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ABSTRACT 18 
Combination therapies for various cancers have been shown to increase efficacy, lower toxicity, 19 
and circumvent resistance. However, despite the promise of combinatorial therapies, the 20 
biological mechanisms behind drug synergy have not been fully characterized, and the 21 
systematic testing of all possible synergistic therapies is experimentally infeasible due to the 22 
sheer volume of potential combinations. Here we apply a novel big data approach in the 23 
evaluation and prediction of drug synergy by using the recently released NCI-ALMANAC. We 24 
found that each traditional drug synergy metric (Bliss, Loewe, ZIP, HSA, ALMANAC Score) 25 
identified unique synergistic drug pairs with distinct underlying joint mechanisms of action. 26 
Leveraging these findings, we developed a suite of context specific drug synergy predictive 27 
models for each distinct synergy type and achieved significant predictive performance (AUC = 28 
0.89-0.953). Furthermore, our models accurately identified clinically tested drug pairs and 29 
characterized the clinical relevance of each drug synergy metric, with Bliss Independence 30 
capturing clinically tested combinations best. Our findings demonstrate that drug synergy can be 31 
obtained from numerous unique joint mechanisms of action, captured by different synergy 32 
metrics. Additionally, we show that drug synergy, of all kinds, can be predicted with high 33 
degrees of accuracy with significant clinical potential. This breakthrough understanding of joint 34 
mechanisms of action will allow for the design of rational combinatorial therapeutics on a large 35 
scale, across various cancer types. 36 
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INTRODUCTION 47 
Precision medicine has been instrumental in the creation of novel cancer therapeutics, however 48 
many of these promising treatments have been limited by insufficient efficacy or acquired 49 
resistance. Cancer cells have exhibited multiple types of resistance mechanisms, such as 50 
redundant pathways1 and pathway reactivation2, among others3-5. Combination therapies have 51 
been proposed as a general strategy to combat therapeutic resistance, as well as increase overall 52 
efficacy6. Such is the case with the combination of MEK and ERK inhibition to overcome 53 
MAPK pathway reactivation7. Overall, rational drug combination therapies have the potential to 54 
create long-lasting therapeutic strategies against cancer and perhaps many other diseases.  55 
 56 
While combination therapies have shown great potential, identifying effective drug pairings 57 
presents a difficult challenge. Traditional methods for assessing drug efficacy of single drug 58 
agents are not easily applied. With the number of approved or investigational drugs increasing 59 
every year, the ability to pairwise test these agents across a wide breadth of disease models 60 
becomes virtually impossible. This experimental infeasibility leads to the need for a 61 
computational approach to predict drug synergy.  62 
 63 
Quantitative models have been introduced to predict effective drug combinations, however they 64 
tend to be limited in scope, either confined to certain drug or cancer types8. A recent DREAM 65 
Challenge (dreamchallenges.org)9 teamed up with AstraZeneca and called for models to predict 66 
synergy across diverse drugs and cancer types10, 11. Despite >80 distinct computational methods 67 
being submitted to harness biological knowledge and classify cells and drugs, with performance 68 
matching the accuracy of biological replicates for many cases, there were still numerous drug 69 
combinations that consistently performed poorly across all models.  70 
 71 
The problem is confounded as there currently is no agreed upon gold standard to measure drug 72 
synergy of clinical relevance in vitro, introducing variability across method development and 73 
misclassification of valuable drug combinations.  There are many different metrics used to 74 
measure drug synergy that are all based on models with differing underlying assumptions. 75 
Fourcquier and Guedi have presented a comprehensive and succinct description of many of these 76 
models, how they differ and their practical limitations12. The most widely used of these methods 77 
include Bliss Independence13, 14, which assumes no interference/interaction between drugs, and 78 
Loewe Additivity14, 15, which is based on the dose equivalence principle. However, these models, 79 
require large amounts of experimental data. Therefore, simpler models such as Highest Single 80 
Agent (HSA), which calculates synergy as the excess over the maximum single agent response, 81 
can become attractive options14. Newer methods such as the Zero Interaction Potency (ZIP) 82 
model, a combination of Bliss and Loewe16, have aimed to overcome the limitations of these past 83 
models. Overall, each metric captures and measures different aspects of synergistic action. 84 
 85 
The release of the NCI-ALMANAC17, a publically available database of combination drug 86 
efficacies, has presented a unique opportunity to develop models to predict drug synergy on a 87 
large scale. Here, we describe our analysis of the mechanisms behind diverse types of drug 88 
synergy and leverage this information to create a suite of machine learning models to predict 89 
novel drug combinations and synergy scores from five different metrics, Bliss, Loewe, HSA, ZIP 90 
and the ALMANAC Score (a modification of the Bliss model). Using this approach, we 91 
identified the mechanisms and characteristics of the drug synergy identified by each metric and 92 
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highlight how we could efficiently pinpoint clinically relevant drug combinations.  Overall this 93 
approach has potential to accelerate the preclinical pipeline for pairwise drug combination 94 
therapeutics and provides a conceptual framework for understanding the mechanistic basis of 95 
drug synergy. 96 
 97 
RESULTS 98 
Combination Efficacy Measures are Poorly Correlated  99 
 100 
Drug combination efficacy metrics have been crucial in the development of synergistic drug 101 
treatments, however there has yet to be an in-depth evaluation of these metrics across diverse 102 
drug and cancer types. The diversity of the publically available data set, NCI-ALMANAC, 103 
provided the opportunity for us to test the different combination efficacy measures across various 104 
cancer types and drug classes. We first interrogated the diversity of the NCI-ALMANAC dataset 105 
and found that they tested over 100 drugs, which represented 12 distinct drug classes (Figure 106 
1A), in pairwise drug efficacy screenings on 60 cell lines. The 60 cancer cell lines tested cover 9 107 
diverse cancer types (Figure 1B). In addition to the experimental data, the NCI-ALMANAC 108 
formulated their own drug synergy score (we will refer to this metric as the ALMANAC score) 109 
and have released this score for each pairwise combination17.  110 
 111 
The disparity and diversity among combination efficacy metrics has long been remarked on12 112 
and we verified this quantitatively by looking at the correlation between each synergy metric on 113 
the NCI-ALMANAC drug pairs for each cell line (Figure 1C, Supp Fig 1). We found the 114 
correlation between synergy measures using both Pearson and Spearmen, with the coefficients 115 
ranging from 0.21-0.66 (p < 0.001) and 0.18-0.84 (p <0.001), respectively. Only HSA and 116 
Loewe had a Pearson and Spearman correlation above 0.5 (Methods). Importantly, we also 117 
found that the majority of both the synergistic and antagonistic qualifications assigned to drug 118 
pairs were unique to efficacy metrics (Figure 1D), even in the case of measures that were highly 119 
correlated (proportion overlap 0.40 and 0.35 for HSA and Loewe, HSA and ZIP, respectively). 120 
These results illustrate the distinctness between combination efficacy metrics across many drug 121 
and cancer types.  122 
 123 
Synergistic Drug Pairs Share Distinct Attributes 124 
 125 
Drug synergy can arise due to a variety of diverse mechanisms which may present as distinct 126 
patterns in in vitro assays18, 19.  Due to the large discrepancy between combination efficacy 127 
metrics we reasoned that each metric may be identifying different types of synergistic 128 
combinations. Therefore, we looked to quantify which drug attributes were shared among all 129 
synergistic drug pairs and which were metric specific. Since we have previously found drug 130 
structure to effect pharmacological attributes such as toxicity and molecular targets20-22, we 131 
investigated if structure based similarity between drug pairs was indicative of a pair being 132 
synergistic. Using chemical fingerprint similarity, we found that synergistic pairs were more 133 
similar to each other than antagonistic and other non-synergistic drugs, across all metrics (KS 134 
test, D-stat 0.23-0.307, p-value < 0.001, Figure 2A). Antagonistic and uncategorized, drug pairs 135 
were associated with undistinguishable levels of structure similarity (KS Test, p-value > 0.05).  136 
When we evaluated additional structure comparison measures, such as the similarity of hydrogen 137 
atoms and bonds our findings remained consistent (Supp Fig 2), we found that regardless of 138 
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combination efficacy metric, drug synergy scores increased directly with drug structure 139 
similarity. These results run counter to expectations that synergistic drugs target distinct 140 
pathways.  141 
 142 
We further investigated drug attributes that could characterize synergistic drug pairs and focused 143 
on molecular targets of these drugs, which has also been shown to effect numerous other 144 
pharmacological attributes in past research20, 22. We found that drug pairs sharing a higher 145 
number of the same targets were not more synergistic or antagonistic than expected by chance 146 
(KS test, D-stat < 0.1, p-value >0.05), for any metric (Supp Fig 3A). However, we found that 147 
synergistic drugs tended to be found in the same pathway more than antagonistic drugs, as per 148 
KEGG pathways, Reactome pathways or molecular function gene ontology (Figure 2B, Supp 149 
Fig 3B). However, since each drug synergy metric is based on different underlying principles, 150 
we hypothesized that there would be a large variation in how strongly drug synergy scores are 151 
influenced by pathway similarity. We found that the Bliss model (which assumes independence 152 
between drugs) tended to induce the lowest pathway similarity difference between synergistic 153 
(strong pathway similarity) and antagonistic (low pathway similarity) drug pairs (KS test, D = 154 
0.171, p <0.001, Supp Fig 3B). However, in a model that assumes a more additive effect, such 155 
as Loewe, the separation greatly increases (KS test, D = 0.307, p <0.001, Supp Fig 3B). 156 
Therefore, drug synergy metrics which incorporate drug pair interactions may be more strongly 157 
affected when drugs target similar pathways.  158 
 159 
Synergy Metrics Identify Unique Synergistic Pathway Combinations  160 
 161 
Drug combination efficacy metrics principally vary in their intrinsic assumptions about drug 162 
synergy. Previous work in cancer drug combinations has demonstrated that drug synergy can be 163 
achieved through a variety of pathway mechanisms10; therefore each metric is most likely 164 
identifying distinct pathway combinations. Using the KEGG database to identify pathways based 165 
on the molecular targets of each drug, we evaluated whether the combination of targeting two 166 
specific pathways was consistently synergistic or antagonistic for each metric. We specifically 167 
evaluated the pathway combinations which were most variable among metrics (ie were 168 
significantly enriched for synergy using some metrics and a loss of significance in other metrics) 169 
(Figure 2C, Methods). With the identification of these top differential pathway combinations 170 
we investigated the potential causes for the variability between metrics. Pathway combinations 171 
such as ‘Notch Signaling’ with ‘One Carbon Pool by Folate’ (OR =  2.29, p <0.001) or ‘Steroid 172 
Hormone Biosynthesis’ (Fisher’s Exact OR = 2.63, p < 0.001) were significantly more likely to 173 
be given high Bliss or ALMANAC scores. These pathways are distantly related, as in having no 174 
proteins/compounds in common. Both Bliss Independence and the ALMANAC Score assume 175 
little-to no interaction between drugs, therefore it would follow that these metrics are more likely 176 
to capture drug combinations targeting distant pathways (Supp Fig 4). However, when 177 
evaluating pathways that are more closely related (sharing proteins/compounds), such as ‘Gap 178 
Junction’ with ‘p53 Signaling’ we found that the Bliss metric is likely to not find these drug 179 
combinations synergistic (Fisher’s Exact OR  = 0.1326, p < 0.01). When evaluating drugs that 180 
are specifically targeting the same pathway, in the case of the ErbB signaling pathway, the 181 
Loewe score is significantly more likely to label these pairs as synergistic (Fisher’s Exact OR = 182 
2.61, p <0.001), whereas Bliss demonstrates the opposite pattern (Fisher’s Exact OR = 0.686, p < 183 
0.01). Past research has shown that dual targeting the ErbB pathway can be a promising clinical 184 
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treatments23 within cancer. All of these pathway combinations highlight the different drug 185 
combinations captured by the various combination efficacy metrics and are candidates for further 186 
drug synergy development.  187 
 188 
Distinct Biological Mechanisms Lead to Differential Drug Synergy Scores  189 
To further characterize the mechanistic types of drug synergy each metric identifies we 190 
categorized three types of pathway mechanisms at the network level based on Menden et al10 191 
(Methods): same target, same pathway, and parallel pathway. We defined combinations with a 192 
“same pathway” mechanism as those whose targets are up/downstream of each other and 193 
“parallel pathway” mechanism combinations occurred when the drug targets were  upregulated 194 
or downregulated by the same gene.  We found that the synergy score for all metrics increased 195 
significantly for drug pairs that interacted in any of these pathway mechanisms by any 196 
mechanism of action, compared to drug pairs that did not (Wilcox p-value <0.05, Figure 2D). 197 
The greatest increase was seen in drug combinations with the same target, specifically when 198 
using the ALMANAC score to measure synergy (Wilcox location shift = 5.27, p-value < 0.001, 199 
Figure 2D). These results highlight the importance of having any type of interaction, supported 200 
by our finding that synergistic drug combinations for all metrics had lower distance between 201 
drug targets in a gene network when compared to antagonistic drug pairs (Supp Fig 3C), most 202 
significantly HSA (D = 0.203, p < 0.001).  203 
 204 
To better understand the pathway mechanisms of drug synergy, we assessed if both drugs were 205 
inhibiting, activating or a mix of both (one inhibiting and one activating), using mechanism of 206 
action data available for each drug on DrugBank24. Using our previously defined mechanisms 207 
(same target, same pathway, parallel pathway), we first evaluated the ‘same target’ mechanism 208 
and only looked at drug combinations that had at least one drug target in common. When at least 209 
one of the drugs was activating its gene target, the ALMANAC Score was significantly higher 210 
(Both drugs activate: Wilcox location shift = 5.27, p-value < 0.001; One drug activates: Wilcox 211 
location shift = 4.32, p-value < 0.001, Figure 2D, Supp Fig 5). However, there was no 212 
significant shift in synergy score if both drugs were inhibiting the same gene (Wilcox location 213 
shift = 0.388, p-value =0.519). Therefore, the ALMANAC score shows no enrichment in finding 214 
combinations of dual inhibitors. All other combination efficacy metrics retained a statistical 215 
significant increase in synergy scores when both drugs inhibited the same target. Dual inhibitors 216 
have been shown to be successful combination treatments within clinical trials25, 26, which might 217 
be missed if only using the ALMANAC scoring metric.  218 
 219 
Besides targeting the same gene target, synergistic drug pairs will often target the same or 220 
parallel pathways, therefore we wanted to quantify the effect on these pathway mechanisms as 221 
well. Again when evaluating the ALMANAC score, synergy scores were significantly increased 222 
when drug pairs were interacting in these pathway mechanisms, specifically when at least one 223 
drug was an inhibitor and both drugs were targeting the same pathway (Both drugs inhibiting: 224 
Wilcox location shift = 5.79 , p-value <0.001, One drug inhibiting: Wilcox location shift = 4.47, 225 
p-value <0.001, Supp Fig 6,7) and parallel pathways (Wilcox location shift = 1.72, p-value = 226 
0.002, One drug inhibiting: Wilcox location shift = 1.92, p-value <0.001, Supp Fig 6,7). 227 
However, when both drugs activate the same/parallel pathway ALMANAC scores were 228 
significantly lower than drug pairs not interacting in that manner (Same Pathway: Wilcox 229 
location shift= -0.971, p-value = 0.00907, Parallel Pathway: Wilcox location shift = -2.61, p-230 
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value < 0.001, Supp Fig 6,7). We found that synergistic scores were significantly higher for 231 
drugs pairs that activated the same or parallel pathways in only two metrics, Loewe (Same 232 
Pathway: Wilcox location shift= 1.66, p-value < 0.001, Parallel Pathway: Wilcox location shift = 233 
1.47, p-value < 0.001, Supp Fig 6,7) and HSA (Same Pathway: Wilcox location shift= 0.48, p-234 
value < 0.001, Parallel Pathway: Wilcox location shift = 0.76, p-value < 0.001, Supp Fig 6,7) 235 
(Figure 2D). Drugs may interact in unexpected ways when they activate the same or parallel 236 
pathways, which is poorly modeled by the ALMANAC and Bliss metric. However, the Loewe 237 
metric models additive effects of drug pairs and could better reflect cases where drugs interact. 238 
These underlying model assumptions may allow for Loewe to identify dual pathway activating 239 
drug combinations that may be missed by other common methods.  240 
 241 
Suite of Metric Specific Models Predicts Drug Synergy  242 
 243 
Since the synergistic drug combinations showed distinct characteristics when compared to 244 
antagonistic or other drug pairs, we reasoned that using a computational approach we could build 245 
a classification model to predict drug synergy or antagonism based on the similarity of various 246 
pharmacological and genomic attributes. Due to the diverse nature of each combination efficacy 247 
metric we chose to build a set of classification models, each fit with the synergistic/antagonism 248 
labels found using a specific metric, to create a model toolbox. Additionally, to account for the 249 
cell line specificity of drug synergy noted in past research17 and found within our own data 250 
(Figure 1B), we used a multi-task learning approach, which utilizes the strength of transfer 251 
learning27 while accounting for differences in synergy mechanisms between cell lines/cancer 252 
types.    253 
 254 
Our approach, a multi-task learning extreme randomized tree algorithm28, was tested with 10 255 
fold cross validation using the NCI-ALMANAC data and collected drug similarity features 256 
(Methods). Each model, specific to one metric, had significant predictive power, with the area-257 
under-the –receiver-operator curve (AUROC) ranging from 0.89-0.95 (Figure 3A) and the area-258 
under-the-precision-recall curve (AUPRC) ranging from 0.51-0.71 (Figure 3B). These strong 259 
AUPRCs demonstrate a fair trade-off between false positives and false negatives within our data 260 
(Supp Fig 8). This is one of the highest reported accuracy measures for drug synergy prediction 261 
models based on any of these combination efficacy metrics10, 29. 262 
 263 
To ensure our results were transferable to external data sets we investigated the AstraZeneca –264 
DREAM Challenge drug synergy publically available dataset10, 11, which also contained a variety 265 
of cancer and drug types. There were 19 new drug pairs tested in eight of the cancer cell lines our 266 
model is trained for available in the DREAM challenge 1 training data. To ensure we were 267 
appropriately comparing results we calculated four of the different combination efficacy metrics 268 
(HSA, ZIP, Loewe, Bliss) from the experimental DREAM Challenge data. The metric used 269 
within the original paper was most highly correlated with the HSA metric (cor = 0.961, p < 270 
0.001, Methods, Supp Fig 9) and therefore we used the HSA metric to compare the predicted 271 
results. We predicted the drug synergy for all DREAM challenge drug pairs using each model. 272 
We found that the predictions were significantly correlated to the calculated AZ-DREAM score 273 
(Pearson’s Coefficient 0.313, p-value = 0.0493) used in the original research and the calculated 274 
HSA (Pearson’s Coefficient 0.363, p-value = 0.0213; Figure 3C). Although the other metrics do 275 
not show a statistical significance between calculated and predicted score, this was expected. 276 
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This experiment was designed with the specific combination AZ-DREAM metric in mind and 277 
therefore this was the cleanest data available and most accurate out-of-sample test set. This 278 
external independent test set validates the use of our models on different drugs pairs in 279 
independent experimental settings.  280 
 281 
Clinical Significance Differs based on Combination Efficacy Metric  282 
 283 
We further assessed our models by applying them to clinically tested pairwise drug combinations 284 
found using the Drug Combination Data Base30. This database contains drug combinations for a 285 
multitude of diseases at different points in the drug development phase, ranging from preclinical 286 
to approved. We have limited our scope to drugs that have entered clinical trials for cancer. This 287 
subset ensured a fair tradeoff between translatable relevancy and a large enough sample size. 288 
Across all combination efficacy metrics our model assigned a significantly higher synergy score 289 
to clinically tested drug pairs than randomly selected combinations (D = 0.242-0.297, p < 0.001) 290 
(Figure 4A). While all metrics showed statistical significance, the ALMANAC Score and Bliss 291 
metric demonstrated the best ability to distinguish clinically tested and randomly selected drug 292 
pairs. This may be due to the popularity of Bliss scores in research, leading to more Bliss 293 
synergistic pairs making their way to clinical trials. However, this could be due to the pathway 294 
mechanisms enriched within Bliss/ALMANAC score synergistic pairs are more clinically 295 
impactful. For example, the targeting of distinct pathways, which the Bliss metric favors, may 296 
lead to lower toxicity, which can make those synergistic combinations a clinically viable 297 
option31. 298 
 299 
In addition to accurately predicting synergistic combinations, we wanted to test if our models, 300 
which predict cell-line specific drug synergy, are capable of properly distinguishing which 301 
cancer type a combination will be clinically effective within. Across all metrics, predicted 302 
synergy scores for clinically tested drug combinations were significantly higher in the cancer cell 303 
lines matched with the clinically tested cancer type when compared to randomly selected cell 304 
lines (p-value < 0.05, Figure 4b). The cancer type specificity was comparable for all metric 305 
types, demonstrating the robustness of our models and their potential clinical impact.  306 
 307 
DISCUSSION 308 
Identifying rational, synergistic drug combinations has great potential to increase efficacy of 309 
cancer treatments as well as combat therapeutic resistance, however experimental approaches to 310 
pairwise test drug combinations are costly in both time and money. Additionally, there lacks a 311 
true gold standard to measure drug synergy, due to the numerous different ways synergistic 312 
action can be achieved between two drugs. We have proposed a suite of models to predict drug 313 
synergy using the top drug combination efficacy metrics currently available, in addition to 314 
identifying the specific types of synergy each metric is tuned to identify. When trained on NCI-315 
ALMANAC experimental combination data we achieved significant predictive power across all 316 
metrics and showed the ability for these models to be applied to drug combination screenings 317 
performed under different conditions, using different drugs and cancer cell lines. Additionally, 318 
we have applied these models to drugs in the clinic and accurately distinguished between 319 
clinically tested drug combinations and random pairs. Our metric specific suite of models also 320 
enables us to identify which efficacy metrics have been most clinical successful and can inform 321 
future experimental approaches.  322 
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 323 
Drug combinations have long been thought to be the answer to patient resistance and increasing 324 
drug efficacy, with notable cases of success6. Researchers have realized the impossibility of 325 
experimentally testing every pairwise drug combinations and therefore many computational 326 
models have been created to answer this very issue10, 11. However, many current models were 327 
created for either specific drug types or cancer types8, which inherently limits the applicability of 328 
these models. Recently there was a DREAM Challenge, partnered with AstraZeneca, to predict 329 
drug synergy based on diverse drugs and cancer types10, 11, however this challenge focused on 330 
predicting drug synergy, calculated by only one metric. The metrics used to calculate drug 331 
synergy have been shown to be discordant12 and vary in many of the publically available dataset 332 
and the work flows of pharmacological labs or companies. We focused our attention on 333 
predicting a bevy of drug synergy types and furthering the understanding of the nuances between 334 
drug synergy types.  335 
 336 
While current large-scale experimental approaches have focused on pairwise drug combinations, 337 
many drug cocktails (> two drugs) have shown to be promising as therapeutics32, 33. Many of the 338 
metrics we have discussed can be applied to and measure the drug synergy of these drug 339 
cocktails14, 34. Since our predictive models are based on drug similarity, this can be easily 340 
extended to include more than only two drugs. As experimental methods become more 341 
streamlined and less costly, we believe we could extend these models to the prediction of drug 342 
synergy for drug cocktails.  343 
 344 
However, drug combination efficacy among cell lines is only one piece of the necessary puzzle 345 
to developing synergistic drug combinations. We have not addressed the ongoing issue of 346 
toxicity as it pertains to drug combinations, which has led to promising candidates failing in 347 
clinical settings35. Additionally, our model is not dose specific and therefore cannot be used to 348 
identify optimal ratios or doses of drugs for treatments.  349 
 350 
Overall, our suite of models has the potential to quickly predict synergist drug combinations to 351 
rapidly speed up the preclinical pipeline for drug combination treatments. Additional, we have 352 
outlined the differences between drug synergy metrics in terms of the type of synergistic action 353 
they identify and their clinical significance. We hope this can be used to help guide future 354 
experimental work to improve the development of pairwise combination treatments for cancer 355 
treatments.   356 
 357 
METHODS 358 
 359 
Drug Synergy Cell Line Data 360 
The drug pair synergy data was downloaded via NCI-ALMANAC17 and refined to include drug 361 
pairs with enough publically available data. In total 3647 unique drug pairs in 60 cell lines were 362 
analyzed. Using the raw data provided in NCI-ALMANAC, the R package SynergyFinder36 363 
Version 1.6.1 was used to calculate the Bliss, ZIP, HSA and Loewe synergy score for each drug 364 
pair. We categorized drug pairs as “synergistic” for each metric if their scores were within the top 365 
5% and “antagonistic” if the scores were in the bottom 66.67%.  366 
 367 
Pathway Analysis  368 
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All known drug targets were collected from Drugbank24 and matched to KEGG pathways via the 369 
KEGGREST37 R package using a custom R script. A fisher’s exact test was used to find the Odd’s 370 
Ratio for targeted pathway combination likely to be marked as synergistic for each metric. The 371 
most variable pathway combinations were found by identifying all combinations that had at least 372 
one synergy metric with an Odd’s Ratio lower confidence interval above 1.5 and an Odd’s Ratio 373 
higher confidence interval lower than 1.  374 
 375 
Feature Collection 376 
Compound Features 377 
For the 3,647 drug pairs, multiple compound similarity features were collected. Additionally, using 378 
their known drug targets as listed in DrugBank24, we collected drug target similarity features as 379 
well. The feature, source and metric used to measure similarity is listed in Supplementary Table 380 
1. The measures of similarity included but were not limited to Pearson Correlation, Jaccard Index 381 
and Dice Similarity. In cases where there was insufficient or missing information, features were 382 
imputed by using the median value for that feature in drug pairs with complete information.   383 
 384 
Network Features 385 
We curated a biological network that contains 22,399 protein-coding genes, 6,679 drugs, and 170 386 
TFs. The protein-protein interactions represent established interaction38-40, which include both 387 
physical (protein-protein) and non-physical (phosphorylation, metabolic, signaling, and 388 
regulatory) interactions. The drug-protein interactions were curated from several drug target 389 
databases40. 390 
 391 
Predictive Model Suite 392 
Our predictive models were trained as binary classifiers using the features described above on the 393 
NCI ALMANAC data, with synergistic and antagonistic drug pairs being our respective classes. 394 
Every model included the same features, however the classes were determined by one of the five 395 
drug synergy measures (HSA, Bliss, Loewe, ZIP, ALMANAC Score). Mulit-task extremely 396 
randomized tree models, a decision tree model, was used after model selection and implemented 397 
using the R statistical software with the extraTrees package28, the cancer cell line was used as each 398 
task. To evaluate predictive power 10-fold cross validation was used for each model. Down 399 
sampling was the chosen sub-sampling approach applied to each fold to account for the class 400 
imbalance between synergistic and antagonistic drug pairs. 401 
 402 
Classification Evaluation 403 
For evaluating all the binary synergy classifications, receiver operating characteristic (ROC) and 404 
precision-recall curve (PRC) curves were created in R using the pROC41 and precrec42 packages 405 
respectively. Area-under-the-ROC curve (AUC) and area-under-the-PRC (AUPRC) scores were 406 
used to evaluate model performance.  407 
 408 
DREAM Challenge Validation Data 409 
Raw dose-response data from the DREAM-AZ Combination Prediction Challenge10 was used as 410 
an external dataset to test our models. We found 19 drug pairs, unseen by the models, available in 411 
the Challenge 1 data set tested within cell lines our models were trained on. For these 19 pairs 412 
features were collected in the same manner as described above and drug synergy scores for all 413 
metrics, besides the ALAMANAC score, were calculated as well. The correlation between all 414 
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synergy scores were found using Pearson correlations. The synergy scores were predicted using 415 
each model and then a Pearson correlation to the calculated scores were measured. Since the 416 
calculated HSA score was most significantly correlated with the given DREAM challenge score, 417 
the predicted HSA scores were used in the comparison to the DREAM challenge scores.  418 
 419 
Clinical Trial Evaluation 420 
Current combinatorial therapeutics in clinical trials were found using the Drug Combination Data 421 
Base30. Combination therapies were narrowed down to only pairwise combinations of drugs with 422 
sufficient information to run the model and combinations being tested to treat cancer, which 423 
resulted in 300 unique drug combinations within clinical trials. We created a set of ~250,000 424 
random combinations by shuffling the drugs and removing any pairs that were in clinical trials. 425 
We then collected all drug compound features as described above and ran them through our 426 
model with all cancer cell lines our models have been trained on. Once predictive synergy scores 427 
for every metric in all cell lines were obtained we used the mean of scores for each cancer type 428 
(based on primary site) to determine the final score of clinically tested combinations. First we 429 
tested the difference between clinically tested drug pairs and random drug pairs using 430 
Kolmogorov–Smirnov tests. We used a bootstrapping approach to sample the non-clinically 431 
tested drug pairs to get a confidence interval of the true model score distribution. Additionally, 432 
we used a Kolmogorov–Smirnov test to determine the statistical significance between the scores 433 
of our clinically tested drug pairs within the cancer type that is being tested and the drug pairs 434 
synergy scores within cancer types that have not been clinically tested.  435 
 436 
Code Availability 437 
Our suite of combination models will be available for download upon request to help facilitate 438 
immediate impact within the research community.  439 
 440 
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	560 
	561 
Figure 1: Drug synergy metrics show distinct patterns across drug classes and cancer types. A) 562 
Distribution of drug classes for all the drugs tested within NCI-ALMANAC and used within this 563 
analysis. B) For each metric, the similarity of synergistic drug pairs between cancer types was 564 
measured using a Jaccard Index. The average of those 5 indices is shown above. The number of 565 
experiments done in cell lines of each primary site are also shown. C) The distribution of each 566 
synergy metric for all drug pairs and the correlation between them. D) The overlap between 567 
synergistic and antagonistic drug pairs in each tested cell line for each metric type.  568 
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 569 
Figure 2: Distinct attributes of synergistic drug pairs as defined by each metric. The cumulative 570 
distribution plot showing the proportional difference between antagonistic, synergistic, and all 571 
other drug pairs at different similarity cut-offs for A) chemical structure and B) KEGG pathway 572 
similarity. C) The odd’s ratio plot, as measure by a Fisher’s Exact test, for the enrichment of 573 
pairs of targeted pathways in synergistic drug pairs. D) The Wilcoxon location shift for 574 
synergistic drug pairs acting in one of three pathway mechanisms: same target, same pathway or 575 
parallel pathway. The visual aids represent a simplified mechanistic overview, red indicating the 576 
drug and grey indicating the targeted drug. Green arrows indicate a gene/drug that activates and 577 
red lines indicate a gene/drug that suppresses/inhibits.  578 
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 580 
Figure 3: The performance of the suite of predictive models for drug synergy across metrics. For 581 
each model, which predicts drug synergy as defined by each respective model, the performance 582 
was measured by A) the receiver-operating characteristic curve and B) the precision-recall curve. 583 
C) The correlation between predicted synergistic scores and the calculated scores from the 584 
DREAM –AZ challenge for all metrics.  585 
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 586 
Figure 4: The clinical importance and performance of each drug synergy metric model. A) 587 
Boxplots of the distribution of synergy scores, predicted by the suite of models, for drug pairs 588 
that have been clinically tested and those that have not. The red bars show the confidence 589 
interval for the median score of non-clinically tested pairs. B) Violin plots of the distribution of 590 
predicted synergy score for clinically tested drug pairs within the cancer cell lines matched to the 591 
clinically tested cancer types compared to those drug pairs in non-clinically tested cancer types. 592 
KS tests were used to find the d-statistic and p-value. 593 
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Supplementary Figures  597 
Figure S1: Spearman correlation between all synergy metrics. A) The distribution of each 598 
synergy metric for all drug pairs and the spearman correlation between them. 599 
 600 
Figure S2: Structural similarity across all drug pairs. The structural similarity for synergistic, 601 
antagonistic and all other drug pairs as defined by A) Hydrogen Similarity and B) Bonds 602 
Similarity, statistical significance found by Kolmogorov-Smirnov test. 603 
 604 
Figure S3: Drug target similarity across all drug pairs. The similarity for synergistic, antagonistic 605 
and all other drug pairs measured by A) Drug Target Similarity, B) KEGG/Reactome/GO 606 
Pathway Similarity (based on drug targets) and C) Drug target network distance, statistical 607 
significance found by Kolmogorov-Smirnov test. 608 
 609 
Figure S4: Relatedness of KEGG pathway pairs of interest. The genes associated with the first 610 
and second pathways listed shown in blue and gray, respectively. All overlapping genes are 611 
shown in green.  612 
 613 
Figure S5: The effect of drug pairs with the same target. For all metrics, the change in synergy 614 
score when drug pairs A) targeted, B) activated or C) inhibited the same target, statistical 615 
significance found by the Wilcoxon Test.  616 
 617 
Figure S6: The effect of drug pairs with gene targets in parallel pathways. For all metrics, the 618 
change in synergy score when drug pairs A) targeted, B) activated or C) inhibited parallel 619 
pathways, statistical significance found by the Wilcoxon Test.  620 
 621 
Figure S7: The effect of drug pairs with gene targets in the same pathway. For all metrics, the 622 
change in synergy score when drug pairs A) targeted, B) activated or C) inhibited the same 623 
pathway, statistical significance found by the Wilcoxon Test.  624 
 625 
Figure S8: Model performance. For all models within our suite of drug synergy prediction 626 
models the performance was measured when controlled for each “task”, or cell line.  627 
 628 
Figure S9: Correlation of AZ-DREAM score. The Pearson correlation between the provided 629 
AstraZeneca-DREAM Challenge score and A) Loewe, B) Bliss, C) ZIP, and D) HSA.  630 
 631 
Supplementary Table 632 
Table S1: All features used within our extreme randomized model. Features are listed with their 633 
source and the metric used to measure similarity.  634 
  635 
 636 
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