ultrasonic vocalizations using the Matlab function 'mfcc' 

(https://www.mathworks.com/matlabcentral/fileexchange/32849-htk-mfcc-matlab). 

We changed the lower and upper frequency limits to be between 15 kHz and 100 kHz, 

with the number of cepstral coefficients enlarged respectively. To analyze these 

features, we used dimensionality reduction by employing t-Distributed Stochastic 

Neighbor Embedding (t-SNE) algorithm (van der Maaten and Hinton, 2008), an 

algorithm that is particularly efficient for the visualization of high dimensional 

datasets. 3D t-SNE models each high dimensional object by a point in a three 

dimensions space to such a degree that similar objects are modeled by nearby points, 

while dissimilar objects are modeled by distant points with high probability. In our 

analysis, we used the function 'tsne' in Matlab with the default algorithm 'barneshut' 

and perplexity of 500 points. 

The algorithm was embedded into a Graphical User Interface (GUI) written in 

MATLAB (Supplemental. Fig. 1 and the supplemental document "TrackUSF user 

manual"). Through the GUI, the user chooses sets of audio files for analysis (WAV 
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format), divided according to their group identity. The analysis is then run and outputs 

the MFCC analyzed data, the t-SNE analyzed data, and the audio files in a MATLAB 

format (“.mat”). Next, the user can open those files for visualization of the data in 3D 

and for manually defining clusters on top of the t-SNE image result. After defining 

the clusters, the user can present the detected USFs on the spectrograms of the 

original data. 

All variations of the software are deposited in GitHub under the following links:  

https://github.com/shainetser/TrackUSF 

Spectrograms were computed using the standard ‘spectrogram‘ function with a 

window of 512 samples, 50% overlap and sample rate of 250kHz. Power spectral 

density (PSD) for the different clusters was performed using a short-time Fourier 

transform with the same parameters as for the spectrograms. First, PSDs were 

performed for each USF separately. Then, the mean PSD for each cluster was 

calculated by averaging the PSDs of all USFs from the same cluster.  

Calculating the probability of USFs occurrence relative to USFs from their own 

cluster or from other clusters was done in a time window of 6 msec for 0.5 sec before 

and after each USF detection. The synchronization between USFs and physical 

interaction was examined in a time window of 50 ms.  

Statistics:  

Data is presented as the mean ± SEM unless otherwise noted. Differences in the 

means of three or more groups were tested using one-way or two-way analysis of 

variance (ANOVA) followed by Bonferroni post hoc tests, when a significant main 

effect was found. In case of violation of ANOVA models assumptions (including lack 

of normal distributions), Kruskal-Wallis test was performed for comparing 

distributions of the groups, followed by a post hoc Dunn test with Bonferroni 
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adjustment, when a significant result was found. When using a cutoff based on 

biological assumption, a Chi square test was performed. When significant results were 

obtained, additional Chi square tests were performed between each per of groups, 

adjusted by Bonferroni correction.    
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Supplemental Figures 

 

Supplemental Figure 1: The Graphical User Interface (GUI) of the MATLAB-based TrackUSF 

software. 
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Supplemental Figure 2: A picture depicting the experimental system used for recording social 

vocalizations in rats. 
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Supplemental Figure 3: Vicinity 

curves for all clusters, across the 

three genotypes (WT-upper, Het-

middle and KO-lower) of Shank3-

deficient rats. In the case of WT 

animals, clusters 4-14 did not have 

enough representation for such 

analysis. 
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Supplemental Figure 4:  

A) Proportions of sessions according to the numbers of USFs of clusters 4-14 they comprise, for 

the three genotypes of Shank3-deficient rats (novel animals and cagemates combined). 

B) Repeatability curves of clusters 4-14, for Het (left), KO (middle) and combined Het and KO 

animals (right). In the case of WT animals, clusters 4-14 did not have enough representation 

for such analysis. 
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Supplemental Figure 5: Proportions of sessions according to the numbers of USFs (A) and 

repeatability (B) of clusters 15-16 for all three genotypes of Shank3-deficient rats (see Fig. 5A-B for 

similar analyses of clusters 4-14). 
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