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Abstract4

0.1 background5

In this age of big data, large data stores allow researchers to compose robust models that are6

accurate and informative. In many cases, the data are stored in separate locations requiring7

data transfer between local sites, which can cause various practical hurdles, such as privacy8

concerns or heavy network load. This is especially true for medical imaging data, which can9

be constrained due to the health insurance portability and accountability act (HIPAA). Medi-10

cal imaging datasets can also contain many thousands or millions of features, requiring heavy11

network load.12

0.2 New Method13

Our research expands upon current decentralized classification research by implementing a new14

singleshot method for both neural networks and support vector machines. Our approach is to15

estimate the statistical distribution of the data at each local site and pass this information to16

the other local sites where each site resamples from the individual distributions and trains a17

model on both locally available data and the resampled data.18

0.3 Results19

We show applications of our approach to handwritten digit classification as well as to multi-20

subject classification of brain imaging data collected from patients with schizophrenia and21

healthy controls. Overall, the results showed comparable classification accuracy to the cen-22

tralized model with lower network load than multishot methods.23

0.4 Comparison with Existing Methods24

Many decentralized classifiers are multishot, requiring heavy network traffic. Our model at-25

tempts to alleviate this load while preserving prediction accuracy.26
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0.5 Conclusions27

We show that our proposed approach performs comparably to a centralized approach while28

minimizing network traffic compared to multishot methods.29

0.6 Highlights30

• A novel yet simple approach to decentralized classification31

• Reduces total network load compared to current multishot algorithms32

• Maintains a prediction accuracy comparable to the centralized approach33

1 Introduction34

Due to advances in analytic tools, researchers have the opportunity to assemble informative models35

given large datasets. Because of this, research institutes and hospitals are increasing collabora-36

tive efforts [Ming et al., 2017, Plis et al., 2016, Carter et al., 2015, Thompson et al., 2014]. The37

simplest and easiest method is for institutes to share data, which typically involves an individual38

group downloading data from various sources and performing large, centralized analyses. Such an39

approach is limited in what data can be shared openly due to HIPAA or other regulatory concerns.40

More specifically, these institutions need to protect the personal information of patients which41

can be compromised when transferring or centralizing the data. While this can be addressed by42

anonymizing data, in some cases, notably when there are many local sites, this is not sufficient. An-43

other issue is that large computational resources and extensive download time is typically required44

in a centralized approach, which is very problematic for neuroimaging datasets, which can contain45

hundreds or thousands or subjects, with many thousands or millions of features. Decentralized46

models may solve both of these issues by eliminating the requirement of data transfer.47

There is a current body of various decentralized models [Gazula et al., 2018, Saha et al., 2017,48

Wojtalewicz et al., 2017, Baker et al., 2015], and more specifically, decentralized neural networks49

[Lewis et al., 2017] and support-vector machines (SVM)[Forero et al., 2010]. However, these models50

are multishot, meaning they pass statistical information many times during the training process,51

which can require a great deal of network traffic. The multishot neural network, or decentralized-52

data neural network (dDNN) [Lewis et al., 2017] requires heavy network traffic at least once every53

epoch, or one full iteration through the entire dataset during the training process. This is because54

the dDNN model passes all gradient information from local sites to a centralized location after55

every epoch, then calculates the average of these gradients, and passes the averaged gradients to56

the local sites. As neural networks can require many thousands of epochs, the overall network57

traffic would be unmanageable for neuroimaging data, which can contain hundreds of thousands of58

features. This same problem occurs for multishot SVMs, which also require a high number of steps59

in which gradients are passed between local sites.60

In this research, we attempt to mitigate these issues for certain classifiers by introducing a61

singleshot method. Singleshot methods require statistical information to be passed only once, either62
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Algorithm 1 Decentralized Data-sampled Neural Network

1: procedure Decentralized Data-sampled Neural Network(NN,Sites)
2: NN ← New Neural Network Model
3: Sites← array of Network pipes to local sites
4: for each i ∈Sites do
5: Gi = Gaussian Distribution of local data
6: //Calculate distribution per local data and pass to every other site
7: for each j ∈Sitesri do
8: Gi →j
9: end for

10: end for
11: //Initialize Models at Local Sites and Train
12: for each site ∈ Sites do
13: site← NN
14: site→ Train Model
15: end for
16: end procedure

before or after the local models have been trained. In our case, statistical information is passed63

to the local sites, and then each site trains separately. The statistical information is an estimated64

distribution of the local data, which is comprised of the per-feature mean and a covariance matrix65

of the features. We refer to this model as a decentralized distribution-sampled classifier (dDSC).66

This use of statistical inference to estimate new samples for decentralized modeling is applied67

to both neural networks (dDS-NN) and SVMs (dDS-SVM) to show efficacy in use with multiple68

classification models. We quantify the data at each local site by building local distributions using a69

Gaussian mixture model (GMM) and pass these distributions to the remaining local sites which will70

then be used in training models at the local sites. Each local site combines artificial data sampled71

from the given distributions with locally available data to train the models. We demonstrate the72

efficacy of dDS-NN and dDS-SVM on two datasets.73

2 Methods74

2.1 Multishot decentralized modalities75

In the previous multishot models, dDNN and the consensus-based SVM, high-level statistical infor-76

mation (i.e. gradients) are passed between local sites many times during the training of the models.77

However, this requires a high traffic load and as the number of training iterations increases, the78

chance of network failure also increases. The dDNN aggregates the local gradients every iteration79

(or epoch through the data), averages the gradients, and passes these updated gradients to the80

local sites. The multishot SVM uses the alternating direction method of multipliers (ADMoM)81

to accumulate the updating parameters, or the model weights, [Forero et al., 2010]. These model82

weights are used, as in a non-decentralized model, to update the Lagrangian multipliers. This83
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MNIST Data sMRI Data

Fully Randomized

-60,000 images
-3 local sites
-Data distributed
uniformly at
random to all sites

-10-fold cross-validation
-584 subjects
-4 local sites
-Data distributed
uniformly at
random to all sites

Biased by Class Label

-53,869 images
-3 sites, each with
3 digits
-site 1: 0-2
-site 2: 4-6
-site 3: 7-8

-584 subjects
-4 sites, each with either
healthy controls or
patients
-sites 1 & 2: healthy
-sites 3 & 4: patients

Fully Random, with Many
Local Sites

-60,000 images
-20 sites
-Data distributed
uniformly at
random to all sites

N/A

Table 1: The break-down of the experiments. The rows are the two different datasets, and the
columns are the three experiments. Each cell explains the important details of an experiment for
a given dataset.

process is repeated as many times as necessary to complete the training.84

2.2 Statistical inference models85

Our approach for singleshot classifiers- dDSC gathers statistical information about the datasets,86

rather than the models as is the case in the multishot algorithms, at the local sites and passes87

this information between the sites before the models are trained. We use a GMM to estimate88

the distribution of the local site data for each class. Once the distribution is gathered from the89

model for each site, this distribution is passed to the other sites. The other sites then draw artificial90

samples from the remaining sites’ distributions and trains their own model on both locally available91

data as well as the artificial samples. This approach also shows a much smaller amount of network92

traffic, as the mixture model is transferred once, with a polynomial relationship to the number of93

input features. This is the case for both the neural network and SVM methods.94

f(x) =
1

σ
√

2π
e

−(x−µ)2

2σ2 (1)

p(x) =
∑
i=1

p(zi)f(x) (2)
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2.3 Gaussian Mixture Model95

A GMM uses the expectation-maximization (EM) algorithm to fit the data to a distribution. The96

EM algorithm begins by, for each class, creating a random Gaussian distribution, or randomized97

mean and variance. Then, the probability that each data point is within a given distribution98

is calculated using the Gaussian equation (Equation 2). Finally, the mean and variances of the99

distributions are recalculated based on the probability of each data point being a member of a100

given distribution. Once the parameters have been re-estimated, the process starts over again,101

and the data points are reassigned to a distribution given the updated means and variances. This102

process continues until the model converges to a given maximum likelihood estimation.103

GMMs use covariance matrices to store the variances of the features, which determine the104

contours of the distribution in N -Dimensional space. The covariance matrices can be represented105

in different ways, the most common being a full-covariance matrix; in which the variance of all106

pairs of features is stored in the matrix. Another representation of covariance matrices is a diagonal107

matrix, in which the variances of only individual features are stored in memory. This distinction108

is important for our work as it determines the network traffic of the model. When analyzing the109

MNIST dataset, we use a full covariance matrix as the feature set is relatively small compared to110

the sMRI dataset. However, in the case of the sMRI data, we use a diagonal matrix due to the111

sheer size of the feature space and to show that the dDSC also works with a very small subset of112

the distribution information, which reduces total network traffic.113

2.4 Experiments114

The experiments use two different datasets: the mixed national institute of standards and tech-115

nology (MNIST) dataset of handwritten numbers [LeCun et al., 2010], and a set of real-world116

structural magnetic resonance images (sMRI) of schizophrenia patients and healthy subjects from117

an aggregated multisite dataset [Potkin et al., 2008, Gollub et al., 2013, Hanlon et al., 2011, Aine118

et al., 2017]. We tested the models’ performances on MNIST with three cases: the data is uniformly119

and randomly distributed across three sites, three sites have access to only certain classes, and the120

datasets are uniformly and randomly distributed across 20 sites. We also tested the models via the121

sMRI data in two cases: the data is uniformly distributed across four sites at random, and four122

sites have access to only certain classes. A full break-down of the experiments can be seen in table123

1.124

2.5 MNIST Experiments125

For both MNIST experiments, the images are vectorized from 28x28 pixel images into vectors of126

size 784. The labels are one-hot-encoded into a vector of size 10 for each image. For all experiments,127

we tested the models using the test set established by the dataset creators.128

In the first dDS-NN experiment, we randomly select 20,000 images from the entire dataset of129

60,000 images for each of the three sites. This process is used for the dDNN and dDS-NN model.130
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Table 2: sMRI Subject Demographics

MCIC COBRE FBIRN

Schizophrenia Subjects 101 93 75

Healthy Subjects 119 97 99

Schizophrenia Male/Female Split 74/27 76/17 63/12

Healthy Male/Female Split 73/46 69/28 69/30

Total 220 190 174

However, the centralized model have one site with access to all 60,000 images. All of the neural131

networks use the same architecture: two hidden layers of size 256, a learning rate of 0.001, and132

batch normalization is also used. The models are initialized with the Xavier initialization algorithm133

(Glorot, 2010). The models are run for 1000 epochs, and the accuracy of the MNIST test data is134

captured at every 100 epochs. In the dDSC model, the data at each local site are sampled with a135

separate GMM process for each class, and the distributions are passed to every other site. The local136

sites then sample 20,000 images from each of the incoming distributions. We validate the procedure137

by testing each site’s model on the MNIST testing set and averaging the accuracies across every138

site.139

In the second MNIST experiment for both dDS-NN and dDS-SVM, we bias the per-site data140

by class label. One site had access to digits 0-2, the second site had digits 4-6, and the last site141

contained digits 7-9. As the number three is not included, there are only 53,869 total images. As142

with the first experiment, each site using the distribution-sampled model sampled from the other143

sites’ per-class distributions of the respective local datasets. Again, the calculated accuracies per144

local site are averaged to encompass possible error differences between the sites.145

The third experiment, which was only used to test the dDS-NN and not the dDS-SVM, uses146

60,000 images as in the first experiment. The data is processed the same way as the first experiment,147

and the models are also of the same architecture. However, the primary difference is that the data148

is separated into 20 local sites as opposed to 3. This means that there are a total of 3,000 images149

at each local site distributed uniformly at random. Then, as in the previous experiments, the150

accuracies between the three models are compared.151

The dDS-SVM model was tested on the same MNIST dataset as was used to test the dDS-NN.152

In the first SVM experiment, we randomly and uniformly distributed all of the training data across153

3 sites. The second SVM experiment used 3 sites and the data was biased by label such that each154

site had exclusive access to 3 of the digits. Monte Carlo cross-validation was again used for both155

of these experiments.156

2.6 sMRI data demographics157

The sMRI dataset is aggregated from three separate datasets: the mind clinical imaging consortium158

(MCIC) [Gollub et al., 2013], the function biomedical informatics research network (fBIRN) [Potkin159

et al., 2008], and the center for biomedical research excellence (COBRE). In total, the three datasets160
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consists of 584 subjects, of which, 269 are schizophrenia patients; the remaining subjects are healthy161

controls. For a more detailed breakdown of the demographic information, please see table 2.162

2.7 sMRI dataset experiments163

The sMRI dataset is very large with over 58 thousand features. As such, with or without statistical164

inference, the network traffic would be problematic. Due to this, we use a diagonal matrix to store165

the estimated variances of the GMM. Diagonal matrices store fewer data points and greatly reduces166

the required network traffic as it requires N values, whereas full covariance matrices require N2
167

values. However, this loss of information may also have an impact on accuracy.168

The sMRI dataset is analyzed by the dDS-NN using two separate experiments: a test in which169

the entire dataset is randomized across all local sites, and an experiment in which the local site data170

are biased by class. For this dataset, both experiments used four sites, but due to the size of the171

dataset, 10-fold cross-validation is used to measure the efficacy of the model. For all experiments172

of the neural network, we use two hidden layers of 1000 nodes and 200 nodes respectively. The173

batches are normalized and the weight sets are initialized with the Xavier algorithm, and we used174

a learning rate of 0.01. The models are run for a total of 2000 epochs throughout the entire dataset175

and the accuracy is measured on the per-fold test data every 100 epochs. In the randomized local176

dataset experiment, the three approaches operate the same way as in the MNIST experiment.177

In the second dDS-NN experiment, we bias the per-site data by class label. The schizophrenia178

patients are evenly and randomly distributed between two of the local sites. The healthy controls179

are evenly and randomly split between the remaining two sites. No subject overlaps between the180

local sites, and each site had access to data with only one label; either schizophrenia or healthy.181

The distributions for each local dataset are then calculated and passed to the remaining local sites182

and each site trained a model on the sampled data and available local data. The local models are183

built with the same architecture, but since they are trained on different data they are not perfectly184

similar the way the local dDNN models are. This is measured by averaging the accuracies across185

all four local sites. The goal is to show the model’s robustness to extremely biased data.186

We also use the sMRI data to test the dDS-SVM by uniformly distributing the sMRI data187

across four sites at random. 10-fold cross-validation was used to test the entire dataset. This was188

compared to an centralized SVM in which one site has access to the entire dataset.189

3 Results190

3.1 MNIST experiments191

The first experiment of the neural network, in which the entire dataset is randomly distributed192

across all three sites, shows near identical accuracies between the dDNN and centralized approaches.193

Both converge at approximately 97.1% accuracy (Figure 2). The dDS-NN slightly worse, but still194

quite well, approximately converging towards 96.4% accuracy.195
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In the second neural network experiment, the data are biased in such a way that each site had196

access to only three of the possible classes. Digit ‘3’ is removed so as to give each site an equal197

number of classes. From Figure 5, we see that, as in the previous experiment, the dDNN and198

centralized approaches are almost identical, converging toward 97.8%. The dDS-NN approach is199

slightly less accurate, converging towards 95.5% accuracy. The discrepancy between the accuracies200

of the same procedures is most likely due to the impact from the exclusion of digit three. It appears201

that including digit three makes the MNIST problem slightly more difficult.202

The third neural network experiment shows the limitations of the dDS-NN model. This model203

converges towards 92%. Whereas the centralized and DDNN are almost identical and converges204

toward approximately 96.4% (Figure 2). The goal of this experiment is to show a major limitation205

in the procedure; which is its poor performance with many local sites.206

The dDS-SVM performs as well as the dDS-NN compared to their centralized counter-parts in207

the case in which all of the data are distributed uniformly at random to all 3 sites. The average208

accuracy for the three site case for the dDS-SVM model is 91%. This is in contrast to the centralized209

method which had an accuracy of 91.5%. These accuracies reflect the differences between SVMs210

and neural networks when applied to the MNIST dataset [Deng, 2012].211

For the case in which there are 3 sites and the data are biased by class label, the dDS-SVM212

had an accuracy of 90.8%, while the centralized method had an accuracy of 91.5%.213

3.2 sMRI experiments214

For all sMRI experiments, a diagonal covariance matrix is used to estimate the parameters of the215

distribution. This would have an impact on the performance of a model, which can be seen in the216

results. However, a diagonal covariance matrix greatly reduces the required network traffic from217

O(N2 * L) to O(N * L). Although the accuracy does decline by a small factor, the multishot dDNN218

and SVM models require a much higher order of network traffic.219

The first dDS-NN experiment, in which the entire dataset is randomly distributed across all220

three sites, show near identical accuracies between the dDNN and centralized approaches. Both221

converge similarly: the dDNN method converges to about 72.1% accuracy (Figure 6), averaged222

across all 10 folds, and the centralized approach converges to about 72.9% accuracy. The dDS-NN223

converges toward 68.5% accuracy.224

In the second sMRI experiment of the dDS-NN model, the data is evenly distributed across four225

sites, but is biased in such a way that each site had access to only one of the possible classes. This226

means that two sites had access to only patients and the remaining two sites had access to controls.227

From Figure 7, we see that, as in the previous experiment, the dDNN and centralized approaches228

are almost identical, converging towards 72.8% accuracy. The dDS-NN approach converges towards229

65.1% accuracy.230

When the sMRI data is modeled with an SVM, we uniformly and randomly distribute the data231

across 3 sites. 10-fold cross validation is used, covering all data samples, and the data are uniformly232

distributed to four different sites at random. The mean of the accuracies across all 10 folds from233
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the dDS-SVM model is 67.5%, whereas the mean from the centralized method across all folds is234

72%. These results are congruent with the results from the dDS-NN.235

3.3 Network Traffic Analysis236

The importance of this work rests in the dDSC model’s ability to reduce total network traffic.237

Our asymptotic analysis of the models provides a method to quantify the total network load as238

a function of the magnitude of the input data. Asymptotic analysis is a widely used method to239

understand the speed or space constraints of algorithms [de Bruijn, 1959]. The asymptotics are240

computed as the big-O, or the upper bound on the total amount of space required with respect to241

a given input of size N. This is done simply enough by computing the upper bound of how many242

gradients the multishot methods must pass between sites and how often this transfer must occur.243

The asymptotics of our singleshot method are estimated as a function of the size of the distributions244

passed between sites, including the means of each component and the covariance matrices of the245

local data.246

The dDNN model proves to be very network intensive, as all gradients are passed between sites247

for every iteration. In order to reduce the total number of iterations required, the dDNN would248

train on one epoch ever iteration, which is analogous to stochastic gradient descent. Given this,249

the asymptotic analysis of the network traffic is straight forward: O(W * I ), where W is the total250

number of weights in the model, and I is the number of iterations the model requires to converge.251

Given that the first weight matrix is size N *w1, W ≥ N for any possible N. With complex datasets,252

the number of weights can be much higher than N, as even first weight set, wi, is a multiplicative253

combination of the number of input features and the number of hidden nodes, and the number254

of hidden nodes can be on the order of size N, and the subsequent weight set is a multiplicative255

combination of w1. This suggests an upper bound of O(N2). It also must be noted that this256

network traffic occurs for every local site twice; the first time when the local sites pass gradient257

information to the central server, and the second time when the central server passes the averaged258

gradients to the local sites. This network load occurs every iteration I through the local dataset,259

where each iteration can be small batches of data, or an entire epoch of the local datasets. This260

means that the total space complexity of the multishot neural network is O(N2 * I ). As neural261

networks can require many hundreds or even thousands of iterations, it grows as complexity of the262

data and model increases.263

The current decentralized SVM model calculates the support vector weights, vi for every site i264

and broadcasts vi to all other local sites in a given iteration. Every feature n has a corresponding265

vi weight value, meaning vi is of size N for every v ∈ V. With I iterations and N input features,266

the space complexity of an SVM is O(N * I * L). The dDSC model however, requires statistical267

information to be passed only once. When a full covariance matrix is used to estimate the distribu-268

tion of the GMM, the model requires space for the variance of each feature pair, for each possible269

class. Meaning, at most, O(N2 * L) bytes of information are passed to each other site for each site270

with a number of labels L. However, in the case of a diagonal matrix, which is the method used271

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2019. ; https://doi.org/10.1101/576108doi: bioRxiv preprint 

https://doi.org/10.1101/576108
http://creativecommons.org/licenses/by/4.0/


to analyze the sMRI data, the variances and means of only the individual features are stored in272

memory for each label, meaning this method requires O(N * L) traffic across a network.273

Given this analysis, it is clear why the dDSC model is effective at reducing the upper bound274

of the total network traffic, as well as greatly reducing the number of times information is passed275

between sites. Our analysis showed that our singleshot method does decrease network traffic by at276

least one order of magnitude. Beyond the reduction in total network traffic, it is important to note277

that the dDSC model reduces the total number of network broadcasts required during training.278

With multiple network broadcasts, there are more fault points, as any interruption in the network279

connection halts training, and the probability of interruption increases as the number of required280

broadcasts increases. This problem is entirely mitigated with a singleshot method.281

4 Discussion282

Decentralized models have an important place in machine learning and data analytics and are283

based on the concept of distributed computation [Dijkstra, 1965, Dean et al., 2012]. Currently,284

decentralized modeling has focused on basic machine learning techniques [Gazula et al., 2018, Ming285

et al., 2017, Plis et al., 2016, Baker et al., 2015, Forero et al., 2010], with scant research on286

neural networks [Lewis et al., 2017]. Previous research on decentralized deep learning focused287

on eliminating significant differences in accuracy between decentralized neural networks and their288

centralized counterpart. However, this proved to be problematic as the size of the network traffic289

is unmanageable for even the fastest network, given a large enough dataset, such as fMRI scans for290

many subjects. As the research is geared towards biological data, consisting of very large datasets,291

this problem is especially important.292

Mixture models have previously been used to enhance neural networks [Viroli and McLachlan,293

2017], and the concept of generating new samples to improve neural network accuracy has also been294

explored [He et al., 2008, Goodfellow et al., 2014]. We adapt these concepts to greatly improve295

decentralized neural networks and solve the problem of high network traffic with minimal impact296

on accuracy.297

Overall, the dDSC model drastically decreased network flow by a polynomial amount. The298

multishot neural network’s asymptotic space requirement is O(W * I ) for every site, where W has299

a magnitude of greater than or equal to the size of the input, N. While the multishot SVM requires300

O(N * I * L) network load. This contrasts with our singleshot implementation which requires only301

O(N ) space.302

Although the model appears to be valid for many criteria, it does have limitations. As seen303

in Figure 2, the accuracy of the dDSC model decreases with many more local sites. The local304

distributions appear to be less accurate due to a lack of sample data. This result is what would305

be expected for small enough sample sizes. However, there is a body of literature showing how306

to improve mixture model accuracy given small datasets [Liu et al., 2008]. Although, it should307

be noted that small datasets will always be a limiting factor for machine learning, and a certain308
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amount of error is expected with small datasets.309

We suggest that future researchers could develop models that are more accurate in general, or at310

least in the case of many local sites. This could include testing different mixture models or methods311

to generate artificial data to improve the accuracy of local distributions for small datasets [Fei-Fei312

et al., 2007]. Future research could also focus on using generative adversarial networks (GAN) to313

train on local data and produce artificial samples for other local sites. Finally, a more basic avenue314

for continued research would be to use our method for different neural network architectures or315

different machine learning models. This model shows that statistical inference works as a way316

to decentralize data for classifiers. However, statistical inference could also be used for other317

decentralized methods.318

5 Conclusion319

This work expands on the current body of decentralized classification models with a technique to320

improve network efficiency by estimating distributions of the local data and sampling from these321

distributions at every other local site. We accomplished this with a Gaussian mixture model to322

produce artificial samples from the local data. The results from the experiments show a promising323

expansion to decentralized neural networks. We showed that the dDS-NN produces accuracy com-324

parable to the dDNN model, but with greatly reduced network traffic. This research also concludes325

that the dDS-SVM performs similarly to a centralized SVM while also reducing network traffic326

compared to the original decentralized SVM when using a diagonalized matrix.327
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Figure 1: The three paradigms from left to right: dDS-NN, DDNN, and a centralized model. In the
dDSC model, for every site i, every other site calculates the distribution of the local data and passes
the distribution (in the form of a matrix) to site i. Site i then samples data from these distributions
and uses this artificial data as well as the local data to train its own model. In the dDNN model,
each local site trains its own model and the available local data and passes the gradient data to a
centralized server. The centralized server then averages the local gradients and passes this average
to the local sites to train the local models. The centralized paradigm uses all possible data in a
single model at a central site.
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Figure 2: Examples of the hand-drawn digits in the MNIST dataset.

Figure 3: The MNIST data are randomly and evenly distributed between three sites for all three
approaches, a centralized neural network, the dDNN model, and the dDS-NN model. The accuracy
per approach is outlined above. The Centralized and dDNN methods are near identical.

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2019. ; https://doi.org/10.1101/576108doi: bioRxiv preprint 

https://doi.org/10.1101/576108
http://creativecommons.org/licenses/by/4.0/


Figure 4: Results comparing the Centralized, dDNN, and dDSC approaches when the local MNIST
data are biased by class label.

Figure 5: The MNIST data are randomly and evenly distributed between 20 sites for all three
approaches. The accuracy per approach is outlined above.
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Figure 6: Results comparing the 10-fold cross-validation accuracies between Centralized, dDNN,
and dDS-NN approaches with randomly and uniformly distributed data from the sMRI dataset.
Stems show standard deviation and the lines show the mean accuracies across the 10 folds for each
approach.
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Figure 7: Results comparing the 10-fold cross-validation accuracies between Centralized, dDNN,
and dDS-NN approaches with data from the sMRI dataset in which the data are biased by class
label. Stems show standard deviation and the lines show the mean accuracies across the 10 folds
for each of the three approaches.
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Figure 8: Results from the SVM experiments. The MNIST data (left) showed similar results be-
tween the centralized and dDS-SVM models. The uniformly and randomly distributed experiment
of the MNIST dataset is on the far left and the case in which the data is biased by class label is
in the center. The dDS-SVM also showed similar results compared to a centralized model when
applied to the sMRI data (right).
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