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Humans cognition exhibits a striking degree of variability: Sometimes we rapidly forge new6

associations whereas at others new information simply does not stick. Although strong corre-7

lations between neural activity during encoding and subsequent retrieval performance have8

implicated such “subsequent memory effects” (SMEs) as important for understanding the9

neural basis of memory formation, uncontrolled variability in external factors that also pre-10

dict memory performance confounds the interpretation of these effects. By controlling for11

a comprehensive set of external variables, we investigated the extent to which neural corre-12

lates of successful memory encoding reflect variability in endogenous brain states. We show13

that external variables that reliably predict memory performance have only minimal effects14

on electroencephalographic (EEG) correlates of successful memory encoding. Instead, the15

brain activity that is diagnostic of successful encoding primarily reflects fluctuations in en-16

dogenous neural activity. These findings link neural activity during learning to endogenous17

states that drive variability in human cognition.18

The capacity to learn new information can vary considerably from moment to moment. We19

all recognize this variability in the frustration and embarrassment that accompanies associated20
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memory lapses. Researchers investigate the neural basis of this variability by analyzing brain21

activity during the encoding phase of a memory experiment as a function of each item’s subsequent22

retrieval success. Across hundreds of such studies, the resulting contrasts, termed subsequent23

memory effects (SMEs), have revealed reliable biomarkers of successful memory encoding.1–3
24

A key question, however, is whether the observed SMEs actually indicate endogenously vary-25

ing brain states, or whether they instead reflect variation in external stimulus- and task-related vari-26

ables, such as item difficulty or proactive interference, known to strongly predict retrieval success.427

Despite the large number of studies that have documented and characterized SMEs across a wide28

range of memory tasks and encoding manipulations, the relative contributions of endogenous and29

external factors have yet to be established.30

Free recall studies of SMEs typically compare brain activity associated with the encoding of31

subsequently recalled and non-recalled items within a given list. Some of the strongest predictors32

of recall performance are characteristics of individual items (e.g., their pre-experimental familiarity33

or their position in the study list).5–7 Such idiosyncratic item-level effects are therefore serious34

confounds in item-level SME analyses and difficult to control, because repetition of items across35

lists would produce carry-over effects.36

To limit these item-level effects in our examination of broader external factors that also affect37

recall performance (such as session-level time-of-day effects or list-level proactive interference38

effects), we computed list-level SMEs by averaging the epochs of brain activity following the39

presentation of individual study items across study lists. Specifically, we analyzed EEG recordings40
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from 97 individuals who each studied and recalled 24 word lists in each of at least 20 experimental41

sessions that took place over the course of several weeks. We trained ridge regression models42

to predict the (logit-transformed) proportion of recalled items for each list, p(rec), on the basis43

of spectral EEG features that we averaged over recordings during all encoding periods in that44

list. Additionally, we leveraged a prior statistical model of memory performance which identified45

several critical variables predicting recall performance across both lists and sessions.4 By removing46

linear effects of these variables, we uncovered the components of neural activity that predict the47

residual recallability of studied items. Comparing SMEs for these residuals with those obtained48

for raw recall performance thus allowed us to estimate the relative contributions of endogenous49

neural variability and external factors to the SME. Throughout this paper we assessed our ability50

to predict recall performance with a leave-one-session-out cross-validation procedure (see methods51

for details).52

Results53

Figure 1 shows the mean proportion of recall as the function of several external variables that affect54

recall performance for entire sessions (intersession predictors) and for individual lists within each55

session (interlist predictors). Specifically, we considered sleep duration in the night prior to the56

free recall test, time of day, and self-rated alertness at the beginning of the experimental session57

as intersession predictors and experimental block within each session, the list number within each58

block, and the average “recallability” of items within each list as interlist predictors.4 We are show-59

ing the effects of these variables across all participants (discretized into two bins for each of the60
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Figure 1: Mean probability of recall (and associated 95% confidence intervals) as a function of

intersession (amount of sleep, rated alertness, and time of day) and interlist (block number within

a session, list number within a block, and mean recallability of items within a list) predictors. For

the purpose of this visualization we discretized each individual’s intersession predictors into two

bins and mean recallability scores into ten bins, but our analyses applied separately to the full data

set from each individual.
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intersession predictors and into ten bins for recallability) for illustrative purposes, but we applied61

all of our analyses separately to the full data from each individual. Additionally, we also consid-62

ered the effect of session number (which was heterogeneous across participants with some showing63

increased performance with increasing practice and some showing a decline in performance) as an64

additional predictor in our intersession and interlist regression models (described below). Detailed65

analyses of the effects of these variables on recall performance in a large subset of this data set66

were the focus of a previous study.467

Figure 2A illustrates brain activity associated with the study of individual items from two68

adjacent lists that were associated with relatively high (21/24) and relatively low (11/24) propor-69

tions of recall respectively (to accommodate size constraints we omitted the middle 12 items from70

each list in this figure). The brain activity shown in these time-frequency plots extends beyond the71

time range for the epochs we used in our analyses (0.3–1.6 s after study-word onset) to 0.8 s before72

each item’s onset to capture most of the brain activity during the presented sections of the study73

lists (additional variable-duration inter-stimulus intervals are not shown). The predicted probabil-74

ity that an item will subsequently be recalled according to an item-based classifier (see methods)75

is shown below each sub-panel.76

Figure 2B illustrates brain activity across encoding periods for subsequently recalled and77

subsequently unrecalled encoding epochs across all participants in our study. This panel shows78

distinct patterns of brain activity as a function of subsequent recall — a standard subsequent mem-79

ory effect. Given the strong effects of item-level characteristics on recall performance, it is possible80
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Figure 2: z-transformed power around the presentation of study words during one participant’s (ID: 374) 16th

experimental session. The two rows show excerpts from the 4th and 5th study lists in that session. The study words

are indicated at the top of each sub-panel with bold italic font indicating subsequent recall. The horizontal bar graphs

at the bottom of each sub-panel show the output of the logistic regression classifier (see methods). B: Average power

for subsequently recalled (top) and subsequently unrecalled (bottom) words during study across all participants. C:

Average power for quartiles of p(rec) (top) as well as interlist (middle) and intersession (bottom) residuals across

all participants. For this visualization, we aggregated activity across electrodes in four superior regions of interest

(illustrated in Figure 4). All our analyses were based on data from individual electrodes with no discretization into

quantiles. Vertical black lines indicate word onset. The time range for our encoding epochs (0.3–1.6 s after study-word

onset) are labeled on the time axes.

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/576173doi: bioRxiv preprint 

https://doi.org/10.1101/576173
http://creativecommons.org/licenses/by/4.0/


that they explain a large proportion of the variance in item-level SMEs. Additionally, it is possible81

that any endogenous variability driving SMEs is relatively fast, varying on the order of seconds82

(i.e., the time devoted to the study of individual items in typical memory experiments) rather than83

tens of seconds (i.e., the time encompassing a full study list) or longer. It was therefore not clear84

that brain activity averaged over the individual study periods would be similarly informative about85

list-level recall performance as standard item-level SMEs. For our list-level analyses, we averaged86

encoding epochs of brain activity within each list to predict (logit transformed) p(rec) and residu-87

als from the interlist and intersession regression models. To illustrate how brain activity covaried88

with these continuous variables, we partitioned lists into quartiles based on the (residuals of) recall89

performance and show the average brain activity for lists in each quartile across all participants in90

Figure 2C (all of our regression analyses described below are based on the continuous measures91

and recordings from individual electrodes). Figure 2C suggests that list-level brain activity varies92

considerably as a function of list-level recall performance and that this effect is largely preserved93

even when accounting for the linear effects of external factors, especially those varying between94

sessions (intersession predictors). Furthermore, a comparison of Panels B and C reveals apparent95

similarities between neural features predicting item-level and list-level recall performance with a96

decrease in α power (around 10 Hz) associated with better recall performance. We confirmed these97

impressions with our detailed multivariate analyses to which we now turn.98

To compare the sizes of our list-level SME to the classic item-level SME, we trained an L299

penalized logistic regression (LR) model to predict subsequent recall of individual items (again100

using a leave-one-session-out cross-validation procedure to measure classification performance;101
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Figure 3: Areas under the ROC functions (AUCs) for classifier performance predicting subsequent memory for

individual items (using a logistic regression classifier; item), lists of items (predicting the probability of recall across

list items; p(rec)), as well as for residuals of list-level recall performance after regressing out interlist and intersession

predictors. The lower triangle shows scatter plots for each pair of AUCs across participants. The upper triangle shows

bivariate kernel density estimates of these same data with the corresponding correlations. The main diagonal shows

histograms of each classifier’s AUCs with the corresponding means and standard errors.
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example outputs are shown in Figure 2A). For classification problems, the area under the receiver102

operating characteristic (ROC) function (AUC) provides a convenient index of classification per-103

formance with an AUC of 0.5 corresponding to chance performance and an AUC of 1.0 indexing104

perfect classification.8 To allow direct comparisons between the performance of the item-level105

classifier and our ridge regression models predicting p(rec) we also calculated AUCs for our re-106

gression models by discretizing the proportion of list-level recalls. Specifically, for these analyses,107

we treated lists whose p(rec) exceeded the total proportion of recalled items in a session as the108

target category and all other lists as the the non-target category. Figure 3 shows AUCs for the109

item-level classifier as well as for three different list-level regression models which we will discuss110

in turn.111

The list-level regression model predicting p(rec) yielded a mean AUC of 0.64 which was sig-112

nificantly higher than that for the item-level LR classifier (M = 0.6; t(96) = 6.168, SE = 0.006,113

p < 0.001). This demonstrates that spectral features averaged over encoding periods effectively114

predict list-level recall performance. This pattern of results is consistent with the idea that slow115

(on the order of tens of seconds) endogenous processes rather than idiosyncratic item-level charac-116

teristics or fast (on the order of seconds) endogenous variation are the primary drivers of the SME.117

It is difficult, however, to directly compare list-level and item-level results because the averaging118

over 24 individual encoding epochs for the list-level analyses or the corresponding 24-fold larger119

training set for the item-level analysis could each affect the relative performance of the respec-120

tive analysis. To assess the effect of averaging, we also applied the item-level LR classifier to the121

average brain activity of all recalled and all unrecalled trials within each list (i.e., at most 2 in-122
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stead of 24 observations per list; not shown in the figure). This averaging yielded a mean AUC of123

0.68 which was significantly larger than that for the standard item-level classifier (t(96) = 15.294,124

SE = 0.005) and the regression model predicting p(rec) (t(96) = 15.294, SE = 0.005, both125

ps < 0.001). The fact that the advantage of averaging outweighed any detriment of reducing the126

number of training samples is also consistent with relevant signals varying on slow (on the order of127

tens of seconds) time scales, especially given that there are strong sequential dependencies in recall128

performance 9 (resulting in the preferential averaging of adjacent items in the averaged item-level129

LR classifier).130

Given that item-level characteristics and fast endogenous variation did not appear to substan-131

tially contribute to the SME, we next considered the extent to which external variables affecting re-132

call performance for entire sessions (intersession predictors: sleep, alertness, and time of day) and133

those that affect recall performance at the list-level (interlist predictors: block, list, recallability)4
134

are driving differences in brain activity that predict recall success. To the extent that either set of135

variables can explain the SME, we can conclude that it also does not reflect slow endogenous vari-136

ability on the order of tens of seconds (i.e., lists) or days (i.e., sessions). We constructed interlist137

and intersession regression models (both models also included session number as a predictor) to138

remove linear effects of the respective external variables on p(rec). We then predicted the resulting139

list-level residuals with ridge regression models using the same spectral EEG features as for our140

list-level regression model predicting p(rec). Figure 3 shows that AUCs for the interlist and inters-141

ession regression models respectively matched (M = 0.6) or exceeded (M = 0.65, t(96) = 8.354,142

SE = 0.006, p < 0.001) those for the item level classifier, demonstrating that spectral features143
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effectively predict list-level performance even after accounting for linear effects from several ex-144

ternal variables that affect recall. These results thus rule out these factors as major contributors145

to the SME, suggesting that SMEs predominantly reflect slow endogenous variability in cognitive146

function.147

Whereas the AUCs for the interlist regression models were significantly lower than those148

of the regression models predicting p(rec) (t(96) = 7.389, SE = 0.005, p < 0.001), the AUCs149

for the intersession regression models exceeded those for the other list-level regression models150

(t(96) = 5.828 and 11.464, SE = 0.003 and 0.005, ps < 0.001, for comparisons with the p(rec)151

and interlist models, respectively; Figure 3). This pattern of results indicates some effects of152

interlist factors on our measures of brain activity predicting recall performance, leading to a re-153

duction in model performance when linear effects of interlist predictors were removed. The fact154

that the intersession models were better able to generalize across sessions indicates that relevant155

brain activity varying across sessions was not effectively captured by our models (because we used156

a leave-one-session-out cross-validation procedure to measure model performance, AUCs index157

the ability of our models to generalize across sessions). Thus, removing linear effects of inters-158

ession predictors removed variability that the models could not account for, leading to increased159

performance. These results establish a small role for list-level effects due to external factors (e.g.,160

proactive interference) in the SME in addition to strong effects of endogenous variability in encod-161

ing processes.162

Figure 3 also highlights substantial correlations between AUCs for the different models.163
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This suggests that the different models use brain activity similarly to predict (residuals of) recall164

performance. It is difficult, however, to interpret the levels of these correlations in light of the fact165

that the dependent measures also correlate substantially—a previous analysis4 showed a reduction166

of variability of the residuals for the interlist and intersession models relative to p(rec) of only167

around 11% on average, leaving most of the variability in recall performance unaccounted for by168

external variables.169

A standard measure of performance for regression models is the correlation between pre-170

dicted and actual values of the dependent measures. These correlations mirror the pattern of171

the AUCs shown in Figure 3 with r = 0.26, 0.28, and 0.19 for p(rec), intersession residuals,172

and interlist residuals respectively (all pairwise differences were statistically significant, t(96) =173

8.370–11.695, SE = 0.003–0.008, ps < 0.001). The point-biserial correlation between predictions174

from the item-level classifier and recall status of individual items was 0.16 (0.30 for the averaging175

item-level classifier). This confirms the above AUC-based analyses indicating the effectiveness of176

spectral features in predicting list-level performance and the ability of our models to capture some177

brain activity associated with interlist, but not intersession, predictors (because of the better per-178

formance for the intersession models and the reduced performance of the interlist models relative179

to the models predicting p(rec) as explained above).180

In addition to investigating the correlations between predictions from the different regres-181

sion models and the corresponding dependent measures, we can also assess the extent to which the182

different models generalize to predicting the other measures.1 This analysis reveals an advantage183

1This is conceptually similar to a cross-decoding approach where models trained on one data set are used for
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for models trained on intersession residuals, even when these were tested on p(rec) or interlist184

residuals. To assess the size of these differences, we removed the linear effects of the measure185

each model was trained on from the generalization measures and computed the (semi-partial) cor-186

relations between the model predictions and the resulting residuals. The semi-partial correlations187

between predictions of models trained on intersession-residuals and the other two measures were188

positive (M = 0.1 for both p(rec) and interlist-residuals; t(96) = 17.43 and 13.339, SE = 0.006189

and 0.008, ps < 0.001, respectively). This confirms that the performance advantage for models190

trained on intersession residuals generalizes to the prediction of p(rec) and interlist residuals—a191

result that complements the above finding suggesting that removing linear effects of intersession192

predictors eliminates variability in recall performance that is not effectively captured by our mea-193

sures of brain activity. In contrast, the semi-partial correlations between predictions of models194

trained on interlist-residuals and the other two measures were negative (M = −0.18 and −0.23,195

t(96) = 9.463 and 14.671, SE = 0.019 and 0.016, for the p(rec) and intersession residuals re-196

spectively, both ps < 0.001). This indicates that the relative disadvantage for models trained on197

interlist residuals generalizes to the prediction of p(rec) and intersession residuals, consistent with198

our measures of brain activity being sensitive to interlist variables. The only other semi-partial199

correlations significantly deviating from 0 were those between predictions of the models trained200

on p(rec) and the interlist-residuals (M = 0.07, t(96) = 9.831, SE = 0.007, p < 0.001), reflecting201

the fact that models trained on p(rec) were better able to capitalize on brain activity that is relevant202

for predicting recall performance than models that could not make use of brain activity that reflects203

predictions on a different data set.9 In the current application we train models on identical features to predict different

measures of recall performance rather than predicting the same dependent measure in different data sets.
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interlist predictors.204

Figure 3 showed high correlations between the performances of the different models predict-205

ing item and list-level recall which suggests that there is considerable overlap between the patterns206

of brain activity predicting these measures. We investigated this relationship by correlating power207

across a range of frequencies and regions of interest (ROIs) with each of the measures of recall208

performance. These correlations exhibited a consistent pattern with low (negative) correlations in209

the θ and α range (≈ 5–10 Hz) which increased for higher (and lower) frequencies (Figure 4).210

For the (point-biserial) correlation of brain activity with item-level recall, we observed negative211

correlations in the θ and α range and positive correlations in the γ (> 30 Hz) range, consistent212

with numerous findings showing that decreased power in lower frequencies and increased power213

in higher frequencies predicts subsequent memory.9–12 As shown in Figure 4, the correlations for214

the list-level measures of recall performance exhibited qualitatively very similar patterns, confirm-215

ing that the different ways of calculating SMEs leverage brain activity in similar ways (see also216

Figure 2B and C).217

The similarity in how brain activity correlates with different measures of recall performance218

complements our analysis of correlations between AUCs associated with different regression mod-219

els (Figure 3). Just like that analysis, however, this similarity is difficult to interpret in light of220

substantial correlations between the dependent measures. To directly assess how brain activity co-221

varies with variability that is specific to intersession and interlist predictors (removing linear effects222

of p(rec)), we therefore correlated brain activity with corresponding residuals (intersession|p(rec)223
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Figure 4: Correlations between mean power in each frequency across electrodes within each re-

gion of interest (ROI) and measures of recall performance (recall of individual items, p(rec), and

residuals from the interlist and intersession models). The inset in the middle of the figure illustrates

the locations of the ROIs and each panel includes an ROI label with the first letter indicating the

hemisphere (L: left, R: right), the second letter distinguishing between anterior (A) and posterior

(P) ROIs, and the last letter specifying the ROI position as either inferior (I) or superior (S). Zero

is indicated as are 95% confidence intervals (shaded regions).
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Figure 5: Correlations between mean power in each frequency across electrodes within each region

of interest (ROI) and intersession and interlist residuals after regressing out linear effects of p(rec)

(intersession|p(rec) and intersession|p(rec) respectively). Each panel shows these correlations for

a different ROI (labeled and arranged as in Figure 4). Zero is indicated as are 95% confidence

intervals (shaded regions).
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and interlist|p(rec), respectively; Figure 5). As is evident from Figure 5, correlations of brain224

activity with intersession|p(rec) residuals were close to zero and varied little across frequencies225

or ROIs, consistent with the above analyses indicating that our measures of brain activity did not226

capture much of the variability in recall performance associated with intersession predictors. The227

correlations of brain activity with interlist|p(rec), however, were relatively strong, complementing228

the above analyses indicating that our measures of brain activity are sensitive to interlist predictors229

of recall performance.230

Discussion231

Whether and how a studied item is encoded and subsequently retrieved during a free recall task is,232

by design, not subject to complete experimental control. Indeed, recalled and not-recalled items233

tend to differ on a number of dimensions. Prior work has shown that neural activity just before the234

presentation of individual items predicts subsequent memory performance, demonstrating SMEs235

that are independent of specific item characteristics.13–16 Nevertheless, task-related variables also236

strongly predict memory performance and could be driving SMEs even when they are not linked237

to specific item characteristics (e.g., recalled items tend to disproportionally come from early list238

positions, a “primacy” effect).7 Thus, any comparison of brain activity during the study of items as239

a function of their subsequent recall is fraught with confounds, complicating the interpretation of240

the diagnostic neural signals. We avoided some of these confounds by assessing list-level SMEs,241

aggregating brain activity across the study periods of all items within a list to predict list-level242

recall. Our demonstration of substantial list-level SMEs (Figure 3) and similar predictive patterns243
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of brain activity for item and list-level SMEs (Figures 2 and 4), shows that item-level SMEs are244

not mainly driven by external variables differentiating items within a study list. This result also245

suggests the presence of endogenous neural variation at slow time scales (items in a study list were246

presented over the course of about a minute) that predicts subsequent memory.247

Even when aggregating across items within a list, a range of confounding variables remain.248

By studying 97 individuals who each participated in up to 23 experimental sessions, we were able249

to model the effects of several external variables that affect list-level recall performance. This250

enabled us to not only relate brain activity to the proportion of recalled items in each list, but also251

to residuals of recall performance after accounting for effects of these external variables. Following252

previous work,4 we partitioned these external variables into those that varied across lists (interlist)253

and those that varied across sessions (intersession). Accounting for interlist variables reduced the254

list-level SME slightly (Figures 3 and 4). This suggests that some, but not all, of the list-level SME255

reflects the effects of interlist variables. Accounting for intersession variables, on the other hand,256

slightly increased the size of the SME, demonstrating that the list-level SME does not include257

substantial contributions from these variables (Figures 3 and 4; see also Figure 5).258

Distinguishing between effects of external variables and endogenous processes is notoriously259

difficult, because it is impossible to control for effects of all possible external factors. Additionally260

some external factors (e.g., drug consumption or exercise) can have long-lasting and/or variable261

effects, making it difficult to establish their relationship with behavior. Indeed, the distinction262

between external and endogenous effects can be blurry, especially when external variables (such263
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as time of day) correlate with endogenous processes (e.g., physiological changes due to circadian264

rhythms). In our investigation of variability in recall performance, we controlled for the major vari-265

ables known to affect episodic memory. We also considered broad variables (such as recallability,266

time of day, and alertness) that were meant to capture the joint effects of large sets of more specific267

variables (e.g., features of the individual words within a study list, number of waking hours, or ef-268

fects of caffeine consumption). Thus, we believe that the joint effects of external variables beyond269

those considered as predictors in our interlist and intersession models are likely to be too small to270

account for a substantial fraction of the remaining variability in recall performance or the SME.271

When we controlled for the effects of sleep, alertness, and time of day, our ability to predict272

list-level recall from brain activity increased. This indicates that these variables did not substan-273

tially contribute to the list-level SME we observed (and hence removing their effects improved274

generalization of our models). Our results thus highlight the need to distinguish between variables275

that affect recall performance and and those whose effects manifest in our measures of brain activ-276

ity. Considering additional variables that affect recall performance therefore need not reduce our277

estimate of the contributions of endogenous factors to the SME.278

The fact that substantial SMEs remained after accounting for a comprehensive set of external279

variables may appear in conflict with findings that task context can affect the specific form of280

SMEs, at least for recognition memory.15, 17–20 Task context manipulations in these studies were281

designed to directly affect encoding processes (e.g., by asking participants to perform different282

tasks on the study items) and their effects on SMEs suggest that they were successful. Here we283
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show that in the absence of direct manipulations of how study items are presented or processed,284

external variables do not substantially contribute to the SME even when they predict subsequent285

recall. These findings indicate that SMEs are not only effective measures of memory formation,286

but that they reflect endogenous states that drive variability in cognitive function.287

Our findings align well with reports of sequential dependencies in human performance4, 21–23
288

as well as with those of slow endogenous neural fluctuations that drive variability in evoked brain289

activity and overt behavior.24–30. Previous investigations of endogenous variability in neural ac-290

tivity and performance have relied on exact repetitions of stimuli across many experimental trials291

to limit variability in external factors. In order to study the effects of endogenous variability on292

recall performance, we took a complementary approach by statistically removing the effects of a293

comprehensive set of external factors. Despite the differences in methodologies and tasks, the con-294

clusions are remarkably consistent in establishing an important role for slowly varying fluctuations295

in neural activity as drivers of variability in human cognition.296

Methods297

Participants We analyzed data from 97 young adults (18–35) who completed at least 20 sessions298

in Experiment 4 of the Penn Electrophysiology of Encoding and Retrieval Study (PEERS) in ex-299

change for monetary compensation. This study was approved by the Institutional Review Board300

at the University of Pennsylvania and we obtained informed consent from all participants. Recall301

performance for a large subset of the current data set was previously reported,4 but this is the first302

report of electrophysiological data from this experiment. Data from PEERS experiments are freely303
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available at http://memory.psych.upenn.edu and have been reported in several previous304

publications.31–38 Our analyses included data from all participants with at least 20 sessions.305

Experimental task Each of up to 23 experimental sessions consisted of 24 study lists that each306

were followed by a delayed free recall test. Specifically, each study list presented 24 session-307

unique English words sequentially for 1,600 ms each with a blank inter-stimulus interval that was308

randomly jittered (following a uniform distribution) between 800 and 1,200 ms. After the last309

word in each list, participants were asked to solve a series of arithmetic problems of the form310

A+B+C =? where, A, B, and C were integers in [1, 9]. Participants responded to each problem311

by typing the result and were rewarded with a monetary bonus for each correctly solved equation.312

These arithmetic problems were displayed until 24 s had elapsed and were then followed by a blank313

screen randomly jittered (following a uniform distribution) to last between 1,200 and 1,400 ms.314

Following this delay, a row of asterisks and a tone signaled the beginning of a 75 s free recall315

period. A random half of the study lists (except for the first list in each session) were also preceded316

by the same arithmetic distractor task which was separated from the first study-item presentation317

by a random delay jittered (following a uniform distribution) to last between 800 and 1,200 ms.318

Each session was partitioned into 3 blocks of 8 lists each and blocks were separated by short319

(approximately 5 min) breaks. At each session participants were asked to rate their alertness and320

indicate the number of hours they had slept in the previous night.321

Stimuli Across all lists in each session the same 576 common English words (24 words in each of322

24 lists) were presented for study, but their arrangement into lists differed from session to session323

(subject to constraints on semantic similarity31). These 576 words were selected from a larger324
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word pool (comprising 1,638 words) used in other PEERS experiments. The 576-word subset of325

this pool used in the current experiment were selected to maximize homogeneity, by removing326

words that were atypical in frequency, concreteness, or emotional valence. Many participants327

also returned for a 24th session that used words from the entire 1,638-word pool, but we are not328

reporting data from that session here. We estimated the mean recallability of items in a list from329

the proportion of times each word within the list was recalled by other participants in this study.330

EEG data collection and processing Electroencephalogram (EEG) data were recorded with ei-331

ther a 129 channel Geodesic Sensor net using the Netstation acquisition environment (Electri-332

cal Geodesics, Inc.; EGI) or with a 128 channel Biosemi Active Two system. EEG recordings333

were re-referenced offline to the average reference. Because our regression models weighted334

neural features with respect to their ability to predict (residuals of) recall performance in held335

out sessions, we did not try to separately eliminate artifacts in our EEG data. Data from each336

participant were recorded with the same EEG system throughout all sessions and for those ses-337

sions recorded with the Geodesic Sensor net, we excluded 26 electrodes that were placed on the338

face and neck, rather than the scalp, from further analyses. The EGI system recorded data with339

a 0.1 Hz high-pass filter and we applied a corresponding high-pass filter to the data collected340

with the Biosemi system. We used MNE,39, 40, the Python Time-Series Analysis (PTSA) library341

(https://github.com/pennmem/ptsa_new), Sklearn41 and custom code for all analyses.342

We first partitioned EEG data into epochs starting 800 ms before the onset of each word343

in the study lists and ending with its offset (i.e., 1,600 ms after word onset). We also included344

an additional 1,200 ms buffer on each end of each epoch to eliminate edge effects in the wavelet345
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transform. We calculated power in 15 logarithmically spaced frequencies between 2 and 200 Hz,346

applied a log-transform, and down-sampled the resulting time series of log-power values to 50 Hz.347

We then truncated each epoch to 300–1,600 ms after word onset. For the item-based classifier we348

used each item’s mean power in each frequency across this 1,300 ms interval as features to predict349

subsequent recall (we also present result for an averaged item-based classifier that aggregated these350

intervals accross all subsequently recalled and all subsequently unrecalled items in each list). For351

the list-based regression models we averaged these values across all items in each list to predict352

(residuals of) list-level recall.353

For the analyses shown in Figures 4 and 5, we partitioned electrodes into the 6 regions of354

interest (ROIs) illustrated in Figure 4 (we also aggregated over electrodes in the 4 superior ROIs355

in Figure 2). This choice of ROIs follows a range of studies that used these or very similar ROIs356

to characterize the spatial distribution of EEG effects.42 All of our classification and regression357

models, however, used measures from individual electrodes as input without any averaging into358

ROIs.359

Item-based classifier For the item-based classifier we used a nested cross-validation procedure360

to simultaneously determine the regularization parameter and performance of L2-regularized lo-361

gistic regression models predicting each item’s subsequent recall. At the top level of the nested362

cross-validation procedure we held out each session once—these held out sessions were used to363

assess the performance of the models. Within the remaining sessions, we again held out each364

session once—these held-out sessions from within each top-level cross-validation fold were used365

to determine the optimal regularization parameter, C, for Sklearn’s LogisticRegression class. We366
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fit models with 9 different C values between 0.00002 and 1 to the remaining sessions within each367

cross-validation fold and evaluated their performance as a function ofC on the basis of the held out368

sessions within this fold. We then fit another logistic regression model using the best-performing369

C value to all sessions within each cross-validation fold and determined the model predictions on370

the sessions that were held-out at the top level. We calculated the area under the ROC function on371

the basis of the predictions from these held-out sessions.372

List-based regression models For the list-based regression models we followed the same pro-373

cedure as for the item-based classifier to determine the optimal level of regularization for ridge374

regression models predicting (residuals of) list-level recall performance. Specifically, we used the375

same nested cross-validation procedure described above to determine optimal values for α (corre-376

sponding to 1/C), the regularization parameter in Sklearn’s Ridge class, testing 9 values between377

1 and 65536. We applied these models to the (logit-transformed) proportion of items recalled for378

each list, p(rec), as well as to the residuals from the interlist and intersession models as described379

in the results section.4380

Data availability Data from this experiment are freely available at http://memory.psych.381

upenn.edu.382

Code availability Data analysis code from this manuscript is freely available at http://memory.383

psych.upenn.edu.384

385
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15. Fellner, M.-C., Bäuml, K.-H. T. & Hanslmayr, S. Brain oscillatory subsequent memory effects417

differ in power and long-range synchronization between semantic and survival processing.418

NeuroImage 79, 361–370 (2013).419

16. Guderian, S., Schott, B. H., Richardson-Klavehn, A. & Duzel, E. Medial temporal theta state420

before an event predicts episodic encoding success in humans. Proceedings of the National421

Academy of Sciences 106, 5365–5370 (2009).422

26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/576173doi: bioRxiv preprint 

https://doi.org/10.1101/576173
http://creativecommons.org/licenses/by/4.0/


17. Kamp, S.-M., Bader, R. & Mecklinger, A. ERP subsequent memory effects differ between423

inter-item and unitization encoding tasks. Frontiers in Human Neuroscience 11 (2017).424

18. Summerfield, C. & Mangels, J. A. Dissociable neural mechanisms for encoding predictable425

and unpredictable events. Journal of Cognitive Neuroscience 18, 1120–1132 (2006).426

19. Otten, L. J. & Rugg, M. D. Electrophysiological correlates of memory encoding are task-427

dependent. Cognitive Brain Research 12, 11–18 (2001).428

20. Staudigl, T. & Hanslmayr, S. Theta oscillations at encoding mediate the context-dependent429

nature of human episodic memory. Current Biology 23, 1101–1106 (2013).430

21. Gilden, D., Thornton, T. & Mallon, M. 1/f noise in human cognition. Science 267, 1837–1839431

(1995).432

22. Mueller, S. T. & Weidemann, C. T. Decision noise: An explanation for observed violations of433

signal detection theory. Psychonomic Bulletin & Review 15, 465–494 (2008).434

23. Verplanck, W. S., Collier, G. H. & Cotton, J. W. Nonindependence of successive responses435

in measurements of the visual threshold. Journal of Experimental Psychology 44, 273–282436

(1952).437

24. Monto, S., Palva, S., Voipio, J. & Palva, J. M. Very slow EEG fluctuations predict the dynamics438

of stimulus detection and oscillation amplitudes in humans. Journal of Neuroscience 28, 8268–439

8272 (2008).440

27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/576173doi: bioRxiv preprint 

https://doi.org/10.1101/576173
http://creativecommons.org/licenses/by/4.0/


25. Schroeder, C. E. & Lakatos, P. Low-frequency neuronal oscillations as instruments of sensory441

selection. Trends in Neurosciences 32, 9–18 (2009).442

26. Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: Explanation443

of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).444

27. Fox, M. D., Snyder, A. Z., Zacks, J. M. & Raichle, M. E. Coherent spontaneous activity445

accounts for trial-to-trial variability in human evoked brain responses. Nature Neuroscience 9,446

23–25 (2005).447

28. Fox, M. D., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Intrinsic fluctuations within cortical448

systems account for intertrial variability in human behavior. Neuron 56, 171–184 (2007).449

29. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with func-450

tional magnetic resonance imaging. Nature Reviews Neuroscience 8, 700–711 (2007).451

30. Raichle, M. E. The restless brain: how intrinsic activity organizes brain function. Philosophi-452

cal Transactions of the Royal Society B: Biological Sciences 370, 20140172 (2015).453

31. Healey, M. K., Crutchley, P. & Kahana, M. J. Individual differences in memory search and454

their relation to intelligence. Journal of Experimental Psychology: General 143, 1553–1569455

(2014).456

32. Healey, M. K. & Kahana, M. J. Is memory search governed by universal principles or idiosyn-457

cratic strategies? Journal of Experimental Psychology: General 143, 575–596 (2014).458

28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/576173doi: bioRxiv preprint 

https://doi.org/10.1101/576173
http://creativecommons.org/licenses/by/4.0/


33. Healey, M. K. & Kahana, M. J. Age-related changes in the dynamics of memory encoding459

processes provide a biomarker of successful aging. Manuscript Submitted for publication460

(2018).461

34. Lohnas, L. J. & Kahana, M. J. Parametric effects of word frequency in memory for mixed462

frequency lists. Journal of Experimental Psychology: Learning, Memory, and Cognition 39,463

1943–1946 (2013).464

35. Siegel, L. L. & Kahana, M. J. A retrieved context account of spacing and repetition effects465

in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition 40,466

755–764 (2014).467

36. Lohnas, L. J., Polyn, S. M. & Kahana, M. J. Expanding the scope of memory search: Modeling468

intralist and interlist effects in free recall. Psychological Review 122, 337–363 (2015).469

37. Weidemann, C. T. & Kahana, M. J. Assessing recognition memory using confidence ratings470

and response times. Royal Society Open Science 3, 150670 (2016).471

38. Weidemann, C. T. & Kahana, M. J. Dynamics of brain activity reveal a unitary recognition472

signal. Journal of Experimental Psychology: Learning, Memory, and Cognition 45, 440–451473

(2019).474

39. Gramfort, A. et al. MEG and EEG data analysis with MNE-python. Frontiers in Neuroscience475

7, 267 (2013).476

40. Gramfort, A. et al. MNE software for processing MEG and EEG data. NeuroImage 86, 446–477

460 (2014).478

29

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/576173doi: bioRxiv preprint 

https://doi.org/10.1101/576173
http://creativecommons.org/licenses/by/4.0/


41. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning479

Research 12, 2825–2830 (2011).480

42. Weidemann, C. T., Mollison, M. V. & Kahana, M. J. Electrophysiological correlates of481

high-level perception during spatial navigation. Psychonomic Bulletin & Review 16, 313–319482

(2009).483

Acknowledgements his work was supported by Grant MH55687 to MJK. We thank Ada Aka, Yuxuan484

Li, Nicole Kratz, Adam Broitman, Isaac Pedisich, Karl Healey, Patrick Crutchley and Elizabeth Crutchley485

and other members of the Computational Memory Laboratory at the University of Pennsylvania for their486

assistance with data collection and preprocessing and Eric Maris, Nora Herweg and Ethan Solomon for487

helpful comments on a previous version of this manuscript.488

Competing Interests The authors declare that they have no competing financial interests.489

Correspondence Correspondence and requests for materials should be addressed to C.T.W. (email: ctw@cogsci.info).490

30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/576173doi: bioRxiv preprint 

https://doi.org/10.1101/576173
http://creativecommons.org/licenses/by/4.0/

