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Abstract—Optimal superposition of protein structures is cru-
cial for understanding their structure, function, dynamics and
evolution. We investigate the use of probabilistic programming
to superimpose protein structures guided by a Bayesian model.
Our model THESEUS-PP is based on the THESEUS model, a
probabilistic model of protein superposition based on rotation,
translation and perturbation of an underlying, latent mean
structure. The model was implemented in the deep probabilistic
programming language Pyro. Unlike conventional methods that
minimize the sum of the squared distances, THESEUS takes
into account correlated atom positions and heteroscedasticity (i.e.,
atom positions can feature different variances). THESEUS per-
forms maximum likelihood estimation using iterative expectation-
maximization. In contrast, THESEUS-PP allows automated max-
imum a-posteriori (MAP) estimation using suitable priors over
rotation, translation, variances and latent mean structure. The
results indicate that probabilistic programming is a powerful new
paradigm for the formulation of Bayesian probabilistic models
concerning biomolecular structure. Specifically, we envision the
use of the THESEUS-PP model as a suitable error model or
likelihood in Bayesian protein structure prediction using deep
probabilistic programming.

Index Terms—protein superposition, Bayesian modelling, deep
probabilistic programming, protein structure prediction

I. INTRODUCTION

In order to compare biomolecular structures, it is necessary
to superimpose them onto each other in an optimal way. The
standard method minimizes the sum of the squared distances
(root mean square deviation, RMSD) between the matching
atom pairs. This can be easily accomplished by shifting the
centre of mass of the two proteins to the origin and obtaining
the optimal rotation using singular value decomposition [1] or
quaternion algebra [2], [3]. These methods however typically

assume that all atoms have equal variance (homoscedastic-
ity) and are uncorrelated. This is problematic in the case
of proteins with flexible loops or flexible terminal regions,
where the atoms can posit high variance. Here we present
a Bayesian model that is based on the previously reported
THESEUS model [4]–[6]. THESEUS is a probabilistic model
of protein superposition that allows for regions with low and
high variance (heteroscedasticity), corresponding respectively
to conserved and variable regions [4], [5]. THESEUS assumes
that the structures which are to be superimposed are translated,
rotated and perturbed observations of an underlying latent,
mean structure M.

In contrast to the THESEUS model which features max-
imum likelihood parameter estimation using iterative ex-
pectation maximization, we formulate a Bayesian model
(THESEUS-PP) and perform maximum a-posteriori (MAP)
parameter estimation. We provide suitable prior distributions
over the rotation, the translations, the variances and the la-
tent, mean model. We implemented the entire model in the
deep probabilistic programming language Pyro [7], using its
automatic inference features. The results indicate that deep
probabilistic programming readily allows the implementation,
estimation and deployment of advanced non-Euclidean models
relevant to structural bioinformatics. Specifically, we envision
that THESEUS-PP can be used as a likelihood function in
Bayesian protein structure prediction using deep probabilistic
programming.

II. METHODS

A. Overall model

According to the THESEUS model [4], each observed
protein structure Xn is a noisy observation of a rotated and
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Fig. 1: The THESEUS-PP model as a Bayesian graphical
model. M is the latent, mean structure, which is an N -
by-3 coordinate matrix, where N is the number of atoms.
T is the translation. q is a unit quaternion calculated from
three random variables u sampled from the unit interval. R
is the corresponding rotation matrix. U is the among-row
variance matrix of a matrix-normal distribution. X1 and X2

are N -by-3 coordinate matrices representing the proteins to
be superimposed. Circles denote random variables. A lozenge
denotes a deterministic transformation of a random variable.
Shaded circles denote observed variables. Bold capital and
bold small letters represent matrices and vectors, respectively.

translated latent, mean structure M with noise En,

Xn = (M+En)Rn − 1NTn (1)

where n is an index that identifies the protein, R is a rotation
matrix, T is a three-dimensional translation, E is the error
and M and X are matrices with the atomic coordinate vectors
along the rows,

M =

 m0

. . .
mN−1

, Xn =

 xn,0
. . .

xn,N−1

 . (2)

Another way of representing the model is seeing Xn as
distributed according to a matrix-normal distribution with
mean M and covariance matrices U and V - one concerning
the rows and the other the columns.

The matrix-normal distribution can be considered as an
extension of the standard multivariate normal distribution from
vector-valued to matrix-valued random variables. Consider a
random variable X distributed according to a matrix-normal
distribution with mean M, which in our case is an N×3 matrix
where N is the number of atoms. In this case, the matrix-
normal distribution is further characterized by an N ×N row
covariance matrix U and a 3×3 column covariance V. Then,
X ∼MN (M,U,V) will be equal to

X = M+
√
UQ
√
V, (3)

where Q is an N × 3 matrix with elements distributed
according to the standard normal distribution.

To ensure identifiability, one (arbitrary) protein X1 is as-
sumed to be a fixed noisy observation of the structure M:

X1 ∼MN (M,U,V). (4)

The other protein X2 is assumed to be a noisy observation of
the rotated as well as translated mean structure M:

X2 ∼MN (MR− 1NT,U,V). (5)

Thus, the model uses the same covariance matrices U and V
for the matrix-normal distributions of both X1 and X2.

B. Bayesian posterior

The graphical model of THESEUS-PP is shown in Figure
1. The corresponding Bayesian posterior distribution is

p(R,T,M,U|X1,X2) ∝
p(X1,X2|M,R,T,U)p(M)p(T)p(R)p(U) =

p(X1|M,U)p(X2|MR− 1NT,U)

p(M)p(T)p(R)p(U). (6)

Below, we specify how each of the priors and the likelihood
function is formulated and implemented.

C. Prior for the mean structure

Recall that according to the THESEUS-PP model, the atoms
of the structures to be superimposed are noisy observations of
a mean structure M. Typically, only Cα atoms are considered
and in that case, N corresponds to the number of amino acids.
Hence, we need to formulate a prior distribution over the
latent, mean structure M.

We use an uninformative prior for M. Each element of
M is sampled from a Student’s t-distribution with degrees
of freedom (ν = 1), mean (µ = 0) and a uniform diagonal
variance (σ2 = 3). The Student’s t-distribution is chosen
over the normal distribution for reasons of numerical stability:
the fatter tails of the Student’s t-distribution avoid numerical
problems associated with highly variable regions.

D. Prior over the rotation

In the general case, we have no a priori information on
the optimal rotation. Hence, we use a uniform prior over the
space of rotations. There are several ways to construct such
a uniform prior. We have chosen a method that makes use of
quaternions [8]. Quaternions are the 4-dimensional extensions
of the better known 2-dimensional complex numbers. Unit
quaternions form a convenient way to represent rotation matri-
ces. For our goal, the overall idea is to sample uniformly from
the space of unit quaternions. Subsequently, the sampled unit
quaternions are transformed into the corresponding rotation
matrices, which establishes a uniform prior over rotations.

A unit quaternion q = (w, x, y, z) is sampled in the
following way. First, three independent random variables are
sampled from the unit interval,

u0, u1, u2 ∼ U(0, 1). (7)
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Then, four auxiliary deterministic variables (θ1, θ2, r1, r2) are
calculated from u1, u2, u3,

θ1 = 2πu1, (8a)
θ2 = 2πu2 (8b)

r1 =
√
1− u0, (8c)

r2 =
√
u0. (8d)

The unit quaternion q is then obtained in the following way,

q = (w, x, y, z)

= (r2 cos θ2, r1 sin θ1, r1 cos θ1, r2 sin θ2). (9)

Finally, the unit quaternion q is transformed into its corre-
sponding rotation matrix R as follows,

R =

[
w2+x2−y2−z2 2(xy−wz) 2(xz+wy)

2(xy+wz) w2−x2+y2−z2 2(yz−wx)
2(xz−wy) 2(yz+wx) w2−x2−y2+z2

]
(10)

E. Prior over the translation

For the translation, we use a standard trivariate normal
distribution,

T ∼ N (0, I3) (11)

where I3 is the three-dimensional identity matrix.

F. Prior over U

The Student’s t-distribution variance over the rows is sam-
pled from the half-normal distribution with standard deviation
set to 1.

σi ∼ N+(1). (12)

G. Likelihood

In our case, the matrix-normal likelihood of THESEUS
reduces to a product of univariate Student’s t-distributions.
Again, we use the Student’s t-distribution rather than the
normal distribution (as in THESEUS) for reasons of nu-
merical stability. Below, we have used trivariate Student’s t-
distributions with diagonal covariance matrices for ease of
notation. The likelihood can thus be written as

p(X1,X2 |M,T,R,U)

= p(X1 |M,U)p(X2 |M,T,R,U)

=
N∏
i=1

t1(x1,i |mi, σiI3)

× t1(x2,i | [MR− 1NT]i, σiI3), (13)

where the product runs over the matrix rows that contain the
x, y, z coordinates of X1,X2 and the rotated and translated
latent, mean structure M.

H. Algorithm

Algorithm 1 The Theseus-PP model.
. Prior over the elements of M
mi ∼ t1(0, σMI3), where i indicates the atom position
. Prior over the translation
T ∼ N (0, I3)
. Prior over rotation
uj ∼ U [0, 1], for j from 0 to 2
q← Quaternion(u)
R← RotationMatrix(q)
. Prior over diagonal covariance matrix U
σi ∼ N+(1)
. Likelihood over the N atom coordinates
x1,i ∼ t1(mi, σiI3))
x2,i ∼ t1([RM− 1NT]i, σiI3)

I. Initialization

Convergence of the MAP estimation can be greatly im-
proved by selecting suitable starting values for certain vari-
ables and by transforming the two structures X1 and X2 in
a suitable way. First, we pre-superimpose the two structures
using conventional least-squares superposition. Therefore, the
starting rotation can be initialized close to the identity matrix
(ie., no rotation). This is done by setting the vector u to
(0.9, 0.1, 0.9).

We further improve performance by initializing the mean
structure M to the average of the two pre-superimposed
structures X1 and X2.

J. Maximum a-posteriori optimization

We performed MAP estimation using Pyro’s AutoDelta
guide. For optimization, we used AdagradRMSProp [9], [10]
with the default parameters for the learning rate (1.0), momen-
tum (0.1) and step size modulator (1.0× 10−16). A fragment
of the model implementation in Pyro can be seen in Figure 3
in the Appendix.

Convergence was detected using Earlystop from Pytorch’s
Ignite library (version 0.2.0) [11]. This method evaluates
the stabilization of the error loss and stops the optimization
according to the value of the patience parameter. The patience
value was set to 25.

III. MATERIALS

Proteins

The algorithm was tested on several proteins from the
RCSB protein database [12] that were obtained from Nuclear
Magnetic Resonance (NMR) experiments. Such structures
typically contain several models of the same protein. These
models represent the structural dynamics of the protein in an
aqueous medium and thus typically contain both conserved
and variable regions. This makes them challenging targets
for conventional RMSD superposition. We used the following
structures: 1ADZ, 1AHL, 1AK7, 2CPD, 2KHI, 2LKL and
2YS9.
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IV. RESULTS

The algorithm was executed 15 times on each protein (see TABLE I) with different seeds. The computations where carried
on a Intel Core i7-8750H CPU 2.20GHz processor.

TABLE I: Results of applying THESEUS-PP to the test structures. First column: PDB identifier. Second column: the number of
Cα atoms used in the superposition. Third column: the model identifiers. Fourth column: mean convergence time and standard
deviation. Last column: Number of epochs.

PBD ID Length
(Amino Acids)

Protein
Models

Average
Computational Time

(seconds)
Epochs

1ADZ 71 0 and 1 0.64± 0.15 210±45
1AHL 49 0 and 2 0.53± 0.119 166±36
1AK7 174 0 and 1 0.74± 0.23 222±67
2CPD 99 0 and 2 0.51± 0.0.093 161±30
2KHI 95 0 and 1 0.47±0.11 149±39
2LKL 81 0 and 8 0.59±0.092 187±30
2YS9 70 0 and 3 0.47±0.11 144±33

An example of a pair of superimposed structures is shown in Figure 2. For comparison, the superposition resulting from
the conventional RMSD method, as calculated using Biopython [13], is shown on the left (Figure 2a). The THESEUS-
PP superposition is shown on the right (Figure 2b). Note how the former fails to adequately distinguish regions with high
from regions with low variance, resulting in poor matching of conserved regions. Additional, similar figures of superimposed
structures can be found in the Appendix.

(a) Kabsch-RMSD

2YS9

(b) Theseus-PP

(c)

Fig. 2: Protein superposition for two conformations of protein 2YS9 obtained from (a) conventional RMSD superimposition
and (b) THESEUS-PP. The protein in green is rotated (X2). The images are generated with PyMOL [14]. Graph (c) shows
the pairwise distances (in Å) between the Cα coordinates of the structure pairs. The blue and orange lines represent RMSD
and THESEUS-PP superposition, respectively.
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V. CONCLUSION

Probabilistic programming is a powerful, emerging
paradigm for probabilistic protein structure analysis, prediction
and design. Here, we present a Bayesian model for protein
structure superposition implemented in the deep probabilistic
programming language Pyro and building on the previously re-
ported THESEUS maximum likelihood model. MAP estimates
of its parameters are readily obtained using Pyro’s automated
inference engine.

The original THESEUS algorithm, which makes use of
maximum likelihood estimation using iterative expectation
maximization, is considerably faster with an average execution
time under 0.1 s. Although some of the longer execution time
in THESEUS-PP is due to the use of variational inference
and priors, it is clear that the flexibility and productivity of
a probabilistic programming language can come with a speed
penalty.

Recently, end-to-end protein protein structure prediction
using deep learning methods has become possible [15]. We
envision that Bayesian protein structure prediction will soon
be possible using a deep probabilistic programming approach,
which will lead to protein structure predictions with asso-
ciated statistical uncertainties. In order to achieve this goal,
suitable error models and likelihood functions need to be
developed and incorporated in these models. The THESEUS-
PP model can potentially serve as such an error model,
by interpreting M as the predicted structure and a single
rotated and translated X as the observed protein structure.
During training of the probabilistic model, regions in M that
are wrongly predicted can be assigned high variance, while
correctly predicted regions can be assigned low variance. Thus,
it can be expected that an error model based on THESEUS-
PP will make estimation of these models easier, as the error
function can more readily distinguish between partly correct
and entirely wrong predictions, which is notoriously difficult
for RMSD-based methods [16].
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VI. APPENDIX

# Prior over mean M, with N=number of atoms
M = pyro.sample("M", dist.StudentT(1,0,3).expand_by([N,3]).to_event(2))
# Prior over variances U
U = pyro.sample("U", dist.HalfNormal(1).expand_by([N]).to_event(1))
U = U.reshape(N,1).repeat(1,3).view(-1)
# Prior over translation T
T = pyro.sample("T", dist.Normal(0,1).expand_by([3]).to_event(1))
# Prior over rotation R
u = pyro.sample("u",dist.Uniform(0,1).expand_by([3]).to_event(1))
# Transformation: turn u via a unit quaternion into a rotation R
R = u_to_quat_to_R(u)
# Transformation: rotate and translate M for X2
M_RT = M @ R + T
# Likelihood
with pyro.plate("plate_students", N*3,dim= -1):

pyro.sample("X1", dist.StudentT(1, M.view(-1), U),obs=X1)
pyro.sample("X2", dist.StudentT(1, M_RT.view(-1), U), obs=X2)

Fig. 3: Code fragment from the THESEUS-PP implementation in Pyro. pyro.sample calls a primitive stochastic function from
which a named sample is drawn. expand_by specifies the shape of the batch that is to be drawn from the distribution. pyro.plate
declares the variables within a tensor dimension as conditionally independent, while to_event declares them as dependent.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/575431doi: bioRxiv preprint 

https://doi.org/10.1101/575431
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) Kabsch-RMSD

1ADZ

(b) Theseus-PP

(c)

Fig. 4: Protein superposition for two conformations of protein 1ADZ obtained from (a) conventional RMSD superimposition
and (b) THESEUS-PP. The protein in green is rotated (X2). The images are generated with PyMOL [14]. Graph (c) shows
the pairwise distances (in Å) between the Cα coordinates of the structure pairs. The blue and orange lines represent RMSD
and THESEUS-PP superposition, respectively.
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(a) Kabsch-RMSD

1AHL

(b) Theseus-PP

(c)

Fig. 5: Protein superposition for two conformations of protein 1AHL obtained from (a) conventional RMSD superimposition
and (b) THESEUS-PP. The protein in green is rotated (X2). The images are generated with PyMOL [14]. Graph (c) shows
the pairwise distances (in Å) between the Cα coordinates of the structure pairs. The blue and orange lines represent RMSD
and THESEUS-PP superposition, respectively.
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(a) Kabsch-RMSD

1AK7

(b) Theseus-PP

(c)

Fig. 6: Protein superposition for two conformations of protein 1AK7 obtained from (a) conventional RMSD superimposition
and (b) THESEUS-PP. The protein in green is rotated (X2). The images are generated with PyMOL [14]. Graph (c) shows
the pairwise distances (in Å) between the Cα coordinates of the structure pairs. The blue and orange lines represent RMSD
and THESEUS-PP superposition, respectively.
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(a) Kabsch-RMSD

2CPD

(b) Theseus-PP

(c)

Fig. 7: Protein superposition for two conformations of protein 2CPD obtained from (a) conventional RMSD superimposition
and (b) THESEUS-PP. The protein in green is rotated (X2). The images are generated with PyMOL [14]. Graph (c) shows
the pairwise distances (in Å) between the Cα coordinates of the structure pairs. The blue and orange lines represent RMSD
and THESEUS-PP superposition, respectively.
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(a) Kabsch-RMSD

2KHI

(b) Theseus-PP

(c) Theseus-PP

Fig. 8: Protein superposition for two conformations of protein 2KHI obtained from (a) conventional RMSD superimposition
and (b) THESEUS-PP. The protein in green is rotated (X2). The images are generated with PyMOL [14]. Graph (c) shows
the pairwise distances (in Å) between the Cα coordinates of the structure pairs. The blue and orange lines represent RMSD
and THESEUS-PP superposition, respectively.
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(a) Kabsch-RMSD

2LKL

(b) Theseus-PP

(c)

Fig. 9: Protein superposition for two conformations of protein 2LKL obtained from (a) conventional RMSD superimposition
and (b) THESEUS-PP. The protein in green is rotated (X2). The images are generated with PyMOL [14]. Graph (c) shows
the pairwise distances (in Å) between the Cα coordinates of the structure pairs. The blue and orange lines represent RMSD
and THESEUS-PP superposition, respectively.
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