1	Impact of Direct Acting Antivirals on Survival in Patients with Chronic Hepatitis C and
2	Hepatocellular Carcinoma
3	
4	William M. Kamp ¹ , Cortlandt M. Sellers ¹ , Stacey M. Stein ^{2,4} , Joseph K. Lim ³ , Hyun S.
5	Kim ^{1,2,4}
6	1. Division of Interventional Radiology, Department of Radiology and Biomedical Imaging,
7	Yale School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA
8	2. Division of Medical Oncology, Department of Internal Medicine, Yale School of
9	Medicine, 330 Cedar Street, New Haven, CT 06510, USA
10	3. Section of Digestive Diseases and Yale Liver Center, Yale School of Medicine, 330
11	Cedar Street, New Haven, CT 06510, USA
12	4. Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
13	
14	Corresponding Author:
15	Hyun S. Kim, MD
16	Yale School of Medicine
17	Yale Cancer Center
18	789 Howard Ave, TE 2-224
19	New Haven, CT 06519
20	Phone: (203) 785-6938
21	Fax: (203) 785-3024
22	Email: kevin.kim@yale.du
23	

24	
25	Summary
26	Direct-acting antiviral use is associated with increased survival in hepatitis C-related
27	hepatocellular carcinoma patients. Patients treated with direct-acting antiviral who achieved
28	hepatitis C cure had additionally increased survival versus those treated with direct-acting
29	antiviral who did not achieve hepatitis C cure. This study supports the use of direct-acting
30	antiviral for hepatitis C treatment in hepatocellular carcinoma patients.
31	
32	Disclosures: No authors have competing interests. The authors certify that they have no
33	affiliations with or involvement in any organization or entity with any financial interest in the
34	subject matter or materials discussed in this manuscript. Hyun S. Kim served on Advisory
35	boards for Boston Scientific and SIRTex.
36	
37	Author Contributions:
38	William Kamp - Data collection and analysis, writing of article, editing of article, final approval
39	of article
40	Cortlandt Sellers –Data collection and analysis, writing of article, editing of article, final approval
41	of article
42	Stacey Stein - Writing of article, editing of article, final approval of article
43	Joseph Lim – Writing of article, editing of article, final approval of article
44	Hyun Kim – Concept and design, supervision, funding, data analysis, writing of article, editing
45	of article, final approval of article
46	
47	Grant Support
48	WMK is supported by the Society of Interventional Radiology Foundation. HSK is supported by
49	the United States Department of Defense (CA160741). The funders had no role in study design,

50 data collection and analysis, decision to publish, or prepapration of the manuscript.

51

52 Abbreviations

- 53 DAA: Direct-acting antivirals; SVR12: 12-week sustained virologic response; HCC:
- 54 hepatocellular carcinoma; HCV: hepatitis c virus; OS: median overall survival; AJCC: American
- 55 Joint Committee on Cancer stage; MELD: Model for end stage liver disease; HR: hazard ratio

56 Abstract:

Background: To investigate the impact of direct-acting antivirals (DAA) and 12-week sustained 57 viral response (SVR12) in patients with hepatocellular carcinoma (HCC) and chronic hepatitis C 58 virus (HCV) infection. Methods: Retrospective analysis of HCC patients diagnosed from 2005 59 to 2016 at an urban tertiary-care hospital. Kaplan-Meier curves and multivariable Cox 60 61 proportional hazards models were used to assess survival. Results: 969 patients met inclusion criteria. 478 patients received interventional oncology treatment (catheter-based therapies, 62 ablation or combination locoregional therapies), 141 received supportive care (palliative or no 63 64 treatment), 125 underwent liver transplantation, 112 had tumor resection and 94 received chemotherapy or radiation as their primary treatment. Median overall survival of the cohort was 65 24.2 months (95% CI: 20.9-27.9). 470 patients had HCV (56%). 123 patients received DAA 66 therapies for HCV (26.2%), 83 of whom achieved SVR12 (68%). HCV-positive and HCV-67 negative patients had similar survival (20.7 months vs 17.4 months, p=0.22). Patients receiving 68 DAA therapy had an overall survival of 71.8 months (CI: 39.5-not reached) vs 11.6 months (CI: 69 9.8-14.5) for patients without DAA therapy (p < 0.0001). DAA patients who achieved SVR12 had 70 an overall survival of 75.6 months (CI: 49.2-not reached) vs the non-SVR12 group (26.7 months, 71 CI: 13.7-31.1, p<0.0001). Multivariable analysis revealed AJCC, Child-Pugh Score, MELD, 72 tumor size, tumor location and treatment type had independent influence on survival (p < 0.05). 73 In HCV-positive patients, AJCC, MELD, tumor location, treatment allocation and DAA were 74 75 significant (p < 0.05). In patients receiving DAA therapy, only MELD and SVR12 were predictive of overall survival (p<0.05). Conclusions: DAA therapy and achieving SVR12 is associated 76 77 with increased overall survival in HCV patients with HCC.

78

79 Introduction

Hepatocellular carcinoma (HCC) represents a global public health burden, affecting an 80 estimated 14 million persons worldwide, and is the third leading cause of cancer mortality.¹ 81 Within the United States, HCC is ranked 7th for cancer related mortality and has seen a doubling 82 in incidence from 1975 to 2007.^{1,2,3,4} The primary predisposing factors for HCC carcinogenesis is 83 liver cirrhosis.¹ Cirrhosis risk factors include chronic alcohol use, viral hepatitis, including 84 Hepatitis C (HCV), and non-alcoholic fatty liver disease.¹ 85 Chronic HCV infection is the second most common risk factor for HCC and is 86 responsible for 10-25% of all HCC cases.¹ Over 20-30 years, 20-30% of patients with chronic 87 HCV infections will develop cirrhosis and end stage liver disease and 1-4% of these patients will 88 progress to HCC each year.^{5,6} Of all HCV related HCC cases, 80-90% occur in the setting of 89 90 cirrhosis.² With more than 3.5 million patients in the United States and an estimated 130-170 million patients worldwide currently infected with HCV, the importance of HCV management in 91 HCC therapeutic care and prevention is clear.^{7,8} The major current therapeutic goal for HCV and 92 prevention of liver disease progression is sustained viral response (SVR), which is defined by 93 negative HCV RNA at 12 weeks post-treatment (SVR12) and appears to be durable with a late 94 virologic relapse rate of less than 1%.9,10 95 Therapeutic management of HCV has recently undergone a shifted from interferon-based 96

therapies to all-oral interferon-free direct-acting antiviral (DAA) combination regimens. DAAs are a new class of drugs that target nonstructural proteins responsible for replication and infection of the hepatitis c virus.^{10,11,12} Genotype specific DAA therapies have been shown to reach SVR12 exceeding 90% of patients with fewer adverse effects compared with historic interferon-based regiments.^{7,13,14,15,16,17,18} SVR12 from DAA regimens have been associated with

102	a decrease in liver outcomes including cirrhosis, hepatic decompensation, HCC and mortality. ¹⁹
103	However, the impact of DAA regimens on clinical outcomes in patients with HCC remain
104	limited. This study evaluates the impact of DAA on overall survival in HCV patients with HCC
105	with the <i>a priori</i> hypothesis that SVR12 would be associated with improved outcome.
106	
107	Materials and Methods
108	Study Cohort
109	Patient data were collected from those with prior consent to research participation and
110	institutional review board approval. Patients met criteria if they had a radiologic or
111	histopathologic HCC diagnosis defined by NCI/AASLD guidelines at Yale New Haven Hospital
112	between 2005 to 2016. Patients were grouped by primary HCC treatment including liver
113	transplantation, tumor resection, interventional oncological procedures (catheter-based therapies,
114	ablation or combination locoregional therapy), systemic management (chemotherapy or
115	radiation) and supportive care (palliative or no treatment). All patients were reviewed for history
116	of HCV infection diagnosis based on positive HCV antibody, positive HCV RNA and/or ICD-9
117	recorded in electronic medical records. Only those with a HCV infection diagnosis were assessed
118	for DAA treatment. Coinfections such as hepatitis B (HBV) and/or human immunodeficiency
119	virus (HIV) or prior HCV treatment with therapies other than DAA and/or use of multiple DAAs
120	did not preclude patients from analysis. SVR12 status was only collected for patients with HCV
121	plus any reported DAA use for HCV. Patients that reached SVR12 on interferon-based regimens
122	were not included with patients reaching SVR12 via DAA regimens. Exclusion criteria for this
123	study included unknown survival status and histopathologic diagnosis of combined HCC and
124	cholangiocarcinoma. Liver transplant patients were excluded from HCC, DAA and SVR12

125	overall survival and multivariable hazard ratio analyses. Patients were conservatively excluded in
126	analyses for which they had unknown values. The primary outcome of interest was overall
127	survival (OS), defined as time from HCC diagnosis to all-cause mortality or censoring.
128	
129	Statistical Analysis
130	Kaplan-Meier curves and Cox proportional hazards models were used to assess survival.
131	Univariate analysis of age, sex, Child-Pugh Score, tumor size, model for end-stage liver disease
132	(MELD), AJCC stage, body mass index, alpha-fetoprotein level, platelet count, unilobar or
133	bilobar tumor presentation, presence of multiple tumors, main treatment, HCV infection, DAA
134	treatment and SVR12 status were performed and variables with a p-value <0.2 were included
135	into multivariable analysis. Statistical analyses performed with JMP Pro 13.1.0 (SAS Institute,
136	Cary, North Carolina) and GraphPad Prism 8.0.0 (GraphPad Software, La Jolla, California).
137	Values were considered statistically significant with a p-value of less than 0.05.
138	
139	Results
140	Cohort Description
141	Between 2005 and 2016, 969 HCC patients met inclusion criteria (Table 1). Mean age of
142	cohort at HCC diagnosis was 62.8±10.2 years. The group was predominately male at 79%. As
143	shown in Figure 1A, 478 patients (49.3%) received interventional oncology therapies, 141
144	(14.6%) received supportive care, 125 (12.9%) underwent liver transplantation, 112 (11.6%) had
145	tumor resection and 94 (9.7%) received chemotherapy and/or radiation as their primary
146	treatment. Among non-transplant patients, 470 (57.0%) patients were HCV positive of which
147	123 (26.2%) received a DAA regimen. Of those patients receiving DAAs for HCV treatment 83

	hieved SVR12 (Figure 1B).	an OS for all patients was 24.2 months	95%
--	---------------------------	--	-----

- 149 CI:20.9-27.9) (Figure 2A). Median OS for patients receiving liver transplantation (n=125) was
- not reached as more than 50% of subgroup were alive at time of last follow up. Patients
- undergoing tumor resection (n=112) had a median OS=56.7 months (95% CI: 41.9-103.5),
- interventional oncology (IO) (n=478) median OS=27.7 (95% CI:22.3-30.7), systemic therapy
- 153 (n=94) median OS=5.6 months (95% CI: 4.4-7.3) and supportive management (n=141) median
- 154 OS=2.4 months (95% CI: 1.9-3.2, overall p<0.0001, figure 2B).
- 155
- 156 Fig. 1: A) Treatment allocation of the entire hepatocellular carcinoma cohort B) Patients
- stratified by HCV infection, DAA therapy, and achievement of SVR12
- 158 Fig. 2: A) Survival rate for all hepatocellular carcinoma (HCC) patients within cohort (n=969) in
- 159 months since HCC diagnosis. B) OS for HCC patients by main HCC treatment method. Patients
- 160 receiving liver transplantation (n=125). Patients undergoing tumor resection (n=112),
- 161 interventional oncology (IO) (n=478), systemic therapy (n=94) and supportive management
- 162 (n=141) (overall p<0.0001).
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170

171 Table 1: Cohort and Subgroup Characteristics

		HCV	Non-DAA	DAA	Non-SVR12	SVR12
	Cohort	Patients	Patients	Patients	Patients	Patients
Age at HCC Diagnosis (years)						
(mean±stdev)	62.8±10.2	60.5±7.7	59.9±7.7	61.7±5.8	61.6±5.3	61.8±6.1
Sex						
Male	768 (79.3%)	390 (83.0%)	202 (82.4%)	99 (80.5%)	28 (90.3%)	63 (75.9%)
Female	201 (20.7%)	80 (17.0%)	43 (17.6%)	24 (19.5%)	3 (9.7%)	20 (24.1%)
Liver Factors						
AJCC						
1	400 (43.8%)	198 (44.5%)	79 (34.5%)	79 (65.3%)	15 (48.4%)	58 (71.6%)
2	244 (26.7%)	110 (24.7%)	63 (27.5%)	31 (25.6%)	11 (35.5%)	19 (23.5%)
3	162 (17.7%)	86 (19.3%)	53 (23.1%)	8 (6.6%)	3 (9.7%)	4 (4.9%)
4	107 (11.7%)	51 (11.5%)	34 (14.8%)	3 (2.5%)	2 (6.5%)	0
Child Pugh Score						
А	512 (55.2%)	254 (56.3%)	116 (49.2%)	84 (68.9%)	24 (77.4%)	54 (65.9%)
В	284 (30.6%)	132 (29.3%)	80 (33.9%)	30 (24.6%)	6 (19.4%)	21 (25.6%)
С	132 (14.2%)	65 (14.4%)	40 (16.9%)	8 (6.6%)	1 (3.2%)	7 (8.5%)
MELD (mean±stdev)	11.4±5.7	10.7±4.6	11.4±5.2	9.5±3.4	9.3±3.1	9.67±3.5
Tumor Size (cm) (mean±stdev)	4.48±3.6	4.18±3.3	4.70±3.6	2.76±1.7	3.09±2.4	2.57±1.3
Tumor Location						
Unilobar	628 (66.7%)	298 (65.1%)	137 (57.6%)	93 (75.6%)	17 (54.8%)	68 (81.9%)
Bilobar	314 (33.3%)	160 (34.9%)	101 (42.4%)	30 (24.4%)	14 (45.2%)	15 (18.1%)
Multiple Tumors						
yes	442 (45.9%)	225 (48.4%)	133 (55.0%)	47 (38.2%)	19 (61.3%)	27 (32.5%)
no	520 (54.1%)	240 (51.6%)	109 (45.0%)	76 (61.8%)	12 (38.7%)	56 (67.5%)
Main Treatment						
Transplant	125 (13.2%)	0	0	0	0	0
Resection	112 (11.8%)	56 (12.1%)	21 (8.6%)	21 (17.4%)	5 (16.1%)	16 (19.5%)
Ю	478 (50.3%)	285 (61.6%)	143 (58.4%)	93 (76.9%)	24 (77.4%)	63 (76.8%)
Systemic	94 (9.9%)	45 (9.7%)	26 (10.6%)	4 (3.3%)	1 (3.2%)	1 (1.2%)
Supportive	141 (14.8%)	77 (16.6%)	55 (22.4%)	3 (2.5%)	1 (3.2%)	2 (2.4%)
Hepatitis C Factors						
HCV Infection	551 (56.9%)	470	245	123	31	83
DAA Treatment		123 (26.2%)	0	123	31	83
SVR12				83 (67.5%)	0	83

172

173 **Table 1:** Characteristics of cohort, HCV, non-DAA, DAA, non-SVR12 and SVR12 subgroups, n

174 (%) or mean ± standard deviation as marked. AJCC: American Joint Committee on Cancer stage,

- 175 MELD: model for end stage liver disease, IO: interventional oncology, HCV: hepatitis C, DAA:
- direct-acting antivirals, SVR12: sustained viral response at 12 weeks.
- 177
- 178 Overall Survival in HCV and DAA Subgroups
- 179 Subgroup analysis of HCV patients, recipients of DAA and those that achieved SVR12
- revealed significant influences on OS. Although patients with and without HCV showed no
- significant difference in survival: median OS 20.7 months (95% CI: 16.5-24.1) versus 17.4
- months (95% CI: 13.0-20.6) respectively, (p=0.22), HCV patients that received DAA had a
- median OS of 71.8 months (95% CI: 39.5-not reached) compared to 11.6 months (95% CI: 9.8-
- 184 14.5) for HCV patients that did not use DAAs (p<0.0001)(Figure 3). Patients achieving SVR12
- had a higher median OS of 75.6 months (95% CI: 49.2-not reached) versus 26.7 months (95%
- 186 CI: 13.7-31.1) for patients with positive HCV RNA by PCR 12 weeks post-DAA cessation
- 187 (Figure 3C) (p<0.0001).
- 188

189 Fig. 3: Patient survival rate in months since hepatocellular carcinoma (HCC) diagnosis. A)

- 190 HCC Patients with positive history of hepatitis c (HCV) infection (n=470) versus patients with
- 191 no history of HCV (n=363) (p=0.22) **B**) HCC and HCV patients that received a direct-acting
- antiviral (DAA) (n=123) versus those who did not receive a DAA (n=247) (p<0.0001) C)
- 193 Patients with HCC and HCV that received a DAA and achieved sustained viral response
- 194 (SVR12) (n=83) versus those who did not achieve SVR12 (n=31) (p<0.0001).

195

196 Prognostic Factors

Multivariable analyses of subgroups were performed to assess impact of relevant HCC
prognostic markers, HCC therapies, HCV factors and lab values. Within all non-transplant
patients, numerous factors significantly influenced overall survival (Figure 4A, Table 2). AJCC
stage 4 had decreased survival compared to stage 1 (HR=2.77, 95% CI:1.86-4.08, p<0.0001) and
2 (HR=2.06, 95% CI: 1.40-3.01, p=0.0003). AJCC stage 3 also had poorer survival as compared
to stage 1 (HR=2.29, 95% CI: 1.26-2.30, p<0.0001) and 2 (HR=1.70, 95% CI: 1.26-2.30,
p=0.0005). AJCC stage 2 had a HR=1.34 (95% CI: 1.03-1.75, p=0.03) compared to stage 1.
Increased Child-Pugh score was also associated with worsened survival (Child Pugh C vs. A: HR
1.69, 95% CI: 1.07-2.65, p=0.02; B vs A: HR 1.83, 95% CI: 1.43-2.233, p<0.0001), as were
increased MELD score, increased tumor size, and bilobar tumors (p<0.05). Treatment allocation
significantly impacted survival, with resection demonstrating improved survival vs interventional
oncology (HR=0.56, 95% CI: 0.39-0.81, p=0.002), systemic therapies (HR=0.26, 95% CI:0.16-
0.42, p<0.0001) and supportive management (HR=0.12, 95% CI:0.08-0.19, p<0.0001).
Interventional oncology increased survival rates over systemic therapies (HR=0.46, 95%
CI:0.33-0.65, p<0.0001) and supportive management (HR=0.22, 95% CI:0.16-0.29, p<0.0001).
Systemic therapies showed improved survival rates over supportive therapies (HR=0.47, 95%
CI:0.42-0.68, p<0.0001).

	Total	HCV	DAA
Sex - Male/Female	1.25 (0.99-1.49, p=0.0592)	1.28 (0.89-1.89, p=0.1924)	1.30 (0.39-5.25, p=0.6799
Liver Factors			
MELD	1.03 (1.00-1.06, p=0.0168)	1.05 (1.00-1.11, p=0.0468)	1.21 (1.02-1.44, p=0.0326)
Tumor Size	1.06 (1.02-1.09, p<0.0007)	1.01 (0.95-1.06, p=0.08082)	0.75 (0.49-1.06, p=0.1044)
Bilobar/Unilobar	1.32 (1.03-1.69, p=0.026)	1.62 (1.14-2.30, p=0.0072)	1.38 (0.36-5.51, p=0.6354)
Multiple Tumors - yes/no	1.03 (0.80-1.32, p=0.816)	1.27 (0.88-1.83, p=0.1986)	1.01 (0.41-2.99, p=0.9831)
AJCC			
4/1	2.77 (1.86-4.08, p<0.0001)	1.59 (0.79-3.09, p=0.19)	
4/2	2.06 (1.40-3.01, p=0.0003)	1.32 (0.67-2.53, p=0.4209)	
4/3	1.21 (0.86-1.68, p=0.2704)	0.75 (0.42-1.31, p=0.3186)	
3/1	2.29 (1.69-3.09, p<0.0001)	2.11 (1.25-5.54, p<0.0051)	1.81 (0.08-13.48, p=0.6350)
3/2	1.70 (1.26-2.30, p=0.0005)	1.76 (1.05-2.92, p=0.0328)	2.28 (0.10-19.85, p=0.5336)
2/1	1.34 (1.03-1.75, p=0.0305)	1.20 (0.79-1.82, p=0.3872)	0.80 (0.27-2.22, p=0.6658)
Child-Pugh Score			
C/A	1.69 (1.07-2.65, p=0.0235)	0.86 (0.42-1.73, p=0.6775)	0.13 (0.01-1.55, p=0.1068)
C/B	0.93 (0.63-1.35, p=0.6904)	0.65 (0.36-1.18, p=0.1549)	0.15 (0.01-1.67, p=0.1234)
B/A	1.83 (1.43-2.33, p<0.0001)	1.33 (0.92-1.91, p=0.1351)	0.85 (0.30-2.40, p=0.7584)
Main Treatment			
Resection/IO	0.56 (0.39-0.81, p=0.0019)	0.79 (0.42-1.36, p=0.4118)	0.39 (0.05-1.92, p=0.2649)
Resection/Systemic	0.26 (0.16-0.42, p<0.0001)	0.29 (0.13-0.64, p=0.002)	
Resection/Supportive	0.12 (0.08-0.19, p<0.0001)	0.12 (0.06-0.25, p<0.0001)	0.12 (0.00-5.53, p=0.2586)
IO/Systemic	0.46 (0.33-0.65, p<0.0001)	0.37 (0.21-0.68, p=0.0017)	
IO/Supportive	0.22 (0.16-0.29, p<0.0001)	0.16 (0.10-0.26, p<0.0001)	0.31 (0.01-9.82, p=0.4652)
Systemic/Supportive	0.47 (0.32-0.68, p<0.0001)	2.34 (1.23-4.52, p=0.0093)	
Hepatits C Factors			
HCV Infection - yes/no	0.85 (0.70-1.04, p=0.1151)		
DAA Therapy - yes/no		0.39 (0.26-0.58, p<0.0001)	
SVR12 Attained - yes/no			0.14 (0.06-0.35, p<0.0001)

220 Table 2: Hazard Ratios for Cohort and HCV and DAA subgroups

221

222 Table 2: Hazard ratios from multivariable analysis. HR, 95% Confidence Interval, p-value,

AJCC: American Joint Committee on Cancer stage, MELD: model for end stage liver disease,

IO: interventional oncology, HCV: hepatitis C, DAA: direct-acting antivirals, SVR12: sustained

viral response at 12 weeks.

226

228	Multivariable analysis of non-transplant HCV patients showed similar results to non-
229	transplant patients (Figure 4B) with the addition of DAA use as a significant prognostic marker
230	(HR=0.39, 95% CI:0.26-0.58, p<0.0001). In the final subgroup, including only DAA patients,
231	only two factors were significant, MELD (HR=1.21, 95% CI:1.02-1.44, p=0.03) and SVR12
232	(HR=0.14, 95% CI:0.06-0.35, p<0.0001).
233	
234	Fig. 4: Hazard ratios from multivariable analysis on overall survival in non-transplant
235	HCC patients. Values greater than one indicate increased risk of death. Values less than one
236	indicate reduced risk of death. A) Hazard ratios in all non-transplant HCC patients. B) Hazard
237	ratios in all non-transplant HCC with history of HCV. * =p<0.05, AJCC: American Joint
238	Committee on Cancer stage, MELD: model for end stage liver disease, AFP: alpha-fetoprotein,
239	IO: interventional oncology, HCV: hepatitis C, DAA: direct-acting antivirals.
240	
241	Discussion
242	With the increasing incidence and prevalence of HCC and the impact of ICV infection on
243	development of cirrhosis and HCC tumor formation, the importance of understanding the effects
244	of DAA in HCC patients is only becoming more vital. One-half of the HCC cases among the
245	three-fold increase in HCC incidence between 1975 and 2007 in the US can be attributed to the
246	aging chronic HCV population. ² Although there are indications that DAAs may slow progression
247	to HCC, ^{20,21} there remains a vast population of HCC patients that could potentially benefit from
248	treatment of their chronic HCV infections.
249	It is likely that the improved median overall survival seen in our cohort among HCC

250 patients taking DAAs is a direct result of the high success rate of achieving SVR12. Although

more patients are needed to reduce the possible influence of DAA exclusion from patients with 251 worse prognoses, the over three-fold difference in median overall survival between those that did 252 and did not achieve SVR12 likely indicates profound longitudinal effects of HCV cure in HCC 253 patients. Although our data indicates less severe HCC and liver disease in DAA and SVR12 254 patients versus their subgroup counterparts, multivariable 255 analysis supports reduced all-cause mortality in patients receiving DAAs and achieving SVR12. 256 In addition, others have reported that achieving SVR12 is associated with improved liver 257 function, Child-Pugh scores and reversal of liver decompensation symptoms which could also be 258 factors in the improved survival.^{22,23} 259 Reaching SVR12 is not an easy task in the HCC patient population. Only 69% of our 260

population reached SVR12 with similar results in other retrospective analyses of DAA use in

HCC patients^{24,25} compared to reported values of over 90% in populations powered to DAA

efficacy.¹⁸ Part of this may be due to the difficulty of integrating HCV treatment into HCC care,

as demonstrated by the low rate of HCC patients with HCV receiving DAA treatment in our

cohort (<50%). While there is currently much discussion as to how aggressive clinicians should

be about treating active HCV in HCC patients, no official guidelines currently exist.^{23,26}

267 Frequently, HCC management supersedes HCV treatment as many providers seek to triage HCV

until after the cancer has been treated.²³ In addition, debate is ongoing as to whether or not DAA
use increases HCC recurrence rates.^{18,20,27,28,29, 30}

Interestingly, our results suggest that there is ample time for HCV intervention in newly diagnosed HCC patients. The DAA treatment course typically 8-24 weeks,³¹ and patients receiving resection or IO treatments, 74% of our cohort population, had a median overall survival greater than 27 months. We are hopeful that conversion from non-DAA to DAA medications and subsequent SVR12 achievement will increase as awareness and use of DAA incurrent HCV management increases.

276	This cohort also raises important questions for future research. The patients achieving SVR12
277	with DAA include those that had previously failed interferon-based therapies and subsequently
278	received DAA after their introduction, those that received multiple courses and combinations of
279	DAA and those that received DAA for different lengths of time. Some received DAA during
280	HCC management while others received DAA before their HCC diagnosis. More work is needed
281	in areas concerning the differences in DAA regimen efficacy to understand the most appropriate
282	combination of DAA and regimen length and then tailor these by HCV genotype, HCC
283	prognosis and other host and genetic factors in order to help more patients achieve SVR12 and
284	better overall outcomes.
285	
286	References
287	1. Ghouri YA, Mian I, Rowe JH. Review of hepatocellular carcinoma: Epidemiology,
287 288	 Ghouri YA, Mian I, Rowe JH. Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis. J Carcinog. 2017;16:1.
288	etiology, and carcinogenesis. J Carcinog. 2017;16:1.
288 289	etiology, and carcinogenesis. J Carcinog. 2017;16:1.2. Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the
288 289 290	 etiology, and carcinogenesis. J Carcinog. 2017;16:1. 2. Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol. 2013;47 Suppl:S2-6.
288 289 290 291	 etiology, and carcinogenesis. J Carcinog. 2017;16:1. 2. Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol. 2013;47 Suppl:S2-6. 3. Njei B, Rotman Y, Ditah I, Lim JK. Emerging trends in hepatocellular carcinoma
288 289 290 291 292	 etiology, and carcinogenesis. J Carcinog. 2017;16:1. Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol. 2013;47 Suppl:S2-6. Njei B, Rotman Y, Ditah I, Lim JK. Emerging trends in hepatocellular carcinoma incidence and mortality. Hepatology. 2015;61(1):191-9.

296	5.	Chen SL, Morgan TR. The natural history of hepatitis C virus (HCV) infection. Int J Med
297		Sci. 2006;3(2):47-52.
298	6.	Patel K, Muir AJ, McHutchison JG. Diagnosis and treatment of chronic hepatitis C
299		infection. BMJ. 2006;332(7548):1013-7.
300	7.	Scheel TK, Rice CM. Understanding the hepatitis C virus life cycle paves the way for
301		highly effective therapies. Nat Med. 2013;19(7):837-49.
302	8.	Edlin BR, Eckhardt BJ, Shu MA, Holmberg SD, Swan T. Toward a more accurate
303		estimate of the prevalence of hepatitis C in the United States. Hepatology.
304		2015;62(5):1353-63.
305	9.	Pearlman BL, Traub N. Sustained virologic response to antiviral therapy for chronic
306		hepatitis C virus infection: a cure and so much more. Clin Infect Dis. 2011;52(7):889-
307		900.
308	10	. Poordad F, Dieterich D. Treating hepatitis C: current standard of care and emerging
309		direct-acting antiviral agents. J Viral Hepat. 2012;19(7):449-64.
310	11.	. Dubuisson J. Hepatitis C virus proteins. World J Gastroenterol. 2007;13(17):2406-15.
311	12	. Moradpour D, Penin F, Rice CM. Replication of hepatitis C virus. Nat Rev Microbiol.
312		2007;5(6):453-63.
313	13	. Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, et al.
314		Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for
315		initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001;358(9286):958-
316		65.

317	14. Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Goncales FL, Jr., et al.
318	Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med.
319	2002;347(13):975-82.
320	15. Manns MP, Wedemeyer H, Cornberg M. Treating viral hepatitis C: efficacy, side effects,
321	and complications. Gut. 2006;55(9):1350-9.
322	16. Feuerstadt P, Bunim AL, Garcia H, Karlitz JJ, Massoumi H, Thosani AJ, et al.
323	Effectiveness of hepatitis C treatment with pegylated interferon and ribavirin in urban
324	minority patients. Hepatology. 2010;51(4):1137-43.
325	17. Welzel TM, Petersen J, Herzer K, Ferenci P, Gschwantler M, Wedemeyer H, et al.
326	Daclatasvir plus sofosbuvir, with or without ribavirin, achieved high sustained virological
327	response rates in patients with HCV infection and advanced liver disease in a real-world
328	cohort. Gut. 2016;65(11):1861-70.
329	18. Ioannou GN, Feld JJ. What are the Benefits of a Sustained Virologic Response to Direct-
330	acting Antiviral Therapy for HCV Infection? Gastroenterology. 2018.
331	19. Backus LI, Belperio PS, Shahoumian TA, Mole LA. Impact of sustained virologic
332	response with direct-acting antiviral treatment on mortality in patients with advanced
333	liver disease. Hepatology. 2017.
334	20. Ferrarese A, Germani G, Gambato M, Russo FP, Senzolo M, Zanetto A, et al. Hepatitis C
335	virus related cirrhosis decreased as indication to liver transplantation since the
336	introduction of direct-acting antivirals: A single-center study. World J Gastroenterol.
337	2018;24(38):4403-11.
338	21. Vaziri A, Gimson A, Agarwal K, Aldersley M, Bathgate A, MacDonald D, et al. Liver
339	transplant listing for hepatitis C associated cirrhosis and hepatocellular carcinoma has

340	fallen in the United Kingdom since the introduction of direct acting antiviral therapy. J
341	Viral Hepat. 2018.
342	22. Pascasio JM, Vinaixa C, Ferrer MT, Colmenero J, Rubin A, Castells L, et al. Clinical
343	outcomes of patients undergoing antiviral therapy while awaiting liver transplantation. J
344	Hepatol. 2017;67(6):1168-76.
345	23. Cabibbo G, Celsa C, Camma C, Craxi A. Should we cure hepatitis C virus in patients
346	with hepatocellular carcinoma while treating cancer? Liver Int. 2018.
347	24. Beste LA, Green PK, Berry K, Kogut MJ, Allison SK, Ioannou GN. Effectiveness of
348	hepatitis C antiviral treatment in a USA cohort of veteran patients with hepatocellular
349	carcinoma. J Hepatol. 2017;67(1):32-9.
350	25. Prenner SB, VanWagner LB, Flamm SL, Salem R, Lewandowski RJ, Kulik L.
351	Hepatocellular carcinoma decreases the chance of successful hepatitis C virus therapy
352	with direct-acting antivirals. J Hepatol. 2017;66(6):1173-81.
353	26. Yu JH, Kim JK, Lee KS, Lee JI. Antiviral Therapy in Patients With Chronic Hepatitis C-
354	related Hepatocellular Carcinoma Responding to Palliative Treatment. J Clin
355	Gastroenterol. 2018;52(6):557-62.
356	27. Nagata H, Nakagawa M, Asahina Y, Sato A, Asano Y, Tsunoda T, et al. Effect of
357	interferon-based and -free therapy on early occurrence and recurrence of hepatocellular
358	carcinoma in chronic hepatitis C. J Hepatol. 2017;67(5):933-9.
359	28. Gigi E, Lagopoulos VI, Bekiari E. Hepatocellular carcinoma occurrence in DAA-treated
360	hepatitis C virus patients: Correlated or incidental? A brief review. World J Hepatol.
361	2018;10(9):595-602.

362	29. Nishibatake Kinoshita M, Minami T, Tateishi R, Wake T, Nakagomi R, Fujiwara N, et al
363	Impact of direct-acting antivirals on early recurrence of HCV-related HCC: comparison
364	with interferon-based therapy. J Hepatol. 2018.
365	30. Singal AG, Rich NE, Mehta N, Branch A, Pillai A, Hoteit M, et al. Direct-Acting
366	Antiviral Therapy not Associated with Recurre4nce of Hepatocellular Carcinoma in a
367	Multicenter North American Cohort Study. Gastroenterology. 2019.
368	31. Emmanuel B, Wilson EM, O'Brien TR, Kottilil S, Lau G. Shortening the duration of
369	therapy for chronic hepatitis C infection. Lancet Gastroenterol Hepatol. 2017;2(11):832-
370	6.

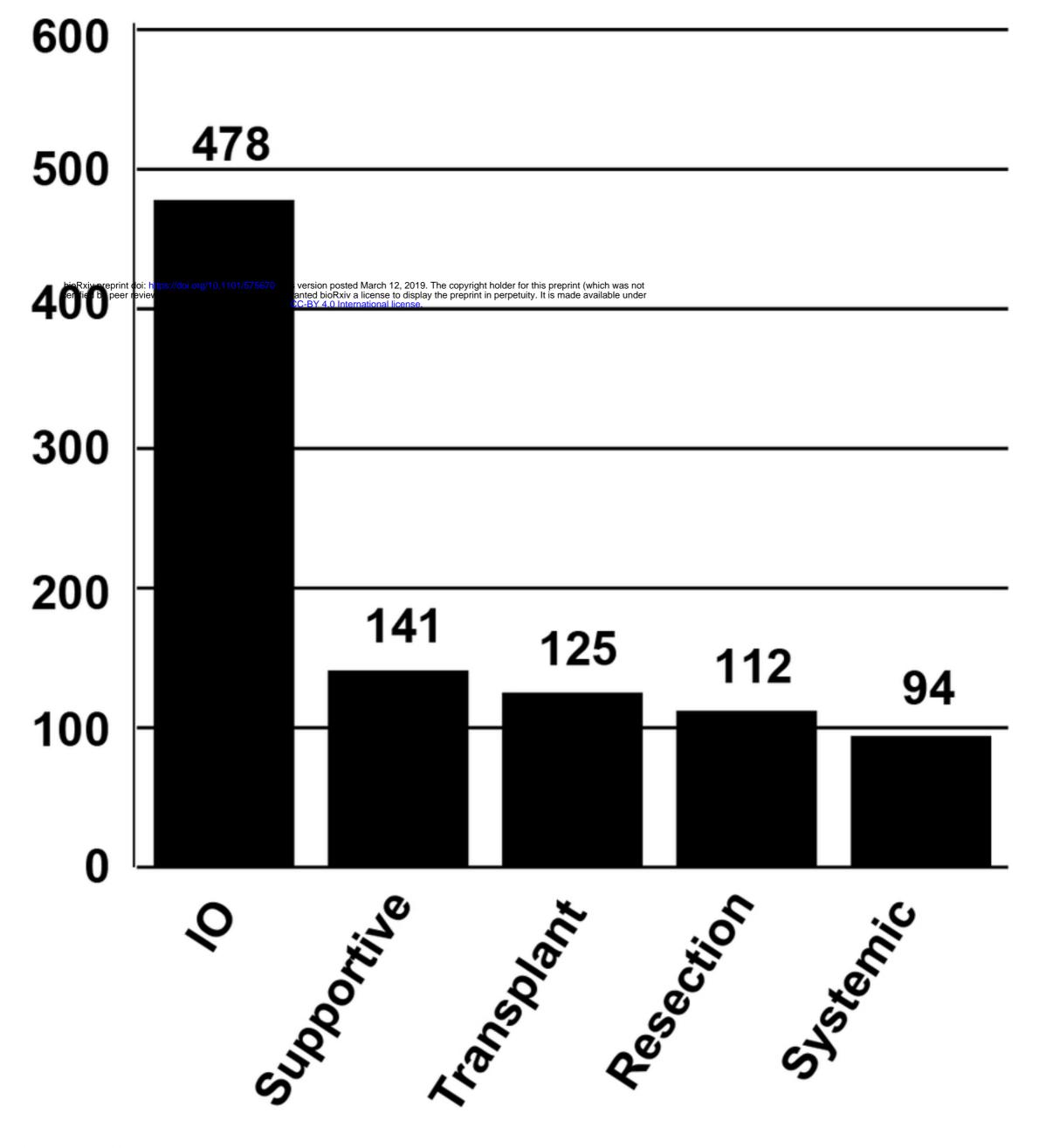


Figure 1a

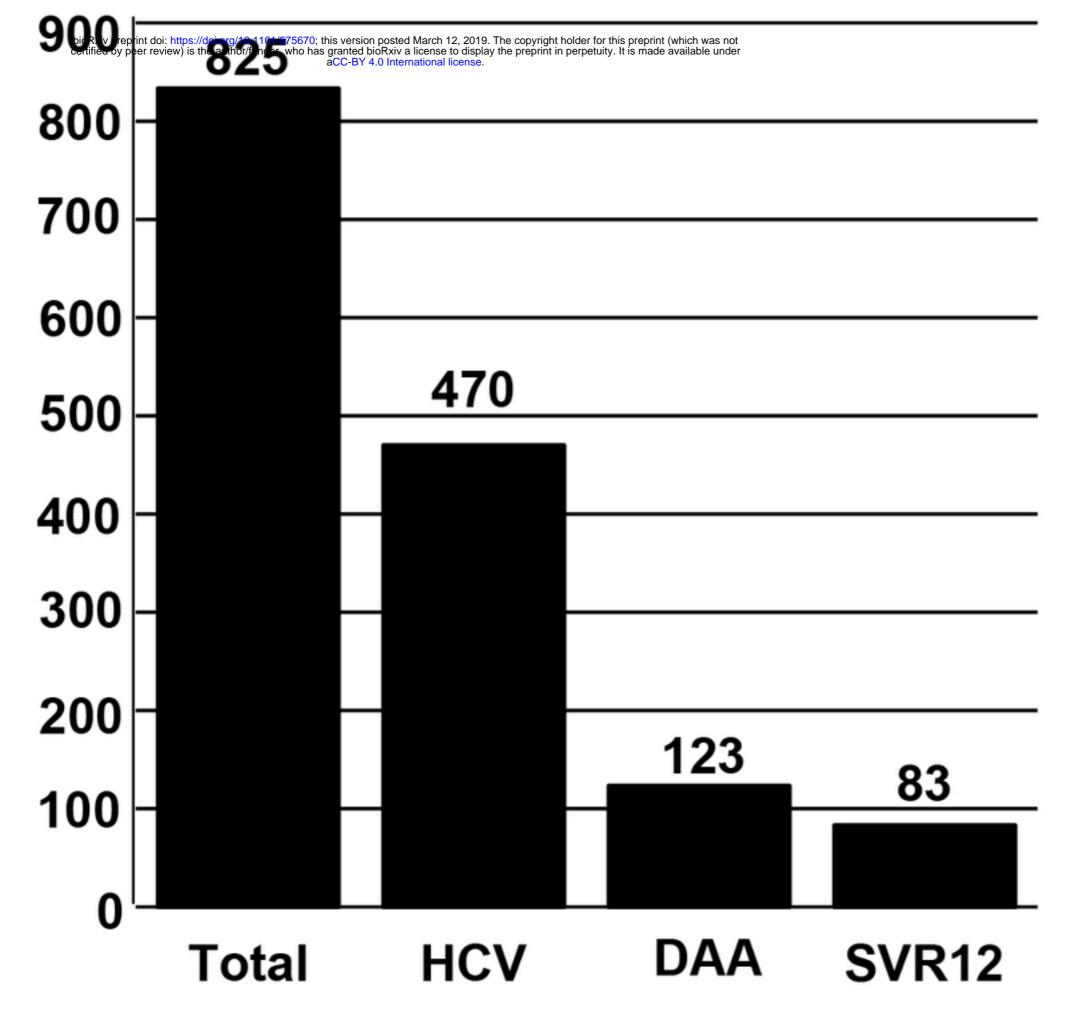


Figure 1b

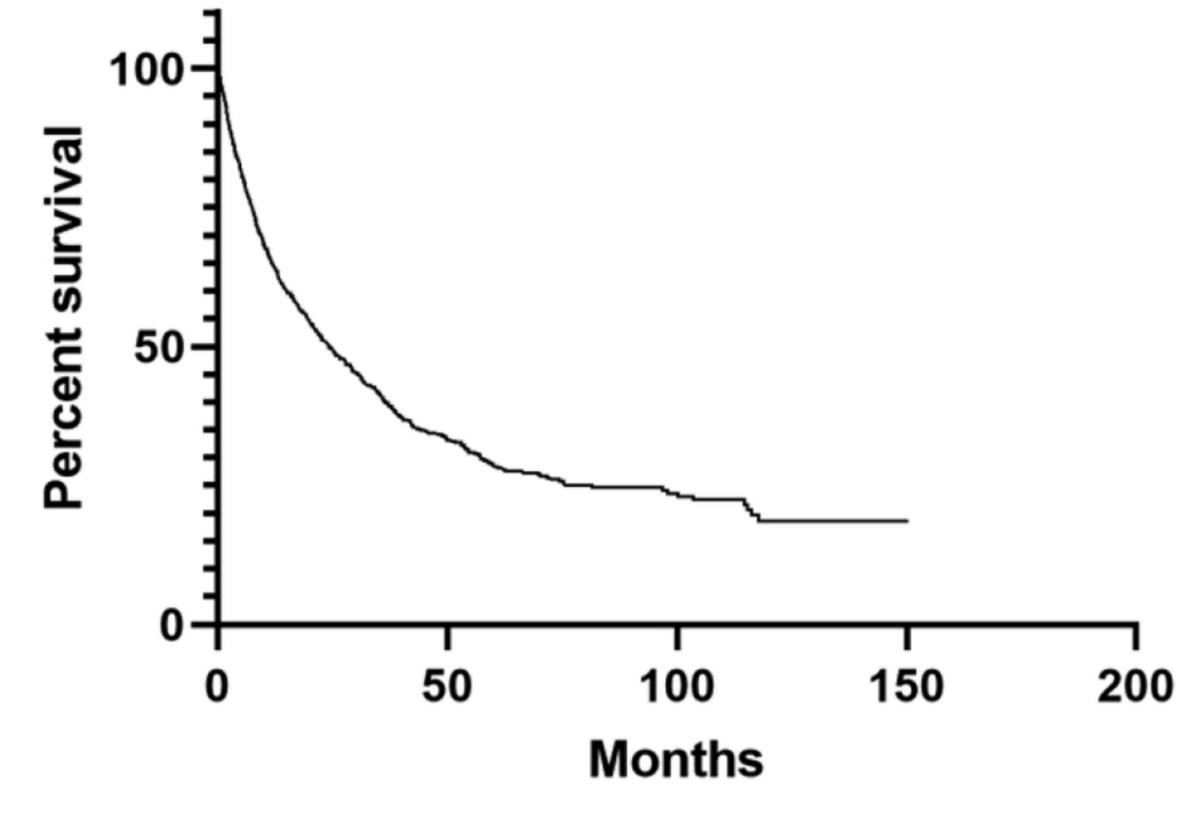


Figure 2a

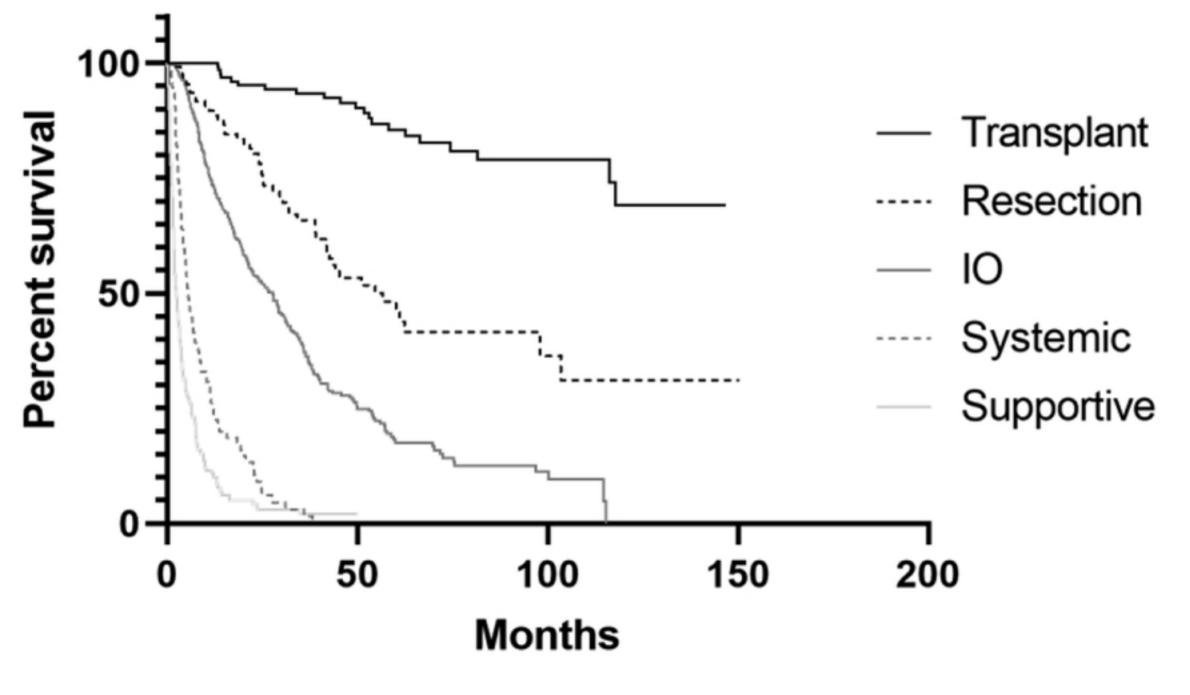


Figure 2b

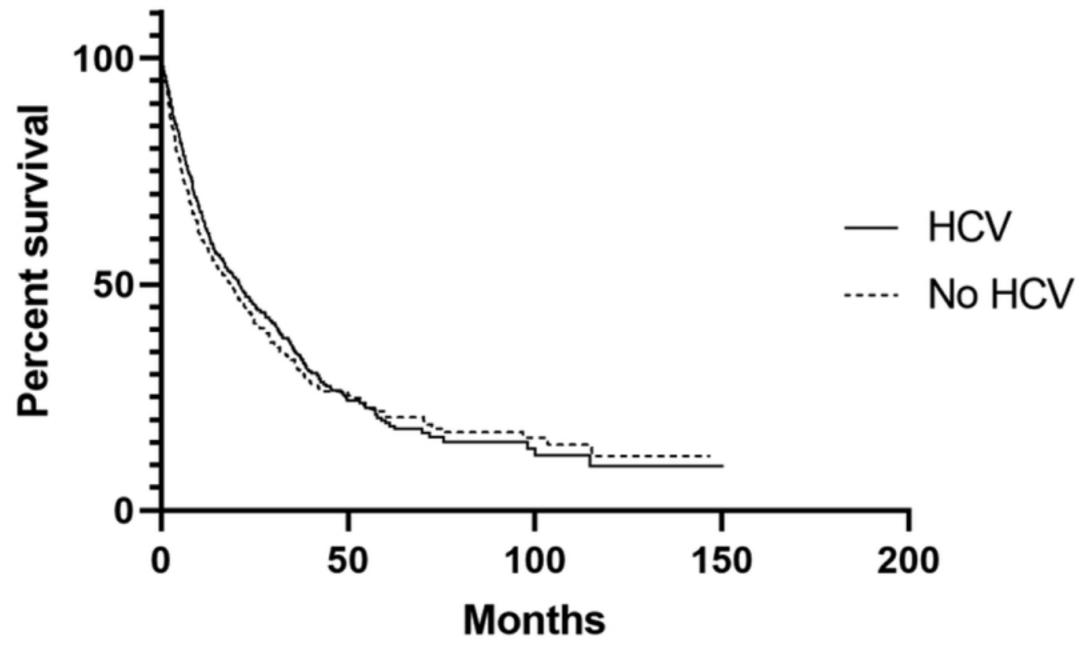


Figure 3a

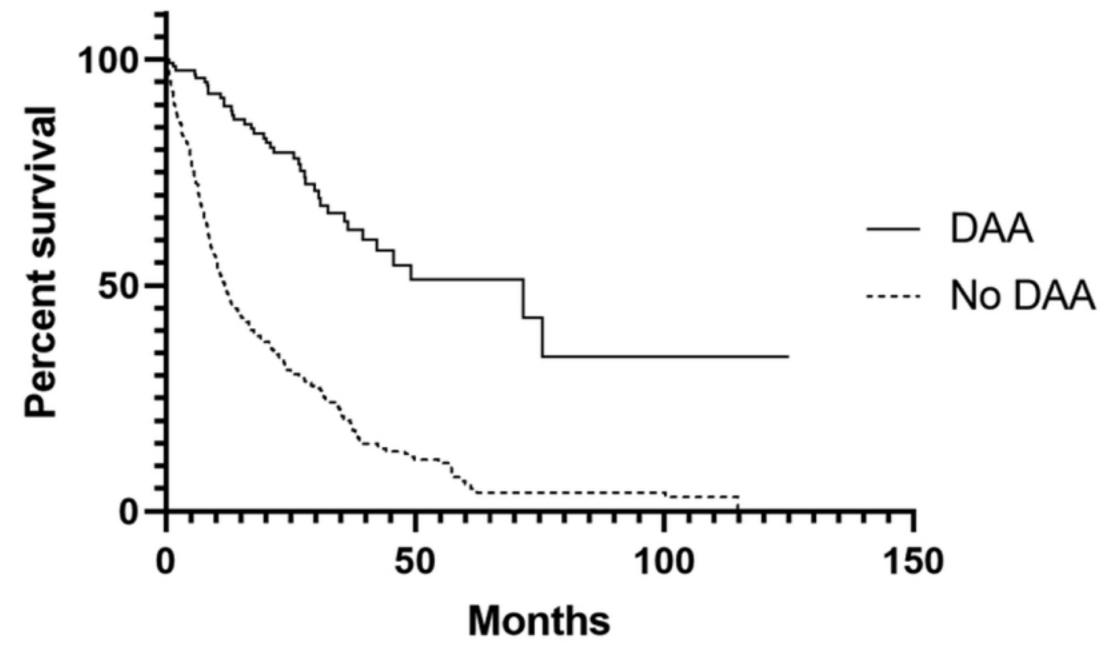


Figure 3b

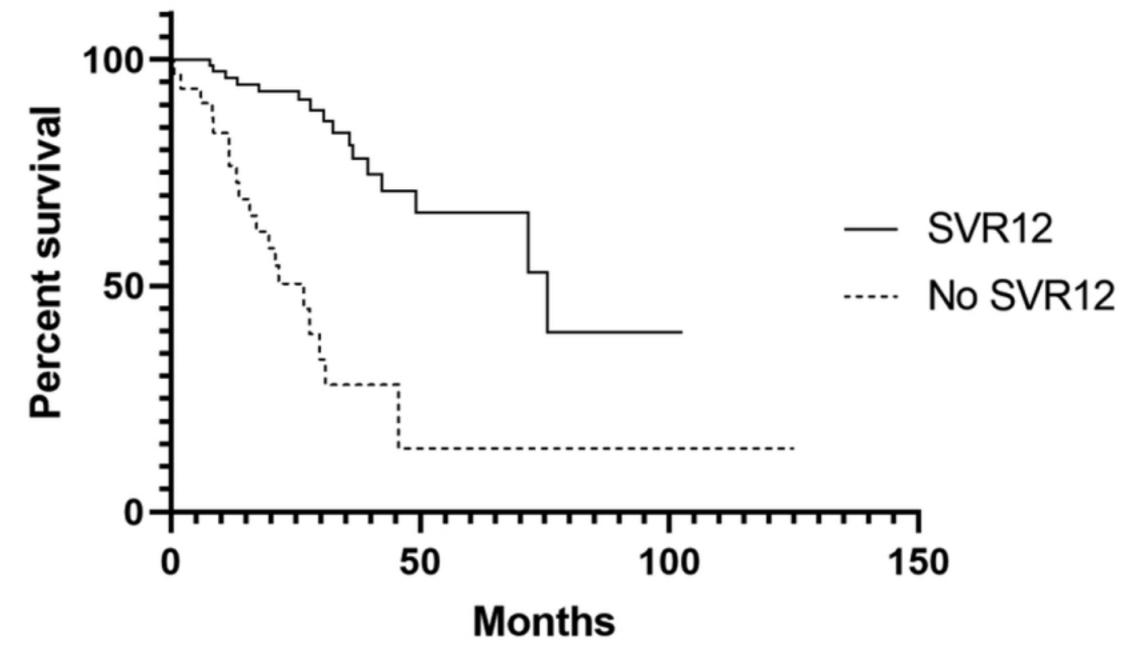


Figure 3c

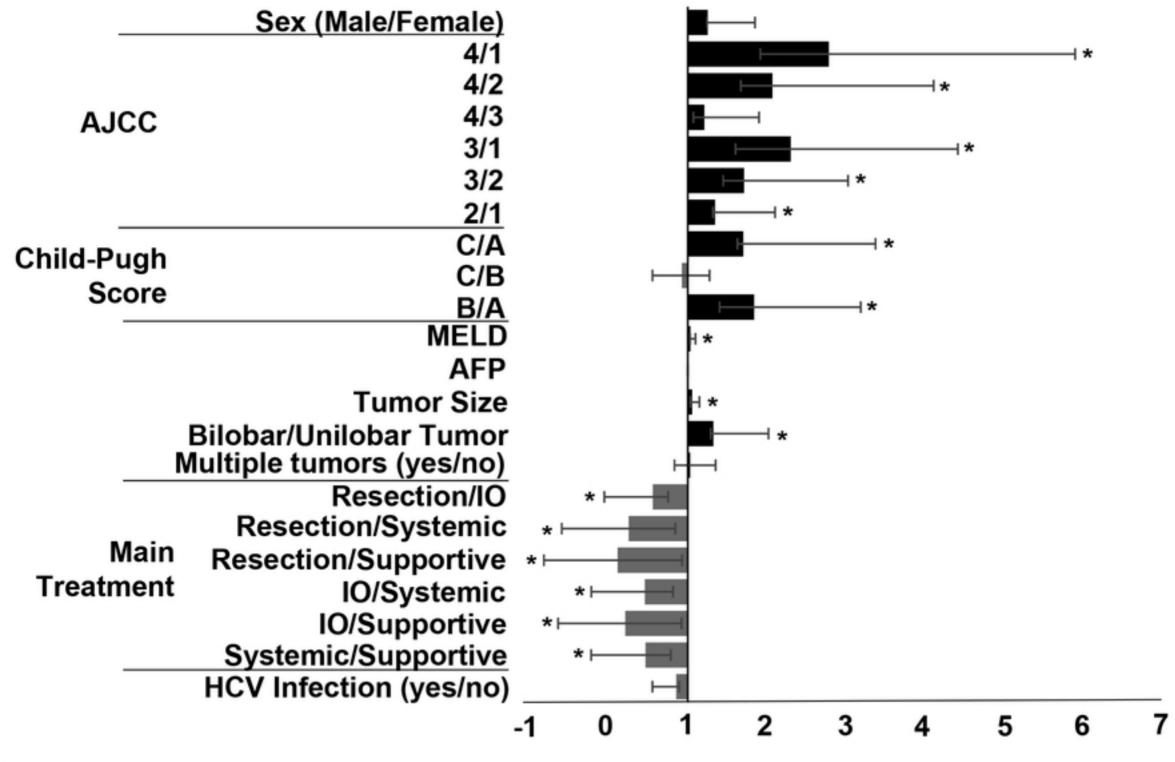


Figure 4a

Sex (Male/Female)				E-						
	4/1									
	4/2			-						
AJCC	4/3		ł							
	3/1				—			→ *		
	3/2				l		→ *			
	2/1									
Child-Pugh	C/A			H	-					
-	C/B		H	- L .						
Score	B/A			ŀ						
	MELD AFP Tumor Size									
Bilobar/Unilobar Tumor Multiple tumors (yes/no)				6-		*				
	Resection/IO									
	Resection/Systemic		*							
Main	Resection/Supportive	*								
Treatment	IO/Systemic		*							
	IO/Supportive	*	\vdash	I						
	Systemic/Supportive				\vdash				*	
	DAA use (yes/no)		*⊢	-						
		-1	0	1	2	3	4	5	6	7

Figure 4b