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Summary 

Using new methods to capture streams of neural meta-state transitions in single 

participants, we characterize the psychological meaning of these regular neural events. 

Similar to past group-average-based analyses, participants’ individual transition streams 

aligned to meaningful events during movie-viewing. However, our individual-based 

approach also afforded observation of participants’ idiosyncratic transition timing at rest. 

Across these two dramatically different task contexts, transitions featured similar trait-

like frequency, concurrence with activation of regions associated with spontaneous 

thought, and suppression by attention regions. Based on this generalization, as well as 

the centrality of semantics to thought, we argue transitions serve as a general, implicit 

neurobiological marker of new thoughts, and that their frequency therefore 

approximates participants’ mentation rate. Finally, to contribute convergent validity and 

illustrate the utility of our approach for thought dynamics, we regressed resting transition 

rate and movie-viewing group temporal conformity against trait neuroticism, yielding a 

first neural confirmation of the “mental noise” theory. 

Keywords: time-varying functional connectivity, neural meta-state transitions, 

spontaneous thought, neurocinematics, neuroticism, functional neuroimaging 
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Introduction 

Research on spontaneous thought has entered the mainstream of cognitive 

neuroscience (Christoff et al., 2016), but methodological problems remain, including the 

unreliable and disruptive nature of meta-cognition (Nisbett and Wilson, 1977; Seli et al., 

2018), and uncertainty about how to pinpoint a thought’s beginning and end (James, 

1890). As most definitions of a thought concern its contents (with some definitions 

emphasizing spontaneous production; Smallwood, 2013), we propose that implicit 

measurement of changes in semantic content offers an interesting alternative to meta-

cognition. Researchers today can readily decode neurally discernable object categories 

(e.g., faces and houses) from spatial patterns in participants’ functional magnetic 

resonance imaging (fMRI) data (Norman et al., 2006); accordingly, one could infer a 

new thought has arisen in a participant by observing a switch from one active category 

to another. One important reason this strategy has not been deployed for demarcating 

thoughts is the challenge of reliably distinguishing large numbers of categories; also, 

object categories alone may be insufficient for representing the complexity of a cognitive 

state. However, recent perspectives emphasize measurement of thought dynamics 

instead of contents (Christoff et al., 2016). What if, rather than tracking the rise and fall 

of particular object categories, we found a way to track semantic transitions more 

holistically?  

Along these lines, researchers agree that time-varying changes in network 

interactions might signal boundaries between cognitive states (Christoff et al., 2016; 

Kucyi et al., 2018). However, current methods either require alignment of states across 
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a group (e.g., by viewing the same movie stimulus), referencing known states previously 

visited by an individual under stimulus control (a tiny subset of the range of possible 

states), or focus on timescales too long to be relevant to measurement of single 

thoughts (with windows for representation of each cognitive state that approach a full 

minute long). Consequently, researchers investigating spontaneous thought have been 

unable to implicitly observe natural thought dynamics outside of stimulus control (e.g., 

using resting-state fMRI), where the timing and content of new thoughts is idiosyncratic. 

Arguably, implicit observation of this kind is central to any understanding of thought 

dynamics, as disrupting spontaneous thought for the purposes of explicitly 

communicating information about cognitive state itself disrupts the natural progression 

of states (analogous to the observer effect in physics). 

Thus, we introduce a method to implicitly identify breaks between stable periods 

of brain network configuration (i.e., meta-state transitions) at a single-TR timescale and 

using resting-state fMRI data from single participants. We leverage movie stimuli to 

present a preliminary psychological validation based on the correspondence of these 

transitions to known semantic and perceptual features, then generalize this 

interpretation by showing transitions to feature various similar properties when identified 

within unconstrained resting-state fMRI data. Finally, we illustrate the utility of our 

approach for understanding thought dynamics by reporting correlations between trait 

neuroticism and two characterizations of neural transitions that corroborate recent 

personality research.  
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Results 

Detecting Timepoints of Interest. We conducted our analysis on the 7T Human 

Connectome Project dataset, which features movie-viewing fMRI (mv-fMRI) and resting-

state fMRI (rs-fMRI) data gathered from 184 participants (Van Essen et al., 2012, 2013; 

Ugurbil et al., 2013). We converted each fMRI run into the expression of 15 known brain 

networks over time (see Figure S1), then reduced its dimensionality from (15 x time) to 

(2 x time) using t-SNE (van der Maaten and Hinton, 2008; Billings et al., 2017). In this 

reduced space, epochs with similar patterns of network activity fall in proximity. We 

hypothesized a pattern of spatiotemporal organization reflecting progression through a 

series of discrete thoughts, each centred around its own semantic focal point (e.g., what 

one will be having for dinner) serving as an attractor. Unstable network meta-states 

would yield dispersion in this space, whereas an attractor would cause points to cluster, 

yielding a worm-like series (arising from limited drift as thoughts “evolve”; Figure 1A vs 

1B). We found strong evidence for spatial contiguity with participant trajectories reliably 

forming into series (see Figure 1C, Figure S2, and STAR Methods). 

Next, we identified changes in network activity by taking the squared 

Mahalanobis distance (Gnanadesikan and Kettenring, 1972) between successive 

timepoints in t-SNE space for each fMRI run, obtaining a measure of meta-state change 

that we label a step distance vector. To stabilize the step distance vector, we repeated 

the dimensionality reduction and step distance vector creation process 100 times for 

each participant and each functional run.  
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Figure 1. Network space representation. (A) Continuous, random passage through the space of possible network 
configurations generates fragments in t-SNE space, as opposed to (B) contiguous, worm-like segments when an 
attractor holds network configurations in relative meta-stability. (C) An example reduced t-SNE representation 
involving both segment types, as observed from one participant’s 15-minute rs-fMRI scan. 

Peaks within the resulting mean step distance vector represent prominent 

reconfigurations of network meta-states, thus we called them network meta-state 

transitions (henceforth transitions). For purposes of baseline comparison, we also 

identified local minima in the mean step distance vector, which each represent a 

relatively stable network meta-state (henceforth meta-stable) (Figure 2A). 

Leveraging Movie Data to Determine Psychological Meaning. To assess 

whether these discovered moments of network reorganization held psychological 

relevance, we validated our approach using mv-fMRI data, examining their alignment to 

the onset of new semantic or perceptual movie features. As a starting point, visual 

inspection of the set of all participant transitions during movie-viewing revealed 
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substantial alignment in transitions relative to rest (Figure 2B, C). To quantify this, we 

obtained each participant’s group alignment for each resting state and movie-viewing 

run, which describes the correlation between the individual’s step distance vector and 

the corresponding median group step distance vector (i.e., conformity; see STAR 

Methods). We separated conformity values into runs of the same type, resulting in 723 

movie conformity values and 722 rest conformity values. After feeding each set of 

values into a group bootstrap analysis, we found higher conformity for movie runs, 

mean r = 0.27, 95% CI: [0.26, 0.27], than for rest, mean r = 0.04, 95% CI: [0.03, 0.04], r 

difference = 0.23, 95% CI: [0.22, 0.25]. This finding reflects past observations of film’s 

unique ability to induce similar activity across participants in a wide variety of brain 

areas (Hasson et al., 2008; Baldassano et al., 2017; Chen et al., 2017), and provides a 

preliminary link between transitions and naturalistic cognition. 

As an alternate means of evaluating the influence of plot progression (i.e., 

progression of meaning) over transitions, we attempted to predict transition alignment 

based on the number of narrative events in each clip. Two expert raters came to a 

consensus on boundaries between events (Zacks and Swallow, 2007), which we 

defined as timepoints where a change in the movie triggers a new semantic focal point 

or evolves viewer understanding of the movie narrative. We correlated the number of 

these events in each clip with group alignment within each participant. This yielded 184 

correlation coefficients that we entered into a group bootstrap analysis. Clips with more 

events per minute had higher group alignment, mean r = 0.25, 95% CI: [0.21, 0.29]. 
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Figure 2. Identification of transition and meta-stable timepoints during movie-viewing and rest. (A) A 
participant’s mean step distance vector during one mv-fMRI run, with 95% CI ribbon (narrow ribbon indicates stability 
over t-SNE iterations). Transition timepoints (green triangles) and meta-stable timepoints (black triangles) identified 
by a peak finding algorithm. (B) All participants’ transition timepoints for the same mv-fMRI run, with many peaks 
overlapping those of the example participant in A. (C) All participants’ transitions for one rs-fMRI run. Alignment of 
peaks in B but not C reveals stimulus control over transitions.  

We also directly examined the temporal correspondence of transitions with other 

movie features within-participant. Consensus labels of sub-events (consisting of 

individual actions) and cuts were obtained from two expert raters. We also obtained 

lower-level feature timeseries for each clip that describe semantic, visual, and amplitude 

change, as well as change in head motion. No other features were tested. Some 

features were correlated; for example, an event’s end often coincides with a cut 

between shots, which in turn coincides with semantic and perceptual stimulus changes. 

These correlations could produce a result wherein transitions appear to reflect lower-

level features, but only because they peak concurrently with the onset of new cuts or 
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events. To disentangle high- and low-level feature contributions, we “censored” epochs 

of lower-level feature timeseries where higher-level event boundaries co-occurred 

(Figure 3B). We reasoned that if lower-level features induce transitions, this should 

remain the case outside of censored epochs. 

 
Figure 3. Variance in movie features explained using network meta-state transitions. (A) Eta-squared values 
describing the proportion of variance in movie features explained by alignment to transition vs. meta-stable 
timepoints. Error bars designate 95% confidence intervals. Filled bars denote features that are aligned to transitions, 
whereas empty bars denote stronger alignment to meta-stability. (B) Diagram illustrating censorship of lower-level 
feature vectors by higher-level features for greater independence of test statistics. 

To determine the proportion of feature variance accounted for by transition 

versus meta-stable timepoints, we calculated eta-squared values for both uncensored 

and censored features after accounting for lag in the hemodynamic response function. 

Transitions (and specifically t-SNE-derived transitions over other embedding 

approaches or fluctuations in any of the actual 15 networks themselves; Figure S3) 
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were strongly associated with movie features, with up to 60.8% of feature variance 

explained (event feature). However, with the exception of sub-events, eta-squared 

values for all features decreased markedly after removing timepoints that could be 

confounded with event boundaries. Features corresponding to non-visual perceptual 

change, in particular, dropped to near-zero values (Figure 3A). Thus, transitions showed 

a clear, albeit non-exclusive alignment to features pertaining to plot progression, with 

the top three predictors being event, sub-event and semantic features (see Movie S1 for 

illustration of this specificity).  

Extending from Feature-Rich Movies to Featureless Resting State. We 

interpret this co-occurrence with various movie features as evidence that meta-state 

transitions correspond with psychologically meaningful “mental events”. To learn 

whether these mental events were observable even outside of stimulus control, we 

interrogated possible similarities in the properties of transitions found in mv-fMRI and rs-

fMRI data. First, we explored whether any consistent spatial pattern differentiated 

transition and meta-stable timepoints. Although transitions were defined on the basis of 

change in network activation, they captured both activation and deactivation of each 

network, so there was no circularity or bias towards the spatial characteristics of any 

one network.  

We performed a conjunction analysis, searching for voxel activation clusters that 

independently distinguished transition and meta-stable timepoints for both mv-fMRI and 

rs-fMRI runs. We found that regardless of whether participants were engaged in movie-
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viewing or at rest, transitions were associated with regions implicated in spontaneous 

thought (Figure 4A-C, Table S1). 

 
Figure 4. Spontaneous thought and attention regions differentiate transition from meta-stable timepoints 
across task and rest. (A-C) Images are shown in neurological orientation. (A) Anterior and posterior cingulate, 
precuneus, and visual association area were implicated in transitions. (B) Anterior and posterior insula were 
implicated in transitions. (C) Midline anterior, posterior cingulate, and visual association cortex were implicated in 
transitions; angular gyrus was implicated in meta-stability.  

We also evaluated whether an individual’s transition rate generalized across task 

and rest. First, we tested its internal stability across the four rs-fMRI runs (as each was 

sampled in a separate scanner session). Transition rate was correlated across runs 

(mean r = 0.45, SD = 0.06), revealing it to be a trait-like characteristic that can be 

adequately sampled using 15 minutes of rs-fMRI data. We then averaged participant-

wise transition rates across rs-fMRI runs to stabilize the trait measurement, and 

regressed them against the average participant-wise transition rates computed from mv-

fMRI runs. Transition rate at rest was correlated to transition rate during movie-viewing, 

r = 0.60, 95% CI: [0.51, 0.70] (Figure 5), thereby further linking its properties across 

stimulus-driven and resting cognition. 
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Figure 5. Transition structure generalizes from stimulus-driven to resting cognition. Participants’ movie-
viewing transition rates correlated with their resting transition rates. 

 Link Between Trait Neuroticism and Transitions. Based on the theory of 

“mental noise”, which suggests that individuals with higher trait neuroticism are more 

susceptible to distractors and lapses of attention (Robinson and Tamir, 2005), we 

investigated the relationship between neuroticism and our measure of transition rate 

while participants were at rest. Because our above analyses led us to believe that a 

large number of transitions corresponded to a large number of thoughts, we interpreted 

transition rate as analogous to mentation rate, and predicted that the higher mental 

noise associated with neuroticism would correspond to a higher rate of transitions. 

Higher levels of trait neuroticism were associated with higher resting transition rates, r = 

0.15, p = .027 (one-tailed). As a further test, we hypothesized that mental noise would 

correspond to more idiosyncratic transitions during movie-viewing, yielding transition 

timing in high-neuroticism participants that conformed less to that of other participants 

(i.e., less alignment between an individual’s stream of transitions and the group). We 

note that this test drew on a different source of data than our first analysis (mv-fMRI 
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rather than rs-fMRI). Consistent with our hypothesis, higher trait neuroticism was 

associated with lower conformity during movie-viewing, r = -0.18, p = .008 (one-tailed).   

Discussion 

To summarize, our method characterizes a neurocognitive landmark based on 

transitions between brain network meta-states. Our approach is distinctive for its ability 

to observe fine-grained thought dynamics, and applicability to single individuals being 

scanned in any task context, with or without prior knowledge about the complexity of 

brain data under interrogation or the meta-states to be visited. As validation, we found 

transitions to be responsive to events in movie stimuli, and found features of transitions 

to be both trait-like and generalizable across task-based and task-free imaging contexts. 

Finally, we established construct validity of transitions by showing the frequency of their 

occurrence within resting-state fMRI data and lack of alignment to the group within 

movie-viewing fMRI data to predict higher trait neuroticism, as predicted by prevailing 

(behaviourally-constructed) theory in personality psychology.  

A thought is grounded in its contents. Therefore, our findings that meta-state 

transitions during movie-viewing best predicted event boundaries and onset of new 

semantic information support the interpretation that meta-state transitions align with the 

changes in semantic content across one’s thoughts. These results complement those of 

Baldassano and colleagues (2017), who used a Hidden Markov Model (HMM) approach 

on specific neural structures to find shifts in movie-viewing brain activity which co-

occurred with event boundaries. However, our method differs by its reliance on a 

specific and observable neural phenomenon (whole-brain network transitions), its 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/576298doi: bioRxiv preprint 

https://doi.org/10.1101/576298
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 

applicability on an individual basis, and its potential capacity to detect semantic change 

in uncharacterized task environments. 

The regions consistently associated with transitions across task contexts have 

been previously associated with spontaneous thought. In particular, anterior cingulate 

and insular cortices are considered members of a salience network that shifts attention 

to novel external and internal events (Seeley et al., 2007); the posterior cingulate cortex 

is a key region in the default mode network that is more active during task-unrelated 

than task-related thought (Leech and Sharp, 2013; Smallwood et al., 2016). By contrast, 

we found that angular gyrus activation, which has been associated with both event 

representation (Seghier, 2012) and sustained attention (Singh-Curry and Husain, 2009), 

predicted meta-stability, perhaps reflecting less transitions while participants focally 

contemplated an event. 

Transition rate was correlated within runs of the same type, revealing it to be a 

trait-like characteristic that can be adequately sampled using 15 minutes of rs-fMRI 

data. This result builds on recent findings of trait-like properties of low-frequency 

chronnectome characteristics (Calhoun et al., 2014; Liu et al., 2018) by showing that 

higher-frequency network reconfigurations relevant to rapid, thought-like fluctuations in 

cognitive states are also trait-like. Furthermore, the average transition rate during 

movie-viewing was strongly related to average transition rate at rest. This relationship 

may be explained by the finding that participants segment commercial films and 

naturalistic clips with similar fractal structure (Blau, Petrusz and Carello, 2013), 

suggesting commonality between mentation during movie-viewing and real experiences. 
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Film theorists lend further support to this finding, positing that narrative films and the 

techniques associated to creating them are not an attempt to reproduce reality, but are 

optimized based on real perception to control viewer’s attention and mental state 

(Shimamura, 2013). 

Our method yielded a neural measurement of mentation rate that we used to 

investigate how neuroticism relates to thought dynamics. In particular, the mental noise 

hypothesis proposes that individuals with high neuroticism are more susceptible to 

intrusive thoughts and distraction by irrelevant information (Robinson and Tamir, 2005; 

Perkins et al., 2015; Klein and Robinson, 2019), presumably yielding more frequent and 

less predictable changes in cognitive state. Consistent with this proposal, we found trait 

neuroticism to predict higher transition rates (i.e., mentation rate) during rest, as well as 

lower conformity of transition temporal structure to that of the group during movie-

viewing. We interpret these two observations as reflecting increased mental noise in 

individuals with high trait-neuroticism, which in turn supports the construct validity of 

transitions as a measurement of thought dynamics in both rs- and mv-fMRI. It also 

serves as a first neural confirmation that neuroticism indeed entails a “noisier mind”.   

Taking these observations together, we argue that neural meta-state transitions 

can serve as an implicit biological marker of new thoughts. Although our analysis has 

focused on movie and resting fMRI data from healthy adults, our methods are 

applicable to a wide range of tasks, populations, and even case studies. Overall, by 

lending a level of validity and reliability unavailable using past introspective approaches 

to measuring thought dynamics, our approach makes new questions accessible: for 
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example, how many thoughts do we experience each waking day? Extrapolating from a 

median transition rate across movie-viewing and rest of 6.5 transitions / min, and a 

recommended sleep time of 8 hours, one could estimate over six thousand daily 

thoughts for healthy adults of a young-adult demographic similar to the one used in our 

analysis. Although further interrogation of meta-state transitions would be needed to 

employ such a measure with confidence, availability of a tentative answer further 

highlights how the current approach may be fruitful in advancing how we think about 

thought. 
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Methods 

Key Resources 

Our analysis relied upon algorithms implemented in MATLAB (v.2017a), FSL (v.5.0.10), 

and Datavyu (v.1.3.7). 

Lead Contact and Materials Availability 

Further information and requests for resources should be directed to and will be fulfilled 

by the Lead Contact, Jordan Poppenk (jpoppenk@queensu.ca).  

Experimental Model and Subject Details 

Human Connectome Project dataset 

Neuroanatomical and functional data were collected by the WU-Minn Human 

Connectome Project (HCP) consortium (Van Essen et al., 2013). In a prior analysis, a 

3T resting state fMRI (rs-fMRI) dataset of 1003 participants (age M = 28.7 years, SD = 

3.7 years; 534 female) was used by the HCP group to generate spatial maps of typical 

brain networks that may be found in rs-fMRI participants through a process involving 

group-PCA and group-ICA (Beckmann et al., 2009; Nickerson et al., 2017). As this 

dataset was the source of these maps, we refer to it as the training dataset. Our 

analyses involved applying these maps to a testing HCP dataset (7T) that contained 

both mv-fMRI and rs-fMRI scans, and that was the subject of all of our own analyses. 

Although this 7T dataset is described elsewhere (Van Essen et al., 2012, 2013; Glasser 

et al., 2013; Ugurbil et al., 2013), briefly, it consists of fMRI scans from 184 participants 

(age M = 29.4 years, SD = 3.4 years; 112 female). Each participant underwent four 15-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/576298doi: bioRxiv preprint 

https://doi.org/10.1101/576298
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 

minute mv-fMRI and four 15-minute rs-fMRI runs; functional images were acquired 

using a multiband gradient echo-planar imaging (EPI) pulse sequence (TR 1000 ms, TE 

22.2 ms, flip angle 45°, multiband factor 5, whole-brain coverage 85 slices of 1.6 mm 

thickness, in-plane resolution 1.6 x 1.6 mm2, FOV 208 x 208 mm2) (Feinberg et al., 

2010; Moeller et al., 2010; Setsompop et al., 2012; Xu et al., 2012). During each movie 

run, participants watched three or four movie clips interspersed with 20-second rest 

periods as well as an 84-second validation clip repeated at the end of each run (due to 

its repetition, we did not include this clip in our analyses).  

In addition, high-resolution T1-weighted and T2-weighted scans were gathered 

(TR 2400 ms and 3200 ms, TE 2.14 ms and 565 ms, flip angle 8° and variable, 0.7 mm 

thickness, in-plane resolution 0.7 x 0.7 mm2, FOV 224 x 224 mm2) for purposes of 

group anatomical alignment. Data collection was approved by the Washington 

University institutional review board (Van Essen et al., 2012), and performed by the 

HCP consortium, which also gathered informed consent from all participants at the time 

of data acquisition. Access to these datasets was granted by the HCP consortium, and 

acknowledged by the Health Sciences Research Ethics Board at Queen’s University. 

No participants were excluded from analysis.   

Method Details 

Step 1: Timepoint Discovery 

Transforming functional data to 15-network representation. We mapped the 

15 spatial maps resulting from the training set group-ICA decomposition onto each 7T 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/576298doi: bioRxiv preprint 

https://doi.org/10.1101/576298
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20 

participant’s resting state and movie-viewing data using FSL’s dual regression function 

(Beckmann et al., 2009; Nickerson et al., 2017), a method in which known spatial 

configurations are regressed against new data to transform 4D functional data into a set 

of timeseries (one per spatial map, Figure S1A). 

 
Figure S1. Expression of brain network activity. (a) Each fMRI run of each participant was characterized as the 
activation of 15 brain networks over time. (b) Representation of A as a two-dimensional matrix of (time x network). (c) 
Reduced representation obtained after applying t-SNE algorithm. Related to: Figure 1C.  

Although larger network set sizes were available from the HCP group (ranging 

from 15- to 300-brain-network solutions), we observed that set size had little material 

impact on trajectory estimates, and therefore selected the simplest available (15-

network) solution. To increase signal-to-noise ratio and to dampen short timescale 

network fluctuations, we temporally smoothed each resulting timeseries with a moving 

average filter (span = 5 s). This procedure yielded a smoothed timeseries for each brain 

network reflecting that network’s activation over time. We combined these timeseries to 
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create separate (time x network) matrices for all four mv-fMRI and all four rs-fMRI runs 

for each participant (Figure S1B).  

Transforming network representation to the lower-dimensional space of 

network meta-states. In preparation for using the Mahalanobis distance metric on the 

data, we applied the t-distributed stochastic neighbour embedding (t-SNE) algorithm to 

reduce the dimensionality of each matrix from 15 dimensions to 2 dimensions at the 

default perplexity setting of 30 (Figure 1C, Figure S1C; van der Maaten and Hinton, 

2008). We found the perplexity setting had little impact on our analysis, and therefore 

selected what is regarded as a moderate (and default) value. 

Notably, Miller and colleagues (2016) used a somewhat similar approach, 

creating a low-dimensional representation by first defining the space of possible meta-

states as a discrete 5-dimensional state space, with each dimension representing a 

distinct group temporal ICA component derived from participants’ functional data (i.e., 

connectivity patterns). Whole brain activity was expressed as a weighted combination of 

these components over time. To map each timepoint onto their meta-state space, they 

then discretized each weight at each timepoint according to its signed quartile. In 

contrast, our approach relies on dimensionality reduction algorithms to discover 

changes in meta-state directly from the continuous-valued 15-brain-network 

representation. We selected this approach because it affords flexibility in the 

designation of each meta-state by mapping each one onto a continuous two-

dimensional space instead of a discrete 5-dimensional state space. Just as the Greek 

philosopher Heraclitus noted, “No man ever steps in the same river twice, for it’s not the 
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same river and he’s not the same man”, our approach is aligned to the very likely 

possibility that meta-states are continually evolving. Our approach also differs by 

drawing on published reference networks derived from a static group of 1003 

participants (i.e., the training dataset described above; Beckmann et al., 2009; Van 

Essen et al., 2013; Nickerson et al., 2017), rather than a set of networks derived from 

the specific dataset under interrogation.  

 Detecting network meta-state transitions. To derive from our t-SNE 

representation a global measure sensitive to changes in network meta-state, we 

computed the Mahalanobis distance in position within this low-dimensionality t-SNE 

space across subsequent timepoints. The resulting step distance vector for each fMRI 

run of each participant should peak at points in the timeseries where shifts in network 

meta-state occur. To address potentially divergent results across repeated t-SNE 

algorithm runs, we repeated the dimensionality reduction and step distance vector 

creation process 100 times for each participant and each functional run. Then, we took 

the mean across the 100 step distance vectors for that run (Figure 2A). However, even 

95% confidence intervals were tightly constrained. 

 We applied a peak finding algorithm on each mean step distance vector to 

identify transition timepoints at which the step distance satisfied a minimum peak 

prominence threshold of 0.06, the value at which approximately 80% of all step distance 

values fell under the 5th percentile transition-associated step distance value. Setting a 

prominence value rather than applying a high pass filter allows the algorithm to consider 

step distances in the neighbourhood surrounding the peak being evaluated and results 
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in more robust transition selection. To find meta-stable timepoints, we inverted the 

signal and specified a minimum peak width of 10; this parameter ensured that 

timepoints would only be identified within persistently meta-stable periods. One example 

of a participant’s identified transitions and meta-stable timepoints are shown in Figure 

2A with green and black triangles, respectively. Under these parameters, the median 

step distance value associated with transition timepoints was 0.48 (5th and 95th 

percentile: [0.09, 1.79]). The median exceeds 94% of all values, while the lower bound 

exceeds about 80% of all values (Figure S2B). By contrast, the median step distance 

associated with meta-stable timepoints was 0.02 (5th and 95th percentile: [0.01, 0.03]), 

falling below about 94% of all values. 

Quantifying contiguity in the network meta-state space. We examined the 

degree of contiguity in the t-SNE representations by comparing the standardized step 

distance distribution to an analogous distribution based on Gaussian noise. First, we 

generated simulated noise data, where each simulation consisted of 900 pairs of values 

taken at random from a normal distribution with the mean and standard deviation of a 

random participant’s movie or rest t-SNE representation (Figure S2D). We then 

calculated a step distance vector for this noise sample. The distribution of real data 

(described in Figure S2B) was comprised of 1,311,791 values collapsed across 

participants and all available functional runs, where each run had 900 to 921 timepoints. 

Thus, we repeated the noise sampling procedure 1,460 times (the number of actual 

values divided by 900), generating a similar number of simulated values (Figure S2E).  
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Figure S2. Distribution of step distance values. (a) An example reduced t-SNE representation involving both 
segment types, as observed from a 15-minute rs-fMRI scan of one participant. (b) A histogram depicts the mean step 
distances within 7T participants' four rs-fMRI and four mv-fMRI runs. Approximately 94% of the observed values fell 
below the median transition distance (green dashed line), and 94% above the median meta-stable distance (blue 
dashed line). (c) A histogram depicts the standardized step distance values. Note that the values are mostly 
distributed close to zero, but feature a heavily skewed tail. (d) An example of noise simulated by sampling pairs from 
a normal distribution with characteristics mirroring actual reduced t-SNE representations. (e) A histogram analogous 
to the one in panel B that depicts the step distances across simulated noise samples. (f) A histogram depicts the 
standardized step distance values of noise samples. Note that relative to the analogous real data depicted in C, the 
simulated noise values are not as tightly distributed around zero, and the y-axis scale is two orders of magnitude less 
than the corresponding distribution drawn from real data in C. Related to: Figure 1C, Figure 2A. 

To better compare the dispersion in the actual data against the dispersion in the 

noise samples, we standardized both distributions (Figure S2C, F). Standardized step 

distance values for real data were predominantly dispersed closely around zero, 

whereas the noise standardized values were dispersed over a wider range. Also, the 

standardized step distance distribution for real data had a skewness of 5.0 and a 

kurtosis of 34.3, reflecting a long tail of extreme values, whereas the standardized noise 
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distribution’s skewness and kurtosis metrics indicated a fairly normal distribution 

(skewness of 0.6 and kurtosis of 3.2). Together, these distinctions help to formalize the 

temporal contiguity of real data that is visually apparent in Figure S2A. 

Step 2: Psychological relevance 

 Movie feature vectors. To link our identified neural transitions to participants’ 

experience, we investigated how transitions mapped onto well-characterized movie 

features (events, sub-events, cuts, semantic, visual, and auditory), as well as each 

participant’s recorded head motion during the scan. Sub-events describe directly what 

an actor or multiple actors are doing or saying (“he is walking down the stairs”, “they are 

riding in a car”), or they describe the motion of important objects (“a meteorite strikes 

the ground”, “a car drives down the street”). We defined an event as a meaningful 

cluster of sub-events that describes a larger, overarching goal achieved by the sum of 

its parts (i.e., fine-grained and coarse-grained events; Zacks and Swallow, 2007). Cuts 

referred to boundaries between two separate camera shots. Two raters used a video 

coding tool (Datavyu Team, 2014) to independently identify boundaries demarcating 

events and sub-events, then met to discuss any differences in their ratings and achieve 

consensus event boundary timepoints. Using this approach, raters created consensus 

event and sub-event boundary segmentations for all four movie runs (14 clips). Only 

one rater logged cuts, as the objective nature of camera positions left little to discussion. 

Across the 14 clips found during the four movie runs, raters identified an average of 7.5 

events, 37.3 sub-events, and 46.2 cuts per clip. A binarized timeseries was created for 
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each logged feature, with onsets allocated to the nearest 1 s time bin (corresponding to 

the 1000 ms TR during which each fMRI volume was gathered). 

The HCP group supplied two types of feature labels for the movie stimuli: 

semantic-category labels that described the high-level semantic features contained in 

each one-second epoch of the film (Huth et al., 2012), and motion-energy labels that 

described low-level structural features in the same epochs (Nishimoto et al., 2011). 

There were 859 semantic features and 2031 motion energy channels that expressed 

changes in the semantic content and motion-energy of each epoch, respectively. By 

summing across all semantic features and taking its derivative, we obtained a measure 

of overall magnitude of change in semantic content at each epoch. Similarly, we 

summed across all motion energy channels and took its derivative to obtain a measure 

of overall magnitude of change in perceptual features at each epoch. We also took the 

absolute value of the auditory amplitude vector derivative for each movie run as a 

measure of magnitude of change in volume. Finally, to rule out the possibility that 

transitions are a motion artifact, we obtained, for each participant, relative root-mean-

square (RMS) change in head position (Jenkinson, 1999), corresponding to a vector of 

head movement over time.  

Disentangling event boundaries and movie features. Whereas the feature 

vectors obtained above were correlated, we derived from them a set of independent 

feature vectors by “censoring” epochs where event and sub-event boundaries, as well 

as cuts were present. This was done by dropping values in a 3-second window around 

feature boundaries and ensured that apparent effects in lower-level features would not 
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be explained by correlation to higher-level features. Event boundaries censored all other 

vectors; sub-event boundaries censored all vectors other than events; and cuts 

censored all vectors other than events and sub-events (Figure 3B). To prevent spurious 

effects related to clip onset within movie runs, we also censored the first six seconds of 

each clip for both the uncensored and censored feature vectors.  

Movie and movement features at transition versus meta-stable timepoints. 

For each transition and meta-stable point found in the mv-fMRI data, we next computed 

the average level of each feature accounting for hemodynamic response function (HRF) 

lag (working backwards based on the canonical HRF (Aguirre, Zarahn and D’Esposito, 

1998), sampling from a feature window 3-6 s prior to each transition and meta-stable 

point). We then averaged across all onsets of the same type for each participant. Thus, 

each participant ultimately had two values for each feature vector: one representing the 

average feature vector value at a transition timepoint, and an analogous value at a 

meta-stable timepoint.  

We ran a t-test comparing these two values across participants for each feature, 

and used each resulting t-statistic to compute the proportion of variance that was 

explained in the feature vector (i.e., eta-squared) by the presence of a transition. Next, 

we used a non-parametric bootstrapping analysis to obtain a 95% CI for each feature 

(Bollen and Stine, 1990). Using participants’ transition-baseline feature value difference 

as input data, this approach constructs a sampling distribution of the mean by 

resampling 1000 times with replacement across participants. Then, the t-statistics 
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corresponding to the upper and lower bounds of each CI were converted to eta-squared 

values (Figure 3A).  

Performance of alternative embedding approaches. Having identified strong 

prediction of various features, we next sought to determine how crucial our specific 

embedding approach (i.e., t-SNE) was to identifying transitions that mapped strongly 

onto movie features. To this end, we derived four additional sets of transition and meta-

stable timepoints: one from the unreduced (time x network) representations of each 

participant’s mv-fMRI data (Figure 1B), a second and third set from a 2-dimensional 

representation of their mv-fMRI data obtained through principal components analysis 

(PCA) and independent components analysis (FastICA), and a fourth from the method 

described by Miller and colleagues (2016).  

For Miller and colleagues’ method, we began by regressing the spatial ICA maps 

corresponding to the 50-network decomposition into the functional data to obtain a 50-

network representation of brain activity over time and match the dimensionality of their 

initial input data. Then, we calculated the pairwise correlations between 44 s time-

window of activity in each network. This process was repeated for the entire timeseries 

by sliding the time-window in increments of 1 s. As a result, a given participant’s brain 

activity at a time-window was expressed as the set of pairwise correlations between 

each of the networks (i.e., a connectivity pattern). Then, we applied FastICA to obtain a 

5-dimensional representation of activity over time, with each of the 5 components 

representing a particular connectivity pattern. After discretizing the weights of each 

component at each time-window according to its signed quartile, the resulting 5-
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dimensional representations were used to derive corresponding step distance vectors, 

as well as transition and meta-stable timepoints.  

Specifically, for each embedding (15-dimensional for the unreduced timeseries, 

2-dimensional for the PCA and ICA approaches, and 5-dimensional for Miller and 

colleagues’ method), we calculated the Mahalanobis distance across subsequent 

timepoints and applied the peak finding algorithm to identify transition timepoints; the 

minimum peak prominence threshold selection strategy and peak finding parameters for 

meta-stable timepoints remained unchanged. As above, we used these three additional 

sets of transition and meta-stable timepoints to obtain the proportion of variance that 

was explained in the uncensored feature vectors by the presence of a transition for 

each embedding approach (Figure 3).  

 Transitions derived directly from the 15-dimensional (time x network) 

representations predicted a moderate proportion of variance in events, but not for lower-

level event-based features such as sub-events or cuts. PCA, ICA, and Miller’s method’s 

transitions performed worse than t-SNE transitions for all feature categories. We 

interpret the strong performance of t-SNE in predicting features (especially semantic 

features) as reflecting its unique ability to distill important local and global structure from 

the data.  

Consistent with this idea, as dimensionality increases, distance metrics are 

understood to lose their usefulness as the distances to the nearest and furthest point 

from any reference point approach equality (Beyer et al., 1999). Zimek and colleagues 

further showed that if the dimensions are correlated rather than independent and 
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identically distributed, then considering subsets of dimensions can improve the 

performance of distance metrics such as Euclidean distance (Zimek, Schubert and 

Kriegel, 2012). This likely explains the poor unreduced feature prediction in our 

analysis, and supports the usage of a dimensionality reduction algorithm, as the spatial 

networks in the 15-dimensional (time x network) representations that we submitted to 

analysis were not independent from each other. Substituting Mahalanobis for Euclidean 

distance can additionally account for residual correlations between reduced dimensions 

(Gnanadesikan and Kettenring, 1972).  

In spite of this, in our analysis, poor PCA and ICA performance signalled that the 

kind of dimensionality reduction approach also matters. PCA and ICA are linear 

methods that seek to preserve global structure, whereas t-SNE can balance a trade-off 

between local and global structure. Upon exploring the variable loadings for PCA 

results, we observed that the two principal components were weighted heavily towards 

visual networks that likely explained substantial global variance, but at the cost of 

sensitivity to changes in networks related to higher-level conceptual processing. As a 

result, PCA-based transitions performed comparably to unreduced transitions in the 

visual category and correlated categories (e.g., auditory), but worse in semantic 

categories. The increased restrictiveness that results from the additional requirement of 

statistical independence imposed for ICA components may explain why it performs even 

worse than PCA.  
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Figure S3. Impact of embedding approach on transitions’ predictive power for movie features. Eta-squared 

values describing the proportion of variance in uncensored movie features explained by alignment to transition vs. 

meta-stable timepoints. Filled bars denote features that are aligned to transitions, whereas empty bars denote 

stronger alignment to meta-stability. Colours indicate the state space from which Mahalanobis distances were 

calculated to identify transition and meta-stable timepoints. Related to: Figure 3.  

Transitions derived from Miller and colleagues’ (2016) method were not 

associated with feature changes. As we are looking for moment-to-moment changes in 

network reconfiguration, one possible explanation is that the size of the time-window 
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used to correlate across the 50 networks (44 seconds) was too long to be sensitive to 

feature-related changes at a certain timepoint. Thus, we tested the smallest time-

window that could be evaluated (3 seconds), but still found that no features were 

associated with transition relative to meta-stable timepoints (all ps > .28). A 2 second 

time-window is impossible to evaluate as the pairwise correlation values are -1 or +1, 

reflecting the linear relationship between two points. Furthermore, reducing 

dimensionality by distilling the 50-network pairwise correlations to 5 connectivity 

patterns may not provide enough flexibility to capture the different mental states linked 

to movie-viewing.   

Mapping between fluctuations in particular network nodes and movie 

features. We regressed each movie feature timeseries on each participant’s 15-network 

node timeseries to investigate the predictive power of individual networks. This yielded 

184 adjusted R-squared values for each of the 6 movie features. The highest mean 

adjusted R-squared value was for the semantic feature (mean R2 = 0.0033), signalling 

that individual networks were not meaningful predictors of any feature.  

Influence of event structure on degree of transition group alignment 

(conformity). Visual inspection revealed considerable structure in transitions across 

participants during movie-viewing (Figure 2B), complementing prior findings of local 

coordination of brain activity as participants watch well-made films. To formalize this 

observation, we tested for higher group alignment in movie runs than rest runs. For 

each participant and each run, we took the Fisher transformation of the correlation 

between the log of their step distance vector and the log of the median group signal 
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(excluding the step distance vector of the participant in question). To avoid potential 

effects resulting from the onset and offset of the run, we excluded the first and last five 

epochs of the step distance vectors. Then, we compared all group alignment values 

from the four mv-fMRI runs against zero. The same bootstrapping analysis was carried 

out for all group alignment values for the four rs-fMRI runs.  

To provide an alternate way of testing the influence of narrative events over 

transitions, we correlated the number of events in each movie clip with the degree of 

group alignment of transitions for that clip. For each clip, we divided the number of 

events in that clip by its duration in minutes. For each participant, we obtained their clip 

conformity by taking the Fisher transformation of the correlation between the log of their 

step distance vector and the log of the median group signal (excluding the step distance 

vector of the participant in question). This was repeated for each clip within a movie run 

rather than the movie run in its entirety; thus, each participant had a vector describing 

their clip conformity, wherein each element corresponded to a conformity value for a 

particular clip. We calculated the Pearson correlation between the events per minute 

and conformity vector within each participant, resulting in a distribution of 184 

correlation coefficients. We fed this distribution into a bootstrapping analysis (as 

described previously when we used this strategy to obtain 95% confidence intervals) 

with 1000 samples to test whether the correlation between events per minute and group 

alignment was significantly different from 0.  

Step 3: Linking movie and rest 
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 Spatial correlates of transitions versus meta-stable timepoints shared 

across task and rest. Using the transition and baseline onsets, we next performed a 

voxel-wise conjunction analysis in which we sought to identify stable spatial correlates 

of network meta-state transitions that could be found across rest and movie runs. 

Through this analysis, we wished to learn whether any set of transition predictors could 

link brain activity for which we have insight into psychological relevance (mv-fMRI) with 

brain activity for which we do not (rs-fMRI). To this end, we sampled the average fMRI 

image at transition and baseline onsets for each participant in the same manner as with 

feature vectors above, but without correcting for HRF lag (since the predictor and 

dependent variables were affected by the same delay). In this case, however, we 

created participant-wise transition and meta-stable timepoint averages not only for mv-

fMRI runs, but also (separately) for rs-fMRI runs. We also spatially smoothed each 

image using a 6 mm FWHM gaussian kernel (at the lower bound of optimal parameters 

for overcoming inter-subject variability (Mikl et al., 2007). 

Step 4: Predicting neuroticism using transition rate and conformity 

 The HCP administered the Neuroticism/ Extroversion/Openness Five Factory 

Inventory (NEO-FFI; McCrae and Costa, 2004). We used participant’s scores for each 

facet of human personality (neuroticism, extroversion/introversion, agreeableness, 

openness, and conscientiousness) as correlates to average rs-fMRI transition rate and 

conformity (specific to mv-fMRI). We used a bootstrap correlation approach with 1,000 

samples to assess correlation between neuroticism and transition rate.  
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Table S1. Voxel clusters showing reliable activity differences at network transition vs. meta-stable timepoints in both 
movie-viewing and resting fMRI. Related to: Figure 4.  

Region BA Hemi. 
Peak MNI coordinates Peak z 

estimate 

Spatial 
extent 
(mm³) X Y Z 

Transition > Meta-stable        

Frontal lobe        

 Dorsal anterior 
cingulate ctx. 32 L/R -3 13 37 6.59 2232 

 Ventrolateral prefrontal 
ctx. 6 R 56 0 11 5.06 819 

Insular Lobe        

 Anterior insula 13 R 43 11 -2 6.18 1282 

 Posterior insula 13 R 45 -11 -6 5.53 754 

Parietal lobe        

 Posterior cingulate ctx. 23 L/R -5 -38 24 7.69 1962 

 Precuneus 7 L/R -6 -43 58 6.24 2597 

Visual lobe        

 Visual assoc. ctx.  18 L/R 2 -70 21 7.15 6230 

Meta-stable > Transition        

Frontal lobe        

 Angular g. 39 R 53 -61 27 -5.37 819 

 Angular g. 39 L -40 -67 48 -5.29 1442 

Note: Peak coordinates are displayed in MNI space (Cocosco et al., 1997). 
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Quantification and Statistical Analysis 

Bootstrapping analyses 

We used a bootstrapping approach to determine confidence intervals, descriptive 

statistics, and for statistical evaluations throughout the analysis.  

Confidence intervals. We used a bootstrap approach to determine the stability 

of the step distance vectors across multiple t-SNE algorithm runs and to find 95% 

confidence intervals for eta-squared values in the psychological relevance analysis. 

For the step distance vectors, we fed the step distance vectors resulting from all 

100 iterations into a bootstrapping analysis. Then, for each timepoint, the 100 values 

from each iteration were resampled with replacement and the mean of that sample 

recorded. This resampling process was repeated 1,000 times to build a sampling 

distribution of the mean for each timepoint. Confidence intervals around each element 

of the participant’s mean step distance vector are derived from the 5th and 95th 

percentile values of the corresponding sampling distribution.  

For the eta-squared values, we first obtained a vector for each feature describing 

the difference between average transition and meta-stable timepoint feature values 

within-participant (i.e., 184 elements representing the difference for each participant). 

The transition-meta-stable difference vectors for each feature were fed into the 

bootstrap analysis to obtain 95% confidence intervals around the mean difference. 

Then, these bounds replaced the mean in the eta-squared calculations to obtain 

corresponding eta-squared values at the bounds of the confidence interval.  
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Descriptive statistics. We followed a similar procedure as described above to 

bootstrap the mean values for conformity during movie-viewing, conformity at rest, the 

mean correlation between events per minute and conformity (within-participant). 

Specifically, the input data (e.g., conformity values across participants’ movie runs) was 

resampled with replacement 1,000 times. The mean of each sample was recorded to 

build a sampling distribution of the mean, from which we could obtain the bootstrapped 

mean value as well as confidence intervals.  

Correlation. We used a bootstrap approach to determine correlations between 

transition rate during movie-viewing and at rest, as well as between transition rate, 

conformity, and neuroticism. Similar to above, this entailed resampling with replacement 

pairs of values (e.g., movie and rest transition rates) across participants. The correlation 

between variables for each sample was recorded to build a sampling distribution of 

correlation, from which we could obtain the bootstrapped correlation value, confidence 

intervals, and p-values.  

Conjunction analysis. To assess regions evoked at transition versus meta-

stable timepoints in both task and rest, we first subtracted meta-stable from transition 

images independently for movie and rest, such that a movie difference image and rest 

difference image was available for each participant. We masked these images using a 

grey matter mask, performing comparisons only on those voxels with at least a 50% 

probability of being grey matter based on an MNI anatomical atlas in the same space 

(Mazziotta et al., 1995). Again, we used a non-parametric bootstrapping analysis, but 

this time obtained a bootstrap ratio image for each of the movie and rest difference 
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images (see e.g., Poppenk and Norman, 2014). As the bootstrap ratio approximates a 

z-distribution (McIntosh and Mišić, 2013), we used a cumulative distribution function to 

convert it into a map of voxel-wise p-statistics. To perform conjunction analysis, we then 

thresholded both the movie and rest p-maps at a P < 0.05, setting all voxels above this 

value to infinity, and computed the product of the p-maps. The resulting conjunction p-

map represented the probability of obtaining a supra-threshold result not only in map A, 

but also in map B. Because of the initial thresholding step, it had an implied p-value 

threshold of 0.0025. We then further suppressed supra-threshold voxels within the 

conjunction p-map that did not satisfy a minimum cluster extent threshold of 150 voxels 

(614.4 mm3). We selected these voxel-wise and extent thresholds to achieve a balance 

between Type I and Type II error rate (Lieberman and Cunningham, 2009). 

Data Availability 

Data are available from the Human Connectome Project at humanconnectome.org. 

Movie-related variables (i.e., event boundaries that were segmented for this specific 

study) are available upon request.  

Supplemental Item Titles 

Movie S1. Movie-based elicitation of meta-state transitions in a single participant. 

A unique strength of the current approach is the ability to leverage sufficient signal from 

brain data to identify meaningful transitions in a participants’ cognitive state without any 

averaging across time or use of priors from another session or group. To illustrate the 

signal-to-noise ratio of this “stream” of cognitive state changes, we overlaid a bell sound 
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on the movie audio of a sample participant to denote times at which meta-state 

transitions were elicited in that individual (with correction for the hemodynamic response 

function). These times were derived from peaks in the participants’ step distance vector 

and were derived without reference to the group (i.e., this analysis could have been 

performed using a single pilot participant). Meta-state transitions during the clips 

strongly aligned to semantic change in the film stimulus, similar to past results of brain-

based movie event segmentations using averages across the entire study population 

(e.g., Baldassano et al., 2017). Such alignment supports the interpretation that the 

transitions are meaningful even at a single-subject level (see Figure 2B for systematic 

analysis of such variance). Related to: Figure 2B.  
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