
Manuscript submitted for publication
Version of August 13, 2020

Comments welcome: ctw@cogsci.info
Latest version: http://cogsci.info

Neural measures of subsequent memory reflect endogenous variability
in cognitive function
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Human cognition exhibits a striking degree of variability: Sometimes we rapidly forge new
associations whereas at other times new information simply does not stick. Correlations be-
tween neural activity during encoding and subsequent retrieval performance have implicated
such “subsequent memory effects” (SMEs) as important for understanding the neural basis
of memory formation. Uncontrolled variability in external factors that also predict memory
performance, however, confounds the interpretation of these effects. By controlling for a com-
prehensive set of external variables, we investigated the extent to which neural correlates of
successful memory encoding reflect variability in endogenous brain states. We show that
external variables that reliably predict memory performance have relatively small effects on
electroencephalographic (EEG) correlates of successful memory encoding. Instead, the brain
activity that is diagnostic of successful encoding primarily reflects fluctuations in endogenous
neural activity. These findings link neural activity during learning to endogenous states that
drive variability in human cognition.
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The capacity to learn new information can vary consider-
ably from moment to moment. We all recognize this variabil-
ity in the frustration and embarrassment that accompanies
associated memory lapses. Researchers investigate the neu-
ral basis of this variability by analyzing brain activity during
the encoding phase of a memory experiment as a function of
each item’s subsequent retrieval success. Across hundreds
of such studies, the resulting contrasts, termed subsequent
memory effects (SMEs), have revealed reliable biomarkers of
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successful memory encoding (Paller & Wagner, 2002; Kim,
2011; Hanslmayr & Staudigl, 2014).

A key question, however, is whether the observed SMEs
indicate endogenously varying brain states, or whether they
instead reflect variation in external stimulus- and task-related
variables, such as item difficulty or proactive interference,
known to strongly predict subsequent memory (Kahana, Ag-
garwal, & Phan, 2018). It is tempting to attribute SMEs
to endogenous factors affecting encoding processes and/or
to specific experimental manipulations (such as encoding
instructions) aimed at directly affecting these processes
(Fellner, Bäuml, & Hanslmayr, 2013; Hanslmayr, Spitzer,
& Bäuml, 2009; Hanslmayr & Staudigl, 2014). At the same
time, some of the strongest predictors of recall performance
are characteristics of individual items (e.g., pre-experimental
familiarity or position in the study list; DeLosh & McDaniel,
1996; Merritt, DeLosh, & McDaniel, 2006; Murdock, 1962)
whose effects are difficult to distinguish from those of en-
dogenous factors, given that the successful retrieval of indi-
vidual items is not under direct experimental control. Such
idiosyncratic effects are therefore serious confounds in SME
analyses and the relative contributions of endogenous and ex-
ternal factors to the SME have yet to be established.

Here we approach these challenges in two ways using a
large free-recall data set comprising 97 individuals who each
had their EEG recorded while they studied and recalled 24
word lists in each of at least 20 experimental sessions that
took place over the course of several weeks. As shown in Fig-
ure 1a, the presentation of each list was followed by a distrac-
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tor task and a free recall test. Each list contained 24 words
and the same 576 words (24 words in 24 lists) were presented
in each session, but their assignment to lists, and serial po-
sitions within lists, varied (we also refer to individual word
presentations as “items” irrespective of the word identities).
Our first approach closely builds on standard SME analyses
that compute a contrast for neural activity during each item’s
presentation in the study list. Rather than only predicting
subsequent memory as a binary variable, however, we also
statistically accounted for a comprehensive set of external
factors that correlate with recall performance and computed
SMEs for the corresponding residuals. Whereas residuals of
statistical models are often treated as “noise,” here they re-
flect variability in recall performance that was not accounted
for by external factors and they thus highlight contributions
of endogenous factors to the SME. Comparing SMEs for
these residuals with the standard item-level SME predicting
binary retrieval success thus allowed us to estimate the rel-
ative contributions of endogenous neural variability and ex-
ternal factors to the SME (to the extent that SMEs are driven
by external factors, SMEs should be absent when the effects
of these external factors are statistically removed from recall
performance).

For our second approach we calculated list-level SMEs
(rather than the standard item-level SMEs), leveraging ev-
idence that endogenous factors associated with cognitive
function vary slowly. Specifically, sequential dependencies
in human performance as well as investigations of endoge-
nous neural fluctuations that drive variability in evoked brain
activity and overt behavior suggest that endogenous factors
operate at time scales that are slower than the time allocated
to the study of individual items in standard memory tasks
(many seconds or minutes rather than a few seconds or less;
Kahana et al., 2018; Gilden, Thornton, & Mallon, 1995;
Mueller & Weidemann, 2008; Verplanck, Collier, & Cotton,
1952; Monto, Palva, Voipio, & Palva, 2008; Schroeder &
Lakatos, 2009; Arieli, Sterkin, Grinvald, & Aertsen, 1996;
Fox, Snyder, Zacks, & Raichle, 2005; Fox, Snyder, Vincent,
& Raichle, 2007; Fox & Raichle, 2007; Raichle, 2015). To
calculate list-level SMEs, we averaged epochs of EEG ac-
tivity following the presentation of individual study items
within each list and used these list-averaged epochs to pre-
dict the proportion of recalled words in each list. This ap-
proach eliminates or severely reduces the effects of item-
specific external factors (because we are averaging neural ac-
tivity across all study periods in a list), but the list-level SME
could still reflect other external factors that also affect re-
call performance (such as session-level time-of-day effects or
list-level proactive interference effects; Kahana et al., 2018).
We therefore also statistically removed effects of list and ses-
sion number (as well as effects of the average “recallability”
of the words comprising each list; see methods for details)
and computed SMEs for the corresponding residuals. As

with the item-level SMEs, these residuals highlight contribu-
tions of endogenous factors. Comparing the SMEs for list-
level recall to the SMEs for residuals of list-level recall after
accounting for external factors associated with each list and
experimental session thus allowed us to estimate the extent
to which list-level SMEs are driven by endogenous factors
associated with encoding success.

Methods

Participants

We analyzed data from 97 young adults (18–35) who com-
pleted at least 20 sessions in Experiment 4 of the Penn Elec-
trophysiology of Encoding and Retrieval Study (PEERS) in
exchange for monetary compensation. This study was ap-
proved by the Institutional Review Board at the University of
Pennsylvania and we obtained informed consent from all par-
ticipants. Recall performance for a large subset of the current
data set was previously reported (Kahana et al., 2018), but
this is the first report of electrophysiological data from this
experiment. Data from PEERS experiments are freely avail-
able at http://memory.psych.upenn.edu and have been
reported in several previous publications (Healey, Crutchley,
& Kahana, 2014; Healey & Kahana, 2014, 2018; Lohnas
& Kahana, 2013; Siegel & Kahana, 2014; Lohnas, Polyn,
& Kahana, 2015; Weidemann & Kahana, 2016, 2019). Our
analyses included data from all participants with at least 20
sessions.

Experimental task

Each of up to 23 experimental sessions consisted of 24
study lists that each were followed by a delayed free recall
test. Specifically, each study list presented 24 session-unique
English words sequentially for 1,600 ms each with a blank
inter-stimulus interval that was randomly jittered (following
a uniform distribution) between 800 and 1,200 ms. After the
last word in each list, participants were asked to solve a series
of arithmetic problems of the form A + B + C =? where, A,
B, and C were integers in [1, 9]. Participants responded to
each problem by typing the result and were rewarded with
a monetary bonus for each correctly solved equation. These
arithmetic problems were displayed until 24 s had elapsed
and were then followed by a blank screen randomly jittered
(following a uniform distribution) to last between 1,200 and
1,400 ms. Following this delay, a row of asterisks and a tone
signaled the beginning of a 75 s free recall period. A random
half of the study lists (except for the first list in each session)
were also preceded by the same arithmetic distractor task
which was separated from the first study-item presentation
by a random delay jittered (following a uniform distribution)
to last between 800 and 1,200 ms. Each session was parti-
tioned into 3 blocks of 8 lists each and blocks were separated
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by short (approximately 5 min) breaks. At each session par-
ticipants were asked to rate their alertness and indicate the
number of hours they had slept in the previous night.

Stimuli

Across all lists in each session the same 576 common En-
glish words (24 words in each of 24 lists) were presented
for study, but their arrangement into lists differed from ses-
sion to session (subject to constraints on semantic similarity;
Healey et al., 2014). These 576 words were selected from
a larger word pool (comprising 1,638 words) used in other
PEERS experiments. The 576-word subset of this pool used
in the current experiment is included as supplementary mate-
rial and ranged in arousal (2.24–7.45, M = 4.04) and valence
(1.71–8.05, M = 5.52) according to independent ratings on
these dimensions on scales between 1 and 9 (Warriner, Ku-
perman, & Brysbaert, 2013). Many participants also returned
for a 24th session that used words from the entire 1,638-word
pool, but we are not reporting data from that session here. We
estimated the mean recallability of items in a list from the
proportion of times each word within the list was recalled by
other participants in this study.

EEG data collection and processing

Electroencephalogram (EEG) data were recorded with ei-
ther a 129 channel Geodesic Sensor net using the Netstation
acquisition environment (Electrical Geodesics, Inc.; EGI)
or with a 128 channel Biosemi Active Two system. EEG
recordings were re-referenced offline to the average refer-
ence. Because our regression models weighted neural fea-
tures with respect to their ability to predict (residuals of)
recall performance in held out sessions, we did not try to
separately eliminate artifacts in our EEG data. Data from
each participant were recorded with the same EEG system
throughout all sessions and for those sessions recorded with
the Geodesic Sensor net, we excluded 26 electrodes that were
placed on the face and neck, rather than the scalp, from
further analyses. For the visualization of EEG activity in
the figures, we aggregated over electrodes 4, 5, 12, 13, 19,
20, 24, 28, 29, 37, 42, 52, 53, 54, 60, 61, 78, 79, 85, 86,
87, 92, 93, 111, 112, 117, 118, and 124 for the EGI sys-
tem and electrodes A5, A6, A7, A18, A31, A32, B2, B3,
B4, B18, B19, B31, B32, C2, C3, C4, C11, C12, C24,
C25, D2, D3, D4, D12, D13, D16, D17, and D28 for the
Biosemi system. These correspond to the superior regions of
interest we used previously (Weidemann, Mollison, & Ka-
hana, 2009). All of our classification and regression mod-
els, however, used measures from all individual electrodes
(with the exception of those covering the face and neck for
the EGI system) as input without any averaging across elec-
trodes. The EGI system recorded data with a 0.1 Hz high-
pass filter and we applied a corresponding high-pass filter to
the data collected with the Biosemi system. We used MNE

(Gramfort et al., 2013, 2014), the Python Time-Series Analy-
sis (PTSA) library (https://github.com/pennmem/ptsa
_new), Sklearn (Pedregosa et al., 2011) and custom code for
all analyses.

We first partitioned EEG data into epochs starting 800 ms
before the onset of each word in the study lists and ending
with its offset (i.e., 1,600 ms after word onset). We also in-
cluded an additional 1,200 ms buffer on each end of each
epoch to eliminate edge effects in the wavelet transform.
We calculated power in 15 logarithmically spaced frequen-
cies between 2 and 200 Hz, applied a log-transform, and
down-sampled the resulting time series of log-power values
to 50 Hz. We then truncated each epoch to 300–1,600 ms
after word onset. For the item-based models we used each
item’s z-transformed mean power in each frequency across
this 1,300 ms interval as features to predict (residual) sub-
sequent recall. For the list-based regression models we av-
eraged these values across all items in each list to predict
(residuals of) list-level recall.

Removing effects of external factors

For the item based analyses we fit logistic regression mod-
els separately for each participant to predict each item’s re-
call from its average recallability (i.e., it’s average proba-
bility of recall calculated from all other participants’ recall
data), its serial position within the study list, the list number
within the current session, and the session number within the
experiment. We treated all of these predictors, except for
recallability, as categorical to accommodate any functional
relationship between them and recall performance. This al-
lowed us to use list and session number as predictors to
model the combined effects of list and session-specific ex-
ternal factors rather than attempting to capture each of them
separately. Furthermore, fitting these models separately to
each participant’s data allowed us to accommodate poten-
tially idiosyncratic relationships between external factors and
the predictors in our model as well as those between external
factors and recall performance. We then calculated resid-
uals from the full model including all item-level predictors
as well as from nested models including all but one of the
predictors as described in the main text. Residuals from lo-
gistic regression models are constrained to fall between −1
and 1 (assuming the two possible outcomes are coded as 0
and 1). To make these residuals more similar to those from
the linear regression models, we transformed the residuals to
fall between 0 and 1 (just like list-level recall probabilities)
and then applied a logit-transform: rest =

(res+1)/2
1−(res+1)/2 , where

rest and res are the transformed and untransformed residuals
respectively. All references to residuals from logistic regres-
sion models in other parts of this paper refer to transformed
residuals.

For the list-based analyses we proceeded similarly, fitting
linear regression models separately for each participant to
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predict the logit transformed probability of recall for each list
(i.e., the proportion of words that were recalled in each list).
We used the average recallability of words within each list,
list number within each session, and session number within
the experiment as predictors (treating list and session number
as categorical predictors). We again calculated residuals for
the full model and also for two nested models: one including
average recallability for each list and list number (list-level
predictors) and one only including session number (session-
level predictor).

Item-based classifier

For the item-based classifier we used a nested cross-
validation procedure to simultaneously determine the regu-
larization parameter and performance of L2-regularized lo-
gistic regression models predicting each item’s subsequent
recall. We applied this nested cross-validation approach sep-
arately to the data from each participant to accommodate
idiosyncratic relationships between brain activity and recall
performance and inter-individual differences in signal qual-
ity. At the top level of the nested cross-validation procedure
we held out each session once—these held out sessions were
used to assess the performance of the models. Within the
remaining sessions, we again held out each session once—
these held-out sessions from within each top-level cross-
validation fold were used to determine the optimal regular-
ization parameter, C, for Sklearn’s LogisticRegression class.
We fit models with 9 different C values between 0.00002 and
1 to the remaining sessions within each cross-validation fold
and evaluated their performance as a function of C on the
basis of the held out sessions within this fold. We then fit
another logistic regression model using the best-performing
C value to all sessions within each cross-validation fold and
determined the model predictions on the sessions that were
held-out at the top level. We determined the performance of
our models solely on the basis of the predictions from these
held-out sessions. There are many reasonable alternatives for
setting up these models; our choice of L2 regularization was
motivated by good performance of these models in similar
data sets (Weidemann & Kahana, 2019; Weidemann et al.,
2019), and not informed by the current results.

Item and list-based regression models

For the item- and list-based regression models we fol-
lowed the same procedure as for the item-based classifier to
determine the optimal level of regularization for L2 regular-
ized linear regression models predicting residuals of item-
level recall or (residuals of) list-level recall performance.
Specifically, we used the same nested cross-validation proce-
dure described above to determine optimal values for α (cor-
responding to 1/C), the regularization parameter in Sklearn’s
Ridge class, testing 9 values between 1 and 65536. We ap-
plied these models to the (logit-transformed) proportion of

items recalled for each list and to the residuals from the var-
ious item- and list-level models as described above. Thus, in
cases where we investigated the effects of external factors on
recall performance, we first fit a regression model predicting
recall performance on the basis of the external factor(s) (as
described above in the “Removing effects of external factors”
section) and then used a ridge regression model to predict the
residuals from that model fit (“residual recall performance”)
on the basis of brain activity.

Shuffled control lists

For our list-level analyses we also computed SMEs for
shuffled control lists to investigate the extent to which SMEs
were linked to individual item properties or instead relied on
slowly varying endogenous factors. If the list-level SME is
merely an average of individual item level SMEs, shuffling
individual items (together with the corresponding neural ac-
tivity) should not affect the list-level SME as long as the
shuffled lists contain the same number of subsequently re-
called and not subsequently recalled items. Effects of slowly
varying endogenous factors would, however, be disrupted if
items and associated neural activity were rearranged. For
this approach, we separated all recalled and unrecalled items
(together with the corresponding neural activity) in each ses-
sion, shuffled both sets of items separately (keeping each
item linked with its neural activity), and then synthesized
new lists with the original proportions of recalled and un-
recalled items from the shuffled pools of recalled and unre-
called items. We repeated this procedure 20 times for each
participant and concatenated the resulting shuffled lists. This
shuffled session thus consisted of 20 copies of each item syn-
thesized into 480 lists that matched the recall performance
of the 24 original lists (the performance of each original list
was represented 20 times in the shuffled session). We then
applied all of our list-level SME analyses to these shuffled
lists. Specifically, we predicted (residuals of) list-level recall
performance on the basis of the neural data associated with
the items making up the synthesized lists.

Results

The standard item-level subsequent memory analysis con-
trasts neural activity during the encoding of subsequently
recalled and non-recalled items. The present experiment
sequentially displayed lists of items (words) for study and
tested memory in a delayed free recall task (Figure 1a). Dur-
ing the encoding period of each studied item, we calcu-
lated the spectral power of the EEG signal at frequencies
between 2 and 200 Hz. Figure 1b shows an excerpt of an ac-
tual study list with associated z-transformed spectral power,
shown as a joint function of encoding time and frequency
for each excerpted item. The average time-frequency spec-
trogram for recalled and non-recalled items, shown in Fig-
ure 1c, illustrates the spectral subsequent memory effect re-
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Figure 1. (a) Illustration of an individual trial in our experiment consisting of a study list followed by a distractor task, and
a free recall test. There were 24 of these trials in each experimental session and each study list consisted of 24 items. See
methods for details. (b) z-transformed power around the presentation of study words during the beginning and end of one
participant’s (ID: 374) 4th study list in the 16th experimental session. The study words are indicated at the top of each sub-
panel with bold italic font indicating subsequent recall. (c) Average power for subsequently unrecalled (left) and subsequently
recalled (right) words during study across all lists from all participants (we averaged all data within participants and calculated
the shown t-values across participants). All of our analyses were based on neural activity between 0.3 and 1.6 s following
study word onset (indicated with vertical black lines) and the average power across this time interval is also illustrated. For
this visualization, we aggregated EEG activity across 28 superior electrodes (see methods for details).

ported in prior studies (Paller & Wagner, 2002; Hanslmayr
& Staudigl, 2014). Specifically, subsequently recalled items
exhibit greater high frequency (> 30 Hz) activity and reduced
alpha power (8–12 Hz) as compared with not-recalled items.
Before commencing our analyses we had decided to focus on
a time window between 0.3 and 1.6 s following the onset of
each study item to maximize our chance of capturing item-
specific effects in our SME contrasts. However, as is evident
in Figure 1c, the SME was sustained throughout the entire
1.6 s during which the item appeared on the screen and also
in the pre-stimulus interval (consistent with previous reports
of pre-stimulus SMEs; Sweeney-Reed et al., 2016; Otten,
Quayle, Akram, Ditewig, & Rugg, 2006; Fellner et al., 2013;
Guderian, Schott, Richardson-Klavehn, & Duzel, 2009; Park
& Rugg, 2010; Urgolites et al., 2020).

The power of the SME analysis lies in its ability to reveal
encoding processes that lead to successful recall. However,
the standard item-level SME conflates a multitude of factors
that determine the recallability of any given item. The posi-
tion of an item in the study list constitutes one such factor.
The top of Figure 2 illustrates the serial position effect in our
delayed free-recall experiment. As expected based on prior
work, we observed superior recall for early list items (the so-
called primacy effect). The mental arithmetic task between
study and test attenuates the recency effect that is typical of
immediate recall (Murdock, 1962). Given the strong effect

of serial position on recall performance, we can expect any
SME to also reflect a contrast of neural activity associated
with different serial positions. The second row of Figure 2
shows the neural activity associated with the encoding inter-
val at each serial position irrespective of recall status. Here
one sees a marked shift in neural activity across serial posi-
tions: Neural activity at early serial positions resembles that
associated with recalled items and that at later serial posi-
tions is similar to that associated with not-recalled items (cf.
Figure 1c). The last two rows of Figure 2 illustrate that this
pattern is not simply due to the confound between recalled
status and serial position: Even when we plot the pattern of
spectral activity as a function of serial position separately for
recalled and not-recalled items, neural activity at early serial
positions resembles that associated with recalled items and
that at later serial positions is more similar to that associated
with not-recalled items in the standard SME (cf. Figure 1c).
This illustrates how the subsequent memory analysis can be
misleading: differences between recalled and non-recalled
items may be indexing differences between primacy and non-
primacy items. Controlling for the effect of serial position
represents a logical solution to this problem. However, serial
position is but one of many variables known to influence re-
call performance. We thus introduce a statistical framework
to separate the effects of known external factors from the hy-
pothesized endogenous variability driving encoding success,
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Figure 2. Mean probability of recall as a function of serial position across all participants (top row) and associated neural
activity (averaged between 0.3 and 1.6 s after the onset of study items) for all, subsequently recalled, and subsequently not-
recalled trials respectively (we averaged all data within participants and calculated the shown t-values across participants).
Error bars indicate 95% confidence intervals. For this visualization, we aggregated EEG activity across 28 superior electrodes
(see methods for details).

as described below.
Our analytic approach combines multivariate classifica-

tion of neural data (Ezzyat et al., 2018; Weidemann et al.,
2019; Weidemann & Kahana, 2019) with a multi-factor
model of external variables shown to influence item-level re-
call performance (Kahana et al., 2018). To implement a mul-
tivariate analogue to the standard SME analysis, we trained
L2 regularized logistic regression classifiers using brain ac-
tivity to predict the recall status of individual items (the per-
formance of these models indexes what we refer to as an
“uncorrected SME”). We also trained L2 regularized linear
regression models using brain activity to predict residuals of
recall performance after statistically controlling for the ef-
fects of external factors that also predict recall performance
(the performance of these models indexes what we refer to
as a “corrected SME”).

For both uncorrected and corrected SMEs, we evaluate
how well each model predicts (residuals of) recall perfor-
mance in held out sessions. Typical metrics of model perfor-

mance differ between binary classification (as in our uncor-
rected SME analyses) and continuous regression models (as
in our corrected SME analyses). To directly compare both
types of SMEs, we computed correlations between model
predictions and (residual) recall performance. For the un-
corrected SME, this is a point-biserial correlation because
recall performance is a binary variable (each item is either
recalled or not) and the model prediction is a continuous
measure corresponding to the predicted recall probability of
each item. For the corrected SME, this is a standard product-
moment correlation between the continuous residual recall
performance and the continuous model prediction (see Meth-
ods for details). Both of these models use spectral features
of EEG activity during word encoding to predict that item’s
(residual) recall status.

The correlation between model predictions and (resid-
ual) item-level recall performance quantifies the association
between neural features during encoding and subsequent
(residual) recall performance—it serves as our multivariate
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Figure 3. (a) Distribution of uncorrected item-level SMEs (“item”) across all participants and of corresponding corrected
SMEs accounting for all factors or all but the indicated factor respectively (a ¬ prefix signifies that the indicated factor was
omitted). Overlaid boxplots indicate the quartiles of the distribution with a notch showing the bootstrapped 95% CI around
the median. Whiskers extend to 1.5× the inter-quartile range. (b) Mean correlations between power at different frequencies
(aggregated across 28 superior electrodes) and the respective (residuals of) item-level recall performance across all participants
(lined up with the corresponding SMEs in Panel a). The black horizontal lines indicate zero. Error regions indicate 95% CIs.

SME measure. The top of Figure 3a shows the distribution
of these correlations across participants for the uncorrected
SME (distribution marked “item”) relating neural features to
the recalled status of individual items. This uncorrected SME
was significant (M = 0.16, t(96) = 22.681, SE = 0.007,
p < 0.001, d = 2.303) indicating that the different average
activity patterns for recalled and not-recalled items shown in
Figure 1c were indeed associated with a reliable item-level
SME. The next distribution (labeled “item|all”) corresponds
to the corrected SME statistically controlling for all external
factors. Specifically, these correlations quantify the relation
between neural features and the residuals of logistic regres-
sion models predicting recall status on the basis of individual
item-recallability, serial position, list number within the cur-
rent session, and session number within the experiment. This
corrected SME, was also statistically significant (M = 0.12,
t(96) = 19.015, SE = 0.006, p < 0.001, d = 1.931), indi-
cating a substantial SME, even after controlling for external
factors. The size of this SME was somewhat smaller than
that for the uncorrected recall performance (t(96) = 9.738,
SE = 0.004, p < 0.001, d = 0.989) reflecting the fact that the
uncorrected SME does include the effects of some external
factors.

To better understand how the different factors affect the
SME, we repeated this analysis, but held out each of the

external factors in turn. Specifically we computed four
partially-corrected SMEs that each omitted one external fac-
tor. The remaining parts of Figure 3a show the results of
these analyses without controlling for the effects of recalla-
bility, serial position, list number, and session number re-
spectively. All resulting SMEs are positive (M = 0.11–0.15,
t(96) = 16.341–22.471, SE = 0.006–0.007, ps < 0.001, d =

1.659–2.282) and significantly different from the SME for
uncorrected recall performance (t(96) = 4.726–13.438, SE =

0.003–0.004, ps < 0.001, d = 0.479–1.364) as well as from
that correcting for all external factors (t(96) = 5.939–10.790,
SE = 0.001–0.003, ps < 0.001, d = 0.603–1.096). This in-
dicates that each of the external factors contributes to the dif-
ference between the size of the uncorrected and the corrected
SME and that none of these factors can account for this dif-
ference in isolation. Serial position, however, explains most
of this discrepancy—when controlling for all other factors,
the corresponding SME is almost as large as the uncorrected
SME (mean correlation of 0.15 as opposed to 0.16) and addi-
tionally also controlling for serial position is responsible for
reducing the SME to a mean correlation of 0.12.

To the extent that the uncorrected SME reflects both en-
dogenous and external factors, we would expect that statis-
tically removing the effects of external factors would reduce
the size of the SME. Correspondingly, only partially remov-
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ing effects of external factors (e.g., by holding out the re-
moval of one of the external factors like we did in the anal-
yses described above) should result in SMEs that fall some-
where between the uncorrected SME and the SME correct-
ing for more external factors. This is the pattern we ob-
served, with one exception: when we statistically removed
the effects of all factors except for the session number, the
resulting SME was slightly smaller than that for the SME
also removing that effect (mean correlation of 0.11 as op-
posed to 0.12). This indicates that recall performance varies
with session number, but that this effect of session number
is not effectively captured by our measures of brain activity.
Hence, when we statistically controlled for the effects of ses-
sion number we removed variability in recall performance
that we could not account for with our measures of brain ac-
tivity, leading to a slightly larger SME (and, conversely, a
failure to remove the effects of session number reduced the
SME).

As Figure 3a also shows, there was substantial overlap
between the distributions for the uncorrected and corrected
SMEs demonstrating that the effects of external factors were
small relative to the size of the SME. Specifically, the effect
sizes associated with the uncorrected and corrected SMEs
corresponded to Cohen’s (Cohen, 1988) ds of 2.303 and
1.931, respectively (with the Cohen’s ds for corrected SMEs
holding out one of the factors ranging between 1.659 and
2.282). The difference between the uncorrected and cor-
rected SME was about half that size (Cohen’s d of 0.989
and 0.479–1.364 for the differences between the uncorrected
SME and the corrected SMEs holding out one of the factors).
Another way to interpret the sizes of the uncorrected and cor-
rected SMEs relative to their difference is by directly evaluat-
ing the corresponding correlations and their difference. Ac-
cording to Cohen’s convention, the correlations for all SMEs
correspond to a small effect size (0.1 < r < 0.3). Differ-
ences in correlations can be assessed with Cohen’s q (i.e.,
the difference between the Fisher-z transformed correlations)
which is 0.041 for the difference between the uncorrected and
corrected SME (and ranges between 0.018 and 0.054 for the
differences between the uncorrected SME and the corrected
SME holding out one of the factors)—all well below the
threshold Cohen proposed for a small effect (0.1 < q < 0.3).

Figure 3b shows correlations between power at different
frequencies and (residual) recall performance to help illus-
trate the importance of different features for our regular-
ized logistic and linear regression models relating brain ac-
tivity to (residual) recall performance. Across all measures
of (residual) recall performance, correlations with spectral
power were more negative in the α range (around 10 Hz) and
less negative at higher and lower frequencies. The correla-
tions between power and uncorrected item-level recall were
positive for frequencies in the γ range (> 40 Hz)—an effect
that was substantially reduced for all item-level residuals,

except for that not correcting for serial position. This sug-
gests that positive correlations between γ power and recall
performance largely reflect serial position effects (see also
Figure 2).

Rather than statistically controlling for factors that were
specific to individual items (i.e., serial position and recalla-
bility), our list-level SME eliminates or severely reduces
these factors by averaging brain activity over the encoding
epochs to predict (residuals of) the proportion of recalled
items in each list. Because each list contained the same num-
ber of items, effects of serial position averaged out, eliminat-
ing this factor from affecting list-level SMEs. Even though
recallability is specific to individual items, lists could vary
with respect to the average recallability of their constituent
items. We therefore considered not only list number and ses-
sion number, but also average recallability of items within
the list as external factors to control for in our calculation
of corrected list-level SMEs. As for our item-level SMEs,
we quantify list-level SMEs by calculating the correlations
between predictions from L2 regularized linear regression
models and (residual) recall performance.

The top of Figure 4a (labeled “list”) shows the distribution
of the uncorrected list-level SME (M = 0.26, t(96) = 18.213,
SE = 0.015, p < 0.001, d = 1.849). It is tempting to compare
the size of this list-level SME to the item-level SME shown
at the top row of Figure 3a, but such direct comparisons are
difficult to make sensibly. The EEG features driving the list-
level SME were averaged across all study epochs within each
list, whereas the item-level SME relied on features from in-
dividual epochs. Thus the neural features making up the item
and list-level SMEs may differ substantially in their respec-
tive signal to noise ratios and the number of observations
contributing to these different kinds of SMEs also differed
considerably (in our case by a factor of 24, because each list
consisted of 24 items).

To calculate corrected list-level SMEs, we fit linear regres-
sion models to predict list-level recall performance on the
basis of average recallability of items in that list, list num-
ber, and session number. We then used brain activity to pre-
dict residual list-level recall performance. The second row
of Figure 4a (labeled “list|all”) shows this corrected list-level
SMEs (M = 0.22, t(96) = 14.332, SE = 0.015, p < 0.001,
d = 1.455). This effect was smaller than the uncorrected
list-level SME (t(96) = 5.548, SE = 0.008, p < 0.001,
d = 0.563), reflecting the fact that external factors do con-
tribute to the uncorrected list-level SME. The fact that we
could demonstrate a sizable corrected list-level SME, how-
ever, supports our previous result that external factors are not
critical drivers of the SME.

To better understand the extent to which list and session-
level external factors contribute to the list-level SME, we sta-
tistically controlled for average recallability of items within
each list and list number (list-level effects; third row of Fig-
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Figure 4. (a) Distribution of uncorrected list-level SMEs (“list”) across all participants and of corresponding corrected SMEs
accounting for all factors or only the indicated ones (here “list #” refers to the joint effects of both list number and average
recallability of words in each list). Boxplots are as in Figure 3. (b) Mean correlations between power at different frequencies
(aggregated across 28 superior electrodes) and the respective (residuals of) list-level recall performance across all participants
(lined up with the corresponding SMEs in Panel a). The black horizontal lines indicate zero. Error regions indicate 95% CIs.

ure 4b labeled “list|list #”) and, separately, for session num-
ber (session-level effects; fourth row of Figure 4b labeled
“list|session #”). The corresponding SMEs were significant
(M = 0.16 and 0.32, t(96) = 12.668 and 20.132, SE = 0.013
and 0.016, respectively, both ps < 0.001, d = 1.286 and
2.044, respectively). Their sizes, however, fell outside the
range spanned by the SME controlling for all external fac-
tors and the uncorrected SME. The SME correcting for list-
level factors was smaller than that correcting for all exter-
nal factors and the uncorrected SME (t(96) = 11.606 and
12.466, SE = 0.005 and 0.008, respectively, both ps < 0.001,
d = 1.178 and 1.266, respectively), whereas the SME cor-
recting for session was larger than both (t(96) = 13.134 and
13.950, SE = 0.009 and 0.005, respectively, both ps < 0.001,
d = 1.333 and 1.416, respectively). This pattern confirms our
previous finding that our measures of brain activity did not
effectively capture session-level external factors that affect
recall performance. Hence, statistically controlling for their
effects enhances our ability to predict residual recall perfor-
mance from brain activity whereas a failure to remove that
variability from recall performance reduces the SME.

As for the item-level SMEs, Figure 4a shows substan-
tial overlap between the distributions for the uncorrected and
corrected list-level SMEs. Analyses of corresponding effect
sizes confirm that here, too, effects of external factors were
small relative to the size of the SME. Specifically Cohen’s
d for the uncorrected and corrected SMEs were 1.849 and
1.455, respectively (corresponding ds for the corrected SME
considering only list or session-related factors were 1.286
and 2.044 respectively). The size of the difference between
the uncorrected and the corrected SME was only about a
third (d = 0.563) of the individual effects (but, d = 1.266

and 1.416 for the corrected SMEs only accounting for list
and session-related factors, respectively). As before, we can
also interpret the size of these effects by considering the cor-
responding correlations directly. From that perspective, the
uncorrected and all corrected SMEs correspond to small ef-
fects (0.1 < r < 0.3) whereas the differences between the un-
corrected and the corrected SME falls short of a small effect
(q = 0.047; corresponding qs for the differences with cor-
rected SMEs considering only list or session-related factors
were 0.1 and 0.07 respectively).

Just as in Figure 3b, Figure 4b shows the correlations be-
tween power in different frequencies and (residuals of) recall
performance. The qualitative pattern of these correlations
aligned with the pattern for item-level SMEs with more neg-
ative correlations in the α range and less negative correlations
at lower and higher frequencies. Positive correlations be-
tween γ power and (residuals of) list-level recall performance
were absent, supporting our previous interpretation that these
positive correlations in item-level SMEs are largely driven by
serial position effects (which are averaged out in the list-level
analyses).

The presence of a robust list-level SME is compatible
with endogenous factors that vary slowly (over many sec-
onds or minutes) rather than with the presentation of indi-
vidual items during the study list. Indeed, to the extent that
factors driving the SME are closely linked to the presenta-
tion of individual items, characterizing these factors as “en-
dogenous” would be problematic. To investigate the extent
to which factors predicting subsequent recall are tied to indi-
vidual items rather than varying more slowly over the study
periods we constructed shuffled lists that mirrored the distri-
bution of recall performance, but synthesized lists from ran-
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Figure 5. Distribution of uncorrected list-level SMEs (“list”)
across all participants for synthesized lists made up from ran-
domly selected items within a session (see methods for de-
tails) and of corresponding corrected SMEs accounting for
all factors or only the indicated ones (here “list #” refers to
the joint effects of both list number and average recallability
of words in each list). Boxplots are as in Figures 3 and 4.

domly selected items within each session. Figure 5 shows
the list-level SMEs for these shuffled lists. As is evident
from the Figure, this shuffling procedure practically elim-
inated the SME. High statistical power resulted in statisti-
cally significant deviations from zero, but the largest shuf-
fled SME corresponded to a mean correlation of 0.03 with
the residual recall performance after accounting for session
effects which was an order of magnitude smaller than the
corresponding unshuffled SME. All shuffled SMEs were sig-
nificantly smaller than the corresponding unshuffled ones
(t(96) = 14.286–20.361, SE = 0.013–0.016, ps < 0.001, d =

1.450–2.067), supporting our previous result that (slowly
varying) endogenous factors (rather than item-specific, or
otherwise external, factors) are the main drivers of the SME.

Discussion

The subsequent memory analysis of neural data has pro-
vided researchers with a powerful tool for uncovering the
brain mechanisms that underlie successful memory forma-
tion. Armed with this methodology, cognitive neuroscien-
tists have conducted hundreds of experiments, using a wide
range of recording techniques, seeking to elucidate the brain
signals and networks that accompany memory acquisition.
Yet, despite an impressive body of data amassed in recent
decades, key questions about the neural correlates of mem-
ory acquisition remain unanswered. Specifically, to what ex-
tent do these neural correlates reflect known external factors
that determine memorability, or endogenously varying brain
states that determine the efficiency of memory acquisition?
Prior research suggests that both external and endogenous

factors play a role: On the one hand, experimental manip-
ulations of item encoding affect the SME (Otten & Rugg,
2001; Staudigl & Hanslmayr, 2013; Fellner et al., 2013),
suggesting a role for external factors. On the other hand, neu-
ral activity prior to item onset predicts subsequent memory,
suggesting a role for endogenous factors unrelated to item
processing (Sweeney-Reed et al., 2016; Otten et al., 2006;
Fellner et al., 2013; Guderian et al., 2009; Park & Rugg,
2010; Urgolites et al., 2020). We approached this question
by examining how the SME changed after statistically con-
trolling for a comprehensive set of external factors. We also
sought to remove effects of item-specific external factors by
aggregating brain activity over the study periods of all items
within a list to predict list-level recall (i.e., a list-level SME).
Both approaches for removing the effects of external factors
resulted in relatively modest decreases to the SME, implicat-
ing endogenous factors as the main drivers of the SME.

Because it is impossible to perfectly control for effects
of all possible external factors, distinguishing between ef-
fects of external variables and endogenous processes is no-
toriously difficult. We approached this challenge by treating
serial position, list, and session number as categorical predic-
tors, effectively modeling the joint effects of external factors
associated with these predictors without having to commit to
a particular functional form relating these predictors to recall
performance. By fitting these models separately to the data
from each individual, we were also able to accommodate in-
dividual differences. Our approach attributed any variability
in recall performance that covaried with one of our external
factors to that factor, even though it is likely that some of that
variability could reasonably be classified as “endogenous”
(e.g., sessions could be administered at different times from
day to day, and corresponding effects of circadian rhythms
would have been classified as an external session effect). Be-
cause of the fact that our external factors likely represented
the joint effects (including interactions) of a large number
of factors, we did not explicitly model any interactions be-
tween the factors we considered. Such interactions would be
difficult to interpret and we would expect them to be small
given that they would reflect consistent relationships between
somewhat arbitrary groups of of factors. Our approach to
modeling external factors thus should yield a conservative
estimate of the contributions of endogenous factors, despite
the fact that we cannot completely rule out contributions of
external factors (and some corresponding interactions) to our
corrected SMEs.

Our findings of strong list-level SMEs, and their elimi-
nation when synthesizing lists of randomly selected items
within a session, provide strong additional evidence against
the interpretation that the SME reflects item-level factors that
influence memorability. Specifically, the elimination of the
list-level SME for shuffled lists shows that the list-level SME
is not simply an aggregation of neural activity predicting re-
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call success for individual items. Any neural activity tied
to the presentation of individual items and predictive of en-
coding success would have survived our shuffling procedure
and thus should have resulted in a list-level SME even for
shuffled lists. Instead these findings suggest that relevant
endogenous factors vary at the time scale of multiple item
presentations. Averaging brain activity across encoding pe-
riods within a list thus yields a signal that is strongly pre-
dictive of list-level recall performance, because items that
are studied together are studied in similar “cognitive states.”
These findings raise the questions about the nature of the rel-
evant endogenous factors producing these states. The promi-
nent negative correlation between recall performance and α
power (shown in Figures 1c, 3b, and 4b) could suggest that
the endogenous factors that drive the SMEs reflect atten-
tional engagement during memory encoding (Sadaghiani &
Kleinschmidt, 2016). According to this interpretation, SMEs
would not specifically index mnemonic encoding processes
and should generalize to other tasks without memory tests.
Further work is required to establish the extent to which
SMEs reflect general attentional processes or specifically re-
late to successful memory encoding. Within the multivariate
approach introduced here, this question could be addressed
by contrasting decoding and cross-decoding performance of
multivariate models applied to different tasks (Weidemann et
al., 2019).

Because SMEs have been demonstrated in tasks other
than free recall, and for various measures of brain activity
(Hanslmayr & Staudigl, 2014; Fernandez, Brewer, Zhao,
Glover, & Gabrieli, 1999; Otten, Henson, & Rugg, 2002;
Schott et al., 2011), future work will need to address the
question of how endogenous neural variation underlies mem-
ory encoding outside of our experimental setting. The fact
that substantial SMEs remained after accounting for a com-
prehensive set of external variables may appear in conflict
with findings that encoding task manipulations can affect
the specific form of SMEs, at least for recognition memory
(Kamp, Bader, & Mecklinger, 2017; Summerfield & Man-
gels, 2006; Otten & Rugg, 2001; Staudigl & Hanslmayr,
2013; Fellner et al., 2013). Here we show that in the absence
of direct manipulations of how study items are presented or
processed, SMEs mainly reflect endogenous factors with rel-
atively modest contributions from external factors, at least
for EEG activity in a free recall task.

Our findings align with reports of sequential dependen-
cies in human performance (Kahana et al., 2018; Gilden et
al., 1995; Mueller & Weidemann, 2008; Verplanck et al.,
1952) as well as with those of slow endogenous neural fluctu-
ations that drive variability in evoked brain activity and overt
behavior (Monto et al., 2008; Schroeder & Lakatos, 2009;
Arieli et al., 1996; Fox et al., 2005, 2007; Fox & Raichle,
2007; Raichle, 2015). Previous investigations of endogenous
variability in neural activity and performance have relied on

exact repetitions of stimuli across many experimental trials
to limit variability in external factors. To study the effects
of endogenous variability on recall performance, we took
a complementary approach by statistically removing the ef-
fects of a comprehensive set of external factors. Despite the
differences in methodologies and tasks, the conclusions are
remarkably consistent in establishing an important role for
slowly varying fluctuations in neural activity as drivers of
variability in human cognition.

Because encoding and retrieval processes jointly deter-
mine mnemonic success, it is notoriously difficult to study
either process in isolation. The assessment of encoding-
related brain activity as a function of subsequent memory
performance offers a powerful tool for isolating neural pro-
cesses specifically underlying memory formation. As typi-
cally used, however, this method conflates external factors
that predict subsequent memory (e.g., item complexity) and
endogenously varying neural processes. Here we used two
new methods to deconfound these factors: First, we used
a statistical model to control for external factors and exam-
ined the SME on residual performance measures. Second,
we introduced a new list-level SME and a session-level re-
sampling control procedure that identifies encoding-related
neural activity that varies at the time-scale of entire list pre-
sentations. Both approaches showed that endogenous neural
activity dominates the subsequent memory effect, highlight-
ing its effectiveness for the study of cognitive processes as-
sociated with memory acquisition.
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