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Abstract 
 

We have used serverless AWS Lambda functions to align 640 million reads in less than 3 

minutes, a speed-up of 500x over the single-threaded implementation. Using a hybrid cloud 

architecture and software modified to optimize disk transfers, an entire RNA sequencing 

workflow transforming multiplexed reads to transcript counts that originally took 29 hours can be 

completed in 18 minutes. This is a 100x improvement over the original single threaded 

implementation and 12x faster than an optimized cloud server-based implementation using 16 

threads. The total cost of the analyses is $2.82 for 96 wells or 3 cents per multiplexed sample. 

This approach can be used for human datasets that are generated for single experiments and 

does not rely on processing large numbers of samples to achieve the performance gains. The 

workflow is publicly available under a M.I.T. license (https://github.com/BioDepot/RNA-seq-

lambda). 
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Introduction 
Cloud computing has become an essential resource in the analyses of big biomedical data by 

offering massive scalable computing and storage, secure access to protected data, and on-

demand access to resources and applications 1, 2.  A major barrier to widespread adoption of the 

cloud for large scale parallel bioinformatics jobs is the need to provision and configure virtual 

servers before computation can proceed. Setting up the infrastructure requires expertise and 

can consume more time than the actual computation.  In contrast, code snippets can be easily 

deployed to the cloud in the form of microservices using serverless function-as-a-service (FaaS) 

platforms where resource provisioning, monitoring, scaling, 24/7 availability, and fault tolerance 

are provided automatically 3, 4.  The serverless function-as-a-service paradigm has emerged as 

a simplified programming model that can be used to create scalable cloud applications with 

reduced configuration and management overhead 5.  In addition to the ease of use, these 

microservices, are inexpensive, can be launched in under a second and require no provisioning 

or specification of instances.  This is a true on-demand model: there are no compute resources 

reserved and no cost to the user when a user’s function code is not being executed.  Most major 

public cloud vendors provide FaaS computing platforms including AWS Lambda 6, Google 

Cloud Functions 7, Microsoft Azure Functions 8 and IBM Cloud Functions 9. 

Our proof of concept case study is an RNA sequencing (RNA-seq) pipeline used by the Drug 

Toxicity Signature Generation center (DToxS) at Mount Sinai 10 to quantify gene expression. 

Xiong et al. developed a 3’-end directed library approach that uses unique molecular identifiers 

(UMI) to quantify gene expression of cell lines treated with drugs for 48 hours on 96 well plates 
10. Their goal is to identify gene signatures for drug-induced cardiotoxicity by performing three 

types of drug treatments: protein kinase inhibitors that can cause cardiotoxicity, non-cardiotoxic 

drugs and vehicle control. This pipeline consists of 3 computational steps.   The first step is a 

de-multiplexing step that separates the reads from the 96 originating wells. These reads are 

then aligned to the human transcriptome using the Burrows-Wheeler Aligner (BWA) 11. The 

resulting alignments are merged and de-duped using Unique Molecular Identifiers (UMIs) to 

compute the observed counts for each transcript. The de-multiplexing and merge steps of the 

original pipeline were written in Python and took 29 hours on an AWS EC2 instance m4.4xlarge 

to process a dataset consisting of 600 million reads. We have converted and optimized the 

Python steps using C++ executables to reduce the total time of pipeline execution to 3.5 hours 

when using 16 threads 12. By using AWS Lambda functions, we reduced the alignment time to 2 

minutes, and the entire processing time to approximately 18 minutes. 
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Results 
To take full advantage of the serverless computing approach (see Figure 1) we modified the 

RNA-seq pipeline to function within the limitations of the Lambda functions (512MB of disk 

space, 15 minutes maximum runtime, 3GB RAM, and 2 vCPUs) to minimize disk transfers to 

and from the AWS Simple Storage Service (S3). The major set of files that need to be copied to 

each Lambda function, other than the input fastq files, are the human reference files. BWA does 

not actually use the sequence after the indices are generated but only requires the sequence 

file name to infer the names of index files. To save space, we provided a dummy sequence file 

for BWA. Since Lambda functions can retain their files after termination, we checked before 

downloading whether the files already existed to save bandwidth. The Lambda handler script, 

executables, and support files require 250 MB leaving 250 MB for the input and output files. The 

pipeline was modified to produce smaller input and output files for the alignment step. The 

demultiplex and split step was modified to produce input fastq files with a user-specified 

maximum size. To save execution time transfer of these files to S3 proceeds as soon as the file 

is created rather than waiting for all files to be generated. Instead of saving large SAM or BAM 

files after alignment, we wrote a small executable to hash the alignment and UMI barcode of 

each read into an 8-byte value. The resulting file takes up 50x less space than a SAM file. Not 

only does this approach conserve disk space, but it also reduces the size of files transferred to 

and from S3 before the final merge step. Before these modifications, execution required almost 

3 hours, largely due to the time required for disk transfers to and from S3. The final optimized 

pipeline can be executed in 18 minutes.  See Table 1 for the detailed run time for each of the 

steps shown in Figure 1 using an AWS EC2 instance (m4.4xlarge with 16 threads). 

Figure 1. RNA-seq pipeline using serverless computing. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2019. ; https://doi.org/10.1101/576199doi: bioRxiv preprint 

https://doi.org/10.1101/576199
http://creativecommons.org/licenses/by-nc-nd/4.0/


The computational and data transfer steps involved in executing the RNA-seq pipeline are 

shown. The pipeline begins with fastq files comprising 640 million reads (approximately 46 GB 

total in size) in S3. The Python Lambda handler script, executables, and support files were also 

on S3. The fastq files are copied to the local disk of an EC2 instance. The files are 

demultiplexed and split into 150 MB chunks and copied back to S3. 878 Lambda functions, one 

per fastq chunk were then launched simultaneously. Each Lambda function executes the 

Python Lambda handler script which copies one of the split fastq files, as well as the 

executables and support files to the Lambda local disk. The bwa aln executable is then called to 

align the reads. The alignments are piped to a small C++ executable which extracts the 

transcript ID, the mapping position, and the UMI barcode for each read and produces an 8-byte 

hash value. These values are written to the local disk of the Lambda function when alignment is 

performed, producing a file roughly 50x smaller than a SAM file. When the alignment completes 

the hash file is copied to S3. The final merge step takes place on the EC2 instance. The hash 

files are copied from S3 to the EC2 instance where the hash values are combined into a unique 

set to compile the final transcript counts. The cost of the serverless component is $2.82, and the 

cost of the entire analyses is $3.13 to $3.83 depending on the type of EC2 spot instance used. 

This translates to a cost of 3 to 4 cents per multiplexed sample. 

 

Run 

Upload fastq 
data from S3 

to EC2 
Split 
(EC2) 

Data 
transfer 

from EC2 to 
S3 

Align 
(Lambda) 

Data transfer 
SAF files from 

S3 to EC2 
Merge 
(EC2) Total 

1 0:03:24 0:06:50 0:02:20 0:02:38 0:00:15 0:01:49 0:17:16 

2 0:03:24 0:07:34 0:02:27 0:02:43 0:00:15 0:02:08 0:18:31 

3 0:03:23 0:07:07 0:03:37 0:02:47 0:00:16 0:01:49 0:18:59 

Median 0:03:24 0:07:07 0:02:27 0:02:43 0:00:15 0:01:49 0:17:45 
 
Table 1. Runtime of each of the steps in our hybrid cloud architecture. The split and merge 

steps were performed on an AWS m4.4xlarge EC2 instance with a fast i01 SSD while the align 

step was performed on AWS Lambda.  Compared to our single threaded results using the same 

optimized implementation on a m4.4xlarge from a slower General Purpose SSD (gp2) reported 

in Hung et al 12,  split time was reduced from  3 hours to 7 minutes, align times from 17 hours to 

2.5 minutes, merge times 50 minutes to 2 minutes. The total pipeline time was reduced from 

more than 21 hours to 18 minutes, a more than 70x speedup. The speedup vs the reported 

execution times on 16 threads was still 12x. 
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Discussion 
Our case study demonstrates how a computationally intensive bioinformatics workflow can 

leverage a hybrid cloud architecture that incorporates serverless cloud computing to 

dramatically speed up execution time at a low cost.  Bioinformatics workflows typically consist of 

multiple components. Compute bound tasks can leverage the highly scalable and performance 

efficient Function-as-a-service cloud serverless platforms whereas the disk bound tasks can 

benefit from instances with faster disks.  In our case study, we used a hybrid cloud architecture 

where the disk bound tasks (split and merge) are deployed on an AWS EC2 instance with a fast 

SSD, while the parallelizable compute bound task (alignment using BWA) is deployed on AWS 

Lambda. The pipeline that we have described is freely available 

(https://github.com/BioDepot/RNA-seq-lambda) and applicable to any set of UMI RNA-seq data. 

The RAM and memory limitations of Lambda functions are not impediments to some 

computational bioinformatics applications, such as alignments to smaller references, or all-vs-all 

calculations of Smith-Waterman mapping distance in a set of proteins. In general, tasks can be 

split into smaller sub-tasks and distributed for execution (scattered) on Lambda functions and 

results assembled (gathered) and merged (reduced) to obtain the final result. Fortunately, many 

CPU-bound applications also have a GPU implementation, which involves a large task divided 

into sub-tasks that are processed by small groups of GPU compute units with very limited 

resources. Sequence alignment, protein-folding, and deep-learning are computationally 

intensive bioinformatics tasks that can be potentially adapted to leverage a serverless 

computing approach. With the capability of serverless cloud computing to quickly leverage 

hundreds of CPU cores, the computational power that was once the exclusive domain of 

supercomputers is now easily accessible, available on demand, and at low cost, to enable 

solving many resource intensive bioinformatics problems. 

 

Software and Data Availability 
The code and workflow are publicly available under a M.I.T. license 

(https://github.com/BioDepot/RNA-seq-lambda).  The processed UMI RNA-seq data are publicly 

available at https://martip03.u.hpc.mssm.edu/data.php and the raw fastq files are available upon 

request. 
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