bioRxiv preprint doi: https://doi.org/10.1101/576488; this version posted March 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	Characterization of coral-associated microbial aggregates (CAMAs) within tissues
2	of the coral Acropora hyacinthus
3	
4	Naohisa Wada ^{1,2,7} , Mizuki Ishimochi ^{2,3} , Taeko Matsui ² , F. Joseph Pollock ^{4,7,8} , Sen-Lin Tang ¹ ,
5	Tracy D. Ainsworth ⁵ , Bette L. Willis ^{6,7} , Nobuhiro Mano ^{2,†} , David G. Bourne ^{6,7,9†}
6	
7	¹ Biodiversity Research Center, Academia Sinica, Nangang, Taipei, Taiwan
8	² Department of Marine Science and Resources, College of Bioresource Science, Nihon
9	University, Fujisawa, Kanagawa, Japan
10	³ Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
11	⁴ The Nature Conservancy, Caribbean Division, Coral Gables, FL 33134
12	⁵ School of Biological, Earth and Environmental Science, University of New South Wales,
13	Sydney, NSW, Australia
14	⁶ College of Science and Engineering, James Cook University, Townsville, QLD, Australia
15	⁷ AIMS@JCU, Townsville, QLD, Australia
16	⁸ The Pennsylvania State University, State College, PA, USA
17 18	⁹ Australian Institute of Marine Science, Townsville, QLD, Australia
19	†Equal correspond authors
20	Dr. Nobuhiro Mano (mano.nobuhiro@nihon-u.ac.jp) Department of Marine Science and
21	Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-
22	0813 Japan. Phone +81 466 84 3357
23	Dr. David G. Bourne (david.bourne@jcu.edu.au) College of Science and Engineering, James
24	Cook University, Townsville, QLD, 4811 Australia. Phone +61 7 47814790
25	
26	Kew Words: Coral Microbiome, Coral Tissue, Bacterial Aggregates, Fluorescent in
27	situ Hybridisation
28	

29 Abstract

30	Bacterial diversity associated with corals has been studied extensively,
31	however, localization of bacterial associations within the holobiont is still poorly
32	resolved. Here we provide novel insight into the localization of coral-associated
33	microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus using
34	histological and fluorescent in situ hybridization approaches. In total, 318 CAMAs were
35	characterized and shown to be distributed extensively throughout coral tissues collected
36	from five sites in Japan and Australia. Density of basophilic CAMAs was typically
37	higher at inshore sites (20.13 per cm ² at inshore sites in Okinawa, Japan; 5.43 per cm ² at
38	inner shelf sites in the northern Great Barrier Reef) than at offshore sites on the GBR (0
39	to 1.1 per cm ²). CAMAs were randomly distributed across the six coral tissue regions
40	investigated. Within each CAMA, bacterial cells had similar morphological
41	characteristics, but bacterial morphologies varied among CAMAs, with at least five
42	distinct types identified. Identifying the location of microorganisms associated with the
43	coral host is a prerequisite for understanding their contributions to fitness. Localization
44	of tissue-specific communities housed within CAMAs is particularly important, as these
45	communities are potentially important contributors to vital metabolic functions of the
46	holobiont.

47

48 Introduction

49	Scleractinian corals associate with a broad consortia of microorganisms,
50	including endosymbiont dinoflagellates (Symbiodiniaceae), protozoa, fungi, bacteria,
51	archaea and viruses, which collectively are termed the coral holobiont ^{1–3} . The
52	importance of symbiotic dinoflagellates in provisioning the coral host with essential
53	nutrients through translocated photosynthates has been well established e.g.,4, however
54	the roles of other microorganisms within the holobiont are less well understood. Some
55	of the functions attributed to coral-associated microbiota include supply of essential
56	nutrients and vitamins through processes such as nitrogen fixation ^{5–8} and metabolizing
57	dimethylsulfoniopropionate (DMSP) to produce biologically important byproducts like
58	dimethylsulfide ⁹ . The coral microbiome is also likely important for directly facilitating
59	disease resistance through production of antimicrobials ^{10,11} or indirectly through
60	microhabitat colonization that excludes opportunistic organism ^{12,13} .
61	Corals are considered simple metazoans, but despite their basal phylogenetic
62	position, they nevertheless form complex three-dimensional structures. Anatomically,
63	the coral polyp consists of an outer mucus layer, two cell layers containing
64	endosymbiotic dinoflagellates (inner layer) and nematocysts (outer layer), an external
65	calcium carbonate skeleton, and a gastrovascular system that includes the coelenteron
66	and connecting channels ¹⁴ . Within all these microhabitat niches, bacteria can reside as
67	either transient communities or established symbionts with putative functional roles that
68	may be positive, neutral or negative to the coral holobiont ¹⁵ . A multitude of studies
69	have reported on the diversity of the coral microbiome, in some cases finding conserved

70	microbial communities associated with some coral species, and in others finding
71	shifting microbiomes that reflect varying geographic, temporal or health status patterns
72	^{16–20} . To understand the significance of coral microbiome associations, care must be
73	exercised so that diversity patterns reflect the specific ecological niche that these
74	communities inhabit, such as the surface mucus layer, tissue layers, and/or the skeleton
75	^{21–28} . Defining the locations of specific microorganisms is essential for elucidating the
76	importance of their role within the holobiont. For example, mucus bacteria are more
77	likely to have a loose association with the coral host, being sloughed off as the mucus is
78	exuded from the corals ²⁹ . Conversely tissue-associated microorganisms are potentially
79	more integrated in shared metabolic pathways and may reside in specific associations
80	with host coral as a consequence of potential host selection 5,20 .
81	To date, few studies have precisely localized bacterial communities within
81 82	To date, few studies have precisely localized bacterial communities within coral tissues. Studies that have focused on localization often find that bacterial
82	coral tissues. Studies that have focused on localization often find that bacterial
82 83	coral tissues. Studies that have focused on localization often find that bacterial communities within coral cell layers (i.e. epidermal and gastrodermal layers) form
82 83 84	coral tissues. Studies that have focused on localization often find that bacterial communities within coral cell layers (i.e. epidermal and gastrodermal layers) form aggregations termed coral-associated microbial aggregates (CAMAs) ^{30,31} . CAMAs
82 83 84 85	coral tissues. Studies that have focused on localization often find that bacterial communities within coral cell layers (i.e. epidermal and gastrodermal layers) form aggregations termed coral-associated microbial aggregates (CAMAs) ^{30,31} . CAMAs were first reported as potential pathogens when observed within healthy tissues of
82 83 84 85 86	coral tissues. Studies that have focused on localization often find that bacterial communities within coral cell layers (i.e. epidermal and gastrodermal layers) form aggregations termed coral-associated microbial aggregates (CAMAs) ^{30,31} . CAMAs were first reported as potential pathogens when observed within healthy tissues of Caribbean corals displaying signs of white band disease ^{32,33} . Further studies
82 83 84 85 86 87	coral tissues. Studies that have focused on localization often find that bacterial communities within coral cell layers (i.e. epidermal and gastrodermal layers) form aggregations termed coral-associated microbial aggregates (CAMAs) ^{30,31} . CAMAs were first reported as potential pathogens when observed within healthy tissues of Caribbean corals displaying signs of white band disease ^{32,33} . Further studies subsequently reported that CAMAs are widespread in tissues of healthy corals sampled
82 83 84 85 86 87 88	coral tissues. Studies that have focused on localization often find that bacterial communities within coral cell layers (i.e. epidermal and gastrodermal layers) form aggregations termed coral-associated microbial aggregates (CAMAs) ^{30,31} . CAMAs were first reported as potential pathogens when observed within healthy tissues of Caribbean corals displaying signs of white band disease ^{32,33} . Further studies subsequently reported that CAMAs are widespread in tissues of healthy corals sampled from geographically dispersed areas ^{31,33,34} . To date, CAMAs have been reported from 5

92	microorganisms that constitute these CAMAs has been poorly resolved. Neave et al.
93	(2016) visualized aggregates (i.e., "cyst-like aggregations") of Endozoicomonas within
94	tissues of Stylophora pistillata at the interface of the epidermis and gastrodermis in
95	samples taken from widely-separated biogeographic regions ³⁵ . However, the fine-scale
96	spatial distributions of microorganisms and potential microhabitat-associated structure
97	of the microbiome still have not been clarified. Here, we visualize the localization,
98	distribution and morphology of CAMAs associated with the coral Acropora hyacinthus
99	sampled from Sesoko Island, Okinawa, Japan and sites in the northern Great Barrier
100	Reef (GBR) Australia located along an inshore to offshore gradient.
101	
102	Results
103	Comparison of CAMA abundance among geographic locations
104	At the time of field collection, all 48 colonies of A. hyacinthus sampled from
105	the 5 geographic locations (see Fig. 1) appeared visually healthy. This was confirmed
106	by subsequent histological analyses, which found that all tissues displayed normal cell
107	morphology, including no signs of fragmentation, wound repair or necrosis (as per
108	criteria in Work and Aeby 2011). In total, 318 CAMAs were characterized via histology
109	within coral tissues from the 48 samples. The vast majority stained basophilic (95.9%)
110	using the standard haemotoxylin and eosin stain, compared to only 4.1 % staining
111	eosinophilic (Fig. 2). Of the 48 colonies collected across all five sites, CAMAs were
112	detected in 27 of the colonies (~56%). At one site (Sesoko Island), tissues from all 10

114	were observed only in some of the coral tissues sampled. For example, clear CAMAs
115	were visible in 80% of Inner Shelf samples, 30% of Lizard Island, 25% of Outer Shelf,
116	and 40% of Orpheus Island samples (n=10 samples at all sites, except at the Outer Shelf
117	site where n=8 samples) (Fig. 2c). In general, the abundance of CAMAs was
118	significantly higher at the inshore Sesoko Island site than at more offshore sites (Lizard
119	Island, Outer Shelf, and Orpheus Island sites; $p < 0.05$).
120	The density of basophilic CAMAs in tissues was significantly higher for the
121	Sesoko Island and Inner Shelf sites compared to the other three sites, with 20.13±17.1
122	and 5.43 ± 8.7 basophilic CAMAs detected per cm ² of tissue at these two sites,
123	respectively (Fig. 2d; $p < 0.05$). In one sample from Sesoko Island, 48.9 CAMAs were
124	detected per cm ² of tissue, the greatest density of CAMAs observed in the 48 samples
125	investigated. This is in contrast to an average of 0.28±0.4, 0 and 1.1±2.3 CAMAs per
126	cm ² for the Lizard Island, Outer Shelf and Orpheus Island samples, respectively (Fig.
127	2d). In contrast, the abundance of eosinophilic CAMAs did not differ significantly
128	among the five sites, although the density of CAMAs was higher at the Outer Shelf,
129	GBR site (1.3 \pm 3.5 CAMAs per cm ² , Fig. 2d) than at other sites (Sesoko Island: 0
130	CAMAs per cm ² ; Inner Shelf, GBR: 0.1±0.3 CAMAs per cm ² , Lizard Island, GBR: 0
131	CAMAs per cm ² ; Orpheus Island, GBR 0.2±0.7 CAMAs per cm ²).
132	
133	Distribution of CAMAs within anatomical regions of the coral polyp

Specific detection of bacteria by fluorescent *in situ* hybridization (FISH) can
be problematic for coral samples due to nonspecific binding of probes and background

136	autoflorescence of granular cells and nematocysts ³⁷ . Therefore, CAMAs were
137	identified by their characteristic shapes, in addition to fluorescent signals derived from
138	binding to the general bacteria-targeted probe set EUB338mix and comparisons to
139	background autofluorescence and non-specific binding (using Non338 probe). A total of
140	307 CAMAs were identified and localized by FISH (170 in Sesoko Island samples, 126
141	in samples from Inner Shelf sites in the Northern GBR, 4 from Lizard Island, 2 from
142	Outer Shelf sites in the Northern GBR, and 5 from Orpheus Island samples). CAMAs
143	were found within six anatomical regions of the coral polyp: the tentacle,
144	actinopharynx, mesentery, mesenterial filament, coenosarc and calicoblastic layer (see
145	Fig. 3a). Thirty-one additional CAMA-like shaped structures were observed (from three
146	samples derived from Sesoko Island), but these were discounted as bacterial aggregates
147	due to non-probe binding signals and excluded from further downstream analysis. The
148	CAMAs appeared to be randomly distributed across the anatomical regions
149	investigated, although because the numbers of CAMAs characterized for the Lizard
150	Island, Outer Shelf and Orpheus Island samples were low (Fig. 3b), meaningful
151	comparisons can only be made between the Sesoko Island and Northern Inner Shelf
152	samples. For the Sesoko Island samples, CAMAs were found predominantly in the
153	tentacles (36.5%), mesenterial filaments (34.7%) and coenosarc (16.5%) regions; in
154	Inner Shelf samples from Northern GBR sites, CAMAs were mostly located in the
155	calicoblastic layer (46.8%), tentacles (17.5%) and coenosarc (16.7%) (Fig. 3b).
156	CAMAs spanned a wide size range, from 23 to 6,761 μ m ² across tissue
157	samples from all sites (Fig. 3c). In general, measurements underestimated the size of

158	CAMAs, given that measurements were dependent on the orientation of sectioning and
159	it is unlikely that most CAMAs were sectioned through their greatest diameter.
160	Acknowledging constraints associated with sectioning, the average size of CAMA's
161	was 1,304 μ m ² . On average, Sesoko Island samples contained larger aggregates
162	(1,507.7 \pm 1,522.4 μ m ²) than samples from the GBR region (Inner Shelf: 637.4 \pm 734
163	μ m ² . However, given the large range in sizes measured, the fact that only two locations
164	had sufficient sample sizes for comparison, and the issue of sectioning orientation
165	potentially biasing size measurements, such patterns require further validation. No
166	patterns in the size of CAMAs across different anatomical regions were detected (Fig.
167	3c).
168	
169	Morphology of CAMAs within coral tissues
170	High resolution imaging was used to partially characterize and compare the

171 morphology of bacteria across the CAMAs detected (Fig. 4). Interestingly, each CAMA 172 appeared to be composed of a single morphological type of bacteria, although 173 morphological types varied among CAMAs. Overall, five different morphological types 174 of bacteria were identified: rod-shaped (length 2.5±0.1 µm, width 0.6±0.0 µm, Fig. 4a, 175 e), an atypical cocci (length 4.8±0.3 µm, width 3.1±0.2 µm, Fig. 4b, f), a longer rod 176 morphology (length 8.0 \pm 0.0 µm, width 0.8 \pm 0.0 µm, Fig. 4c, g), filamentous-like 177 bacteria (length N.D., width 0.4±0.0 µm, Fig. 4d, h), and a rod-shaped morphology but 178 with spore-like structures (Fig. 4i-j, m-n). While the consistency of morphological 179 characteristics within each CAMA may indicate that CAMAs are hosting single

180	bacterial types, it is also possible that they host multiple bacterial species with similar
181	morphologies. Interestingly, the fluorescent signal detected for some CAMAs was not
182	uniform over the entire aggregation. The lack of signal within some CAMAs (see Fig.
183	4d for example) may be due to the probe not targeting microbial cells that inhabit that
184	space. Defining a specific morphological shape for the bacterial cells observed was
185	sometimes difficult, with patchy probe hybridization producing images of structures that
186	potentially protruded from the tissue sections and seemed amorphous (Fig. 4k–l, o–p).
187	However, this again could be the result of mixed microbial communities within the
188	CAMA's, with some cells targeted by the probes, but others not hybridizing to the
189	probe-fluorochrome conjugate.
190	Further three-dimensional reconstructions of z-stacked FISH images of select
191	100 μ m stained sections of tentacles visualized the CAMAs as typically spheroid or
192	ellipsoid-shaped structures (Fig. 5a). In one example, a single CAMA was located
193	independently in the ectoderm of a tentacle (Fig. 5b). In a different tentacle, multiple
194	smaller CAMAs were localized close to Symbiodiniaceae cells in the gastrodermal
195	region (Fig. 5c). Sizes of the large single CAMA and the multiple smaller CAMAs were
196	33,400 μm^3 (Fig. 5d, surface area 7,729 $\mu m^2)$ and 1,978 \pm 141.2 μm^3 (Fig. 5e, 809.5 \pm
197	59.9 μ m ² , n=4 CAMAs), respectively. Even though the CAMAs were located in the
198	same polyp, the size of the single large CAMA was approximately 40-fold greater than
199	the multiple smaller CAMAs, demonstrating inherent size variability for these
200	structures. The bacteria within these CAMAs displayed a similar rod-shaped
201	morphology (see Fig. 4a and e), with the average cross-sectional area of each bacterium

bioRxiv preprint doi: https://doi.org/10.1101/576488; this version posted March 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

202	being 175.7 μ m ² and 22.6±4.2 μ m ² , respectively (Suppl. Fig. 2). Based on cell size, the
203	number of individual rod-shaped bacterial cells within the 3D rendered images of these
204	CAMAs was estimated as ~ 47,275 cells for the large single CAMA located in the
205	ectoderm of the tentacle (Fig. 5d and Suppl. Fig. 2a), and 2,799±200 cells (Fig. 5e and
206	Suppl. Fig. 2b) for each of the smaller CAMAs localized close to Symbiodiniaceae
207	cells.
208	
209	Discussion
210	The importance of microbial symbionts to their hosts has been demonstrated
211	for many animals, through acquisition and passage of nutrients, niche space occupation
212	and shared metabolic pathways ^{38–40} . For corals, the fundamental roles that
213	endosymbiotic dinoflagellates (Symbiodiniumecae) play in fitness of the coral holobiont
214	have long been established e.g., 41,42, but although many studies have postulated the
215	importance of bacterial communities to coral fitness (see in the review) ³ , direct
216	evidence is still mostly lacking ¹⁵ . To facilitate a more comprehensive understanding of
217	the roles bacterial communities may play in the coral holobiont, an improved
218	understanding of the localization of these microbial communities is essential,
219	particularly tissue-associated bacterial communities housed within structures termed
220	coral-associated microbial aggregates (CAMAs). In this study, we provide high
221	resolution characterization of these aggregations in tissues of A. hyacinthus sampled
222	from sites in Japan and the Great Barrier Reef, Australia, including estimates of CAMA

distributions, density and size, as well as visualization of the morphologies of bacterialcells within these structures.

225	We found that CAMAs commonly occur in healthy tissues of the coral
226	Acropora hyacinthus collected from sites in Japan and Australia separated by more than
227	40 degrees of latitude. Although CAMAs were not detected in all tissue samples
228	collected, this may reflect limitations in the area of coral tissue that can be surveyed via
229	histological approaches. The presence of CAMAs in a histological section will depend
230	on the tissue sectioned (i.e. the location of the fragment on the colony and on the section
231	from the fragment), and on the scale and orientation of the section. Therefore, although
232	not all coral tissue samples (and therefore not all colonies) were found to host CAMAs,
233	we cannot exclude the possibility that other tissue areas of the same colony had CAMAs
234	present. Other studies have also reported that CAMAs are common in tissues of many
235	coral species in the Caribbean ^{32,33} , Indo-Pacific and Red Sea ^{31,34,35} . In particular,
236	CAMAs were common in species of Acropora, Porites, and Pocillopora, although often
237	their presence was patchy within a population sample ³¹ .
238	Interestingly, CAMAs were detected in a higher proportion of samples from
239	inshore sites (i.e., 100% of Sesoko Island samples, 80% of samples from the northern
240	GBR Inner Shelf site) than from offshore sites (25-40% of samples). Tissue density of
241	CAMAs was also greatest in inshore samples (20.1 \pm 17.1 and 5.4 \pm 8.7 CAMAs per cm ²
242	for Sesoko Island and Inner Shelf GBR samples, respectively), and densities
243	progressively decreased in tissues from the three more offshore sites (<1.2 CAMAs per
244	cm ²), culminating in 0 CAMAs per cm ² in the northern GBR Outer Shelf samples.

245 Although our study provides only a snapshot of five sites sampled at one time point, it 246 suggests that inshore reef environments may promote the development of CAMAs 247 within coral tissues. The inshore site at Sesoko Island has high nutrient influxes, 248 especially phosphates ^{43,44}. Similarly, nearshore GBR sites are influenced by influxes of 249 dissolved nutrients from terrestrial runoff, with higher concentrations typically found at 250 inshore compared with offshore sites ⁴⁵. Temperature fluctuations may also influence 251 CAMA abundance, although differences in seasonal temperature fluctuations are minimal across the northern GBR sites ⁴⁶. The coral microbiome community has been 252 shown to shift in response to environmental stressors ^{29,47–52}, thus water quality 253 parameters influencing microbiological composition and function ⁵³ could stimulate 254 255 CAMA abundance. Further studies, particularly of potential links between nutrient 256 levels and CAMA development, are needed to understand what might drive the 257 increased prevalence and density of CAMAs in coral tissues at inshore sites, and to 258 determine if hosting more CAMAs is beneficial to corals or is an indicator of negative 259 impacts on the coral holobiont. 260 Localization of CAMAs using FISH demonstrated that they occur in all six 261 of the anatomical regions investigated, i.e., the tentacle, actinopharynx, mesentery, 262 mesenterial filament, coenosarc and the calicoblastic layer. CAMAs were highly 263 variable in size, spanning a range from 23 to 6,761 μ m² in area, with no obvious pattern 264 in size when analyzed by anatomical region or geographic site. Although Sesoko Island 265 samples contained larger aggregates on average (average cross-sectional area of

266 $1,507.7\pm1,522.4 \,\mu\text{m}^2$) than other sampling sites, low numbers of CAMAs in tissues

from some sites, combined with potential bias introduced by sectioning, limit the

- 268 conclusions that can be drawn. Nevertheless, investigation of the potential influence of
- 269 water quality parameters on the size of CAMAs is warranted.

270 Estimating the number of cells within CAMAs using 3D imaging revealed

that a CAMA with a cross-sectional area of 22.6 \pm 4.2 μ m² would be composed of

- $272 \sim 2,800$ rod-shaped bacteria. Based on similar methods, we further extrapolated that
- 273 bacterial densities in tissues from Sesoko Island and Inner Shelf GBR corals are

approximately 5.6 x 10^4 and 1.5 x 10^4 cells per cm² (along a linear cross-section),

275 respectively. Very few studies have accurately determined bacterial cell densities

associated with corals. Counts for bacteria in the coral mucus layer can be as high as 10^7

277 cells ml^{-1 54}. Estimates of bacteria on tissue surfaces range from 1×10^5 to 10^6 cells per

278 cm² for the coral *Pocillopora damicornis* 55 and 8.3 x 10⁶ to 6.2 x 10⁷ cells per cm² for

the coral *Oculina patagonica*²⁴. However, these counts are based on bacteria external to

280 coral tissues and therefore not directly comparable to estimates from our 3D

281 reconstructions of CAMAs visualized within coral tissues. Our results highlight that

tissue-associated communities exist and that differentiating these communities from

external and mucus-associated microbial communities is important for accurate

appraisals of the coral microbiome and for identifying their role(s) within the coral

285 holobiont.

An important finding from our high-resolution FISH imaging study is that in
most cases, each CAMA contained bacterial cells that were consistent in their

288 morphological appearance. Moreover, bacterial morphologies varied among CAMAs,

289	with up to five different cell morphologies detected. This variation in bacterial cell
290	morphology among CAMAs may explain why the histological staining properties of
291	CAMAs varied, the majority being basophilic (95.9%), but 4.1% staining eosinophilic
292	(n=318 CAMAs detected in total). Similar variability in the staining of CAMAs has
293	been reported previously ^{31,56} , and has been attributed to varying degrees of protein and
294	DNA production or local tissue pH conditions ³¹ . However, our finding that different
295	morphological variants of bacteria are housed within different CAMA's potentially
296	contributes to variation in the H&E staining observed. Previous studies have reported
297	that the abundant coral-associated bacterial genera Endozoicomonas forms aggregates
298	within tissues of the corals Stylophora pistillata and Pocillopora verrucosa ^{35,57} . Indeed,
299	extensive sequence-based phylogenetic surveys of coral microbiomes have revealed that
300	several dominant bacterial groups are common ²⁰ , including the <i>Proteobacteria</i>
300 301	
	several dominant bacterial groups are common ²⁰ , including the <i>Proteobacteria</i>
301	several dominant bacterial groups are common ²⁰ , including the <i>Proteobacteria</i> (particularly <i>Alpha</i> - and <i>Gamma-proteobacteria</i> inclusive of <i>Endozoicomonas</i>), as well
301 302	several dominant bacterial groups are common ²⁰ , including the <i>Proteobacteria</i> (particularly <i>Alpha</i> - and <i>Gamma-proteobacteria</i> inclusive of <i>Endozoicomonas</i>), as well as <i>Actinobacteria</i> , <i>Bacteroidetes</i> (especially <i>Flavobacteria</i>), and <i>Cyanobacteria</i> ³ .
301 302 303	several dominant bacterial groups are common ²⁰ , including the <i>Proteobacteria</i> (particularly <i>Alpha</i> - and <i>Gamma-proteobacteria</i> inclusive of <i>Endozoicomonas</i>), as well as <i>Actinobacteria</i> , <i>Bacteroidetes</i> (especially <i>Flavobacteria</i>), and <i>Cyanobacteria</i> ³ . Hence some of the different cellular morphologies we detected within CAMAs may
301 302 303 304	several dominant bacterial groups are common ²⁰ , including the <i>Proteobacteria</i> (particularly <i>Alpha</i> - and <i>Gamma-proteobacteria</i> inclusive of <i>Endozoicomonas</i>), as well as <i>Actinobacteria</i> , <i>Bacteroidetes</i> (especially <i>Flavobacteria</i>), and <i>Cyanobacteria</i> ³ . Hence some of the different cellular morphologies we detected within CAMAs may represent common coral-associated bacterial groups profiled in microbiome diversity
301 302 303 304 305	several dominant bacterial groups are common ²⁰ , including the <i>Proteobacteria</i> (particularly <i>Alpha</i> - and <i>Gamma-proteobacteria</i> inclusive of <i>Endozoicomonas</i>), as well as <i>Actinobacteria</i> , <i>Bacteroidetes</i> (especially <i>Flavobacteria</i>), and <i>Cyanobacteria</i> ³ . Hence some of the different cellular morphologies we detected within CAMAs may represent common coral-associated bacterial groups profiled in microbiome diversity studies. In addition, two dominant bacteria were found to be localized intercellularly
301 302 303 304 305 306	several dominant bacterial groups are common ²⁰ , including the <i>Proteobacteria</i> (particularly <i>Alpha</i> - and <i>Gamma-proteobacteria</i> inclusive of <i>Endozoicomonas</i>), as well as <i>Actinobacteria</i> , <i>Bacteroidetes</i> (especially <i>Flavobacteria</i>), and <i>Cyanobacteria</i> ³ . Hence some of the different cellular morphologies we detected within CAMAs may represent common coral-associated bacterial groups profiled in microbiome diversity studies. In addition, two dominant bacteria were found to be localized intercellularly within <i>Symbiodiniaceae</i> residing in the gastrodermal layers of coral host tissues using
301 302 303 304 305 306 307	several dominant bacterial groups are common ²⁰ , including the <i>Proteobacteria</i> (particularly <i>Alpha-</i> and <i>Gamma-proteobacteria</i> inclusive of <i>Endozoicomonas</i>), as well as <i>Actinobacteria</i> , <i>Bacteroidetes</i> (especially <i>Flavobacteria</i>), and <i>Cyanobacteria</i> ³ . Hence some of the different cellular morphologies we detected within CAMAs may represent common coral-associated bacterial groups profiled in microbiome diversity studies. In addition, two dominant bacteria were found to be localized intercellularly within <i>Symbiodiniaceae</i> residing in the gastrodermal layers of coral host tissues using both sequencing and FISH ²⁷ . We note, however, that bacterial morphology can be

help to resolve both the taxonomy and potential functional roles of bacterial typeswithin the holobiont.

313 FISH imaging showed that, for some of the CAMAs, patchy probe-specific 314 labeling occurred, resulting in dull or dark areas within the structures. There are a 315 number of potential methodological reasons for this observation, including: 1) 316 insufficient probe sensitivity due to low ribosomal rRNA content in target cells ^{59,60}, 2) 317 methodological and environmental factors that prevent probes from accessing target 318 cellular rRNA at these sites ⁶¹, 3) the bacterial community penetrating and proliferating 319 within the outer epidermal layer of coral tissues ³⁴, or 4) lipid or fat solvents deposited 320 through dehydration and dewaxing steps showing empty spaces in the tissues ⁶². 321 Alternatively, little to no signal in central regions of some of the CAMAs could indicate 322 that the probe EUB338mix did not target the taxonomic group of microbes within these 323 regions. The EUB338mix is estimated to cover 96% of the Eubacteria domain, but taxa 324 outside this coverage, including archaeal lineages, may be present ⁶³. We speculate that 325 some of the CAMAs may be mixed communities containing bacteria not targeted by the 326 probes or even Archaea, which have been identified to associate with corals in microbiome diversity studies ⁶⁴. A recent coral metagenomic study recovered 327 328 Thermarchaeota genome bins from a Porites sp that was potentially metabolically 329 linked through nitrogen cycling to other coral microbial-associated taxa, including 330 Nitrospira⁵. Co-aggregation of ammonia-oxidizing archaea with nitrite-oxidizing 331 bacteria is common in other organisms, such as sponges ^{65,66}. Findings that CAMAs are 332 often co-localized near Symbiodiniaceae cells highlights the need for further isotope

bioRxiv preprint doi: https://doi.org/10.1101/576488; this version posted March 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

333 studies to visualize and validate potential metabolic integrated links between bacterial,

archaeal and *Symbiodiniaceae* symbionts.

335

336 Conclusion

337 Localization of microorganisms associated with corals is vital to understand 338 their symbiotic relationships and reveal their function(s) within the holobiont. Here we 339 provide novel insight into the distributions and densities of bacteria within tissues of the 340 coral Acropora hyacinthus sampled from five different locations. CAMAs were 341 common in coral tissues sampled, although their abundance differed across geographic 342 sites. While each CAMA appeared to be dominated by a single bacterial morphological 343 type, different CAMA hosted different bacterial morphotypes. CAMAs have been 344 defined as facultative symbionts, not necessary for host fitness ³¹, however their high 345 prevalence and abundance in coral tissues may indicate they are integrated into shared 346 metabolic pathways and central to maintaining coral fitness through provisioning 347 benefits. Such propositions require testing by tracing metabolic pathways, as well as 348 improved taxonomic and functional assessment of the microorganisms housed within 349 these CAMAs.

350

351 Materials and methods (less than 1500 words)

352 Fragments (~ 3 cm x 3 cm; n=48 colonies) of the tabulate coral *Acropora*353 *hyacinthus* (Dana, 1846) were collected from five geographic locations across two
354 countries (Australia and Japan). Samples from Japan (n=10) were collected from

355	Sesoko Island	(26°37'40.3"N	, 127°51'36.4"E,	depth 1.5-3.0 m,	colony size 62.8±41.7
-----	---------------	---------------	------------------	------------------	-----------------------

- 356 cm) in Okinawa, Japan in July 2015. On the Great Barrier Reef (GBR) Australia,
- 357 samples were collected from the Northern sector along an inshore to offshore gradient
- inclusive of Lizard Island (see Fig. 1; n=10 from an Inner Shelf site (14°47'29.4"S,
- 359 145°20'18.8"E, depth 3–5 m, colony size 77.69±43.0 cm), n=10 from Lizard Island
- 360 $(14^{\circ}68'60.40''S, 145^{\circ}44'49.56''E, \text{ depth } 2-4 \text{ m}, \text{ colony size } 61.67\pm17.5 \text{ cm}) \text{ and } n=8$
- 361 from an Outer Shelf site (14°38'30.0"S, 145°38'22.5"E, depth 2–5 m, 41±20.5 cm)) in
- 362 February 2012. Samples (n =10) were also collected from reefs around Orpheus Island
- 363 (18°35'55.4"S, 146°29'33.8"E, depth 2–3 m, colony size N.D.) in the inner central
- region of the Great Barrier Reef in March 2012.
- **365** Following collection, samples were immediately rinsed with sterile seawater
- and then fixed in 4% paraformaldehyde (Electron Microscopy, USA and Wako, Japan)
- in 10mM phosphate buffered saline (PBS; pH 7.4) for 8–10 hours maintained at 4 °C.
- 368 Samples were subsequently rinsed twice with 70% ethanol and stored in 70% ethanol at
- 369 4 °C prior to decalcification. After samples were rinsed by PBS twice for 30 min each,
- 370 samples were decalcified at 4 °C in a 10% EDTA (sigma-Aldrich, USA) solution (w/v;
- 371 pH 8.0 adjusted by sodium hydroxide [Wako, Japan]), which was exchanged
- approximately every two days until no coral skeleton remained. The decalcified samples
- were rinsed in PBS, and dehydrated sequentially through 70%, 90%, abs. 100% and abs.
- 374 100% ethanol series (60 min each), then processed through a 1:1 solution of abs. 100%
- 375 ethanol and toluene and two toluene (30 min each), and embedded in paraffin. Nine
- 376 sections (three serial sections x three sets; interval = $100 \mu m$ between each set) of each

377 coral fragment, each 4 µm thick, were cut from each paraffin-embedded sample (Suppl. 378 Fig. 3). In addition, thicker 100 µm sections were cut from coral tissues to allow 379 reconstructions of three-dimensional configurations of the CAMAs (see below). Serial 380 sections were mounted on one slide coated with egg-white glycerin and on two slides 381 with poly-L-lysine solution (Sigma-Aldrich, USA) for HE staining and fluorescence in 382 situ hybridization (FISH), respectively. We analyzed a total 144 sets (432 sections) of 383 the serial sections for H&E staining and FISH among five location sites. 384 For HE staining, one serial section from each set was dewaxed in xylene (2 x 385 15 min), rehydrated through ethanol series with abs. 100%, 99%, 90% and 70% (5 min 386 each) and rehydrated completely in sterile water. Hydrated sections were stained in 387 Mayer's hematoxylin (Wako, Japan) for 10 min, rinsed in water for 5 min, then stained 388 with eosin Y (Merck, Germany) for 5 min, and further rinsed in water for 30 sec. The 389 stained sections were dehydrated through the same ethanol series in reverse with 390 agitation (few sec each), cleared by xylene (2 x 5 min) and finally mounted in Entellan 391 mounting medium (Merck, Germany). HE stained sections were observed and recorded 392 using an ECLIPSE Ni microscope (Nikon, Japan) and BIOREVO BZ-9000 microscope 393 (KEYENCE, Japan). 394 The other two serial sections from each set were subjected to FISH according

ine other two serial sections from each set were subjected to FISH according
to the protocol detailed in Wada et al. (2016) ³⁷. Briefly, sections were dewaxed in
xylene (2 x 15 min), dehydrated briefly once in 100% ethanol and dried completely.
The dried sections were immersed in a 0.2 M HCl solution for 12 min, followed by a 20
mM Tris-HCl solution (pH 8.0) for 10 min at room temperature. The sections were

399	mounted with proteinase K (50 μg ml^-1) in 20 mM Tris-HCl solution at 37 $^\circ C$ for 5 min
400	for bacterial cell wall permeabilization, and washed in a 20 mM Tris-HCl solution at
401	room temperature for 10 min. Oligonucleotide probes, including a probe targeting the
402	16S rRNA gene (EUB338mix: 5'-GCWGCCWCCCGTAGGWGT-3') and a nonsense,
403	negative control probe (Non338: 5'- ACATCCTACGGGAGGC -3'), were labeled with
404	the Cy3 fluochrome (eurofins, USA) 67,68. Tissue sections were covered with
405	hybridization buffer (30% v/v formamide, 0.9 M NaCl, 20 mM Tris-HCl [pH 8.0],
406	0.01% SDS), then each oligonucleotide probe was added to a final concentration of 25
407	ng $\mu l^{\text{-1}}$ to each serial section. The slides were incubated at 46 $^\circ\text{C}$ for 1.5 hour. After
408	incubation, sections were washed in 50 ml falcon tubes containing preheated wash
409	buffer (0.112 M NaCl, 20 mM Tris HCl [pH 8.0], 0.01% SDS, 5 mM EDTA [pH 8.0])
410	in a water bath at 48 °C for 10 min, then soaked immediately with agitation in cold
411	water, and air dried completely. The dried sections were mounted in an antifade
412	mounting medium Fluoromount/Plus (Diagnostic BioSystems, USA). Sections were
413	examined and recorded using a FV1000-D confocal microscope (Olympus, Japan) with
414	two channels, using the following settings: (1) laser: 405 nm and 559 nm; (2) excitation
415	dichroic mirror: DM405/473/559; (3) emission dichroic mirror: SDM560 and mirror;
416	(4) band-pass filter: None and BA575-620 for detecting autofluorescence of coral tissue
417	(blue) and Cy3 signal (red), respectively. Non-specific probe binding in tissue sections
418	was identified as detailed by Wada et al. (2016) ³⁷ .
419	Three-dimensional images (3D) of CAMAs were reconstructed from the thick
400	

420 sections (100 μ m) which were cut carefully from two samples (S6 from the Sesoko

- 422 according to methods described above, and examined using a LSM 880 (ZIESS,
- 423 Germany) with two tracks and the following settings: (1) laser: 405 nm and 561 nm; (2)
- 424 beam splitter: MBS -405 and MBS 488/561; (3) filter: 371–479 nm for auto-
- 425 fluorescence of coral tissue (blue) and 627–758 nm for Symbiodiniaceae (green) in
- 426 track 1 and 565–588 nm for Cy3 signals (red) in track 2, respectively. For
- 427 reconstructing the 3D images, the sections consisted of z-stack images at 3.0 μm
- 428 intervals for 10x and 0.7 μ m each and 40x magnifications using the Z-stack function in
- 429 LSM 880. The z-stack images were processed and reconstructed with surface rending of

430 the Cy3 signals in Imaris software ver. 8.0.2 (BitplaneAG, USA).

- 431 Statistical analysis was conducted using R Stats ver. 3.5.1⁶⁹ with the
- 432 following packages: DescTools ver. 0.99.26⁷⁰, dplyr ver. 0.7.6⁷¹, FSA ver. 0.8.20⁷²,
- 433 lattice ver. 0.20–36⁷³, and rcompanion ver. 2.0.0⁷⁴. To compare the abundances of
- 434 CAMAs at the colony level among sites, G-tests followed by post hoc Bonferroni
- 435 corrections were used. To evaluate the density of CAMAs within coral tissues, we
- 436 compared the distribution of CAMAs among five sites using the Kruskal-Wallis test
- 437 with Dunn's multiple comparison followed by a Benjamini-Hochberg correction
- 438 method.

439

440 Author contribution

441 NW, NM and DB conceived the study. NW, JP and DB designed the sampling and

442 FISH experiments. NW and JP conducted the field sampling. NW, MI and TM

443	performed the histologica	l work and all	observations and	d data collection.	NW and DB
-----	---------------------------	----------------	------------------	--------------------	-----------

- had major contribution in the manuscript writing and the figure making. JP, ST, TA,
- 445 BW and NM contributed to writing and editing the manuscript. All authors critically
- 446 reviewed, revised and ultimately approved this final version.

447

448 Acknowledgements

- 449 Dr. Joleah Lamb (Cornell University), Mr. Sefano Katz (Pacific Blue Foundation), Dr.
- 450 Gergely Torda (ARC Center of Excellence for Coral Reef Studies, James Cook
- 451 University), and Dr. Melanie Trapon (CSIRO) are thanked for helping to collect
- 452 samples. We are also grateful to Mr. Yasuhiko Sato from Ziess Microscopy Japan, and
- 453 Mr. Ji-Ying Huang and IPMB Live-Cell-Imaging Core Lab in the Institute Academia
- 454 Sinica for supporting the microscopy and Imaris software used, respectively.
- 455

456 References

- 457 1. Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of
 458 coral-associated bacteria. *Mar. Ecol. Prog. Ser.* 243, 1–10 (2002).
- 2. Rosenberg, E., Koren, O., Reshef, L., Efrony, R. & Zilber-Rosenberg, I. The role of
 microorganisms in coral health, disease and evolution. *Nat. Rev. Microbiol.* 5, 355–
 62 (2007).
- 462 3. Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the Coral Microbiome:
- 463 Underpinning the Health and Resilience of Reef Ecosystems. *Annu. Rev. Microbiol.*464 70, 317–340 (2016).
- 465 4. Yuyama, I., Ishikawa, M., Nozawa, M., Yoshida, M. & Ikeo, K. Transcriptomic
 466 changes with increasing algal symbiont reveal the detailed process underlying
 467 establishment of coral-algal symbiosis. *Sci. Rep.* 8, 16802 (2018).

468 5. Robbins, S. J. *et al.* A genomic view of the coral holobiont. *Nat. Microbiol.* (in469 press).

470 6. Lema, K. A., Willis, B. L. & Bourne, D. G. Corals Form Characteristic Associations
471 with Symbiotic Nitrogen-Fixing Bacteria. *Appl. Environ. Microbiol.* 78, 3136–3144

- **472** (2012).
- 473 7. Pogoreutz, C. *et al.* Nitrogen Fixation Aligns with nifH Abundance and Expression
- 474 in Two Coral Trophic Functional Groups. *Front. Microbiol.* **8**, (2017).
- 475 8. Yang, S.-H. *et al.* Metagenomic, phylogenetic, and functional characterization of
 476 predominant endolithic green sulfur bacteria in the coral Isopora palifera.

477 *Microbiome* 7, 3 (2019).

- 478 9. Raina, J.-B. *et al.* DMSP biosynthesis by an animal and its role in coral thermal
 479 stress response. *Nature* 502, 677–680 (2013).
- 480 10. Raina, J.-B. *et al.* Isolation of an antimicrobial compound produced by
 481 bacteria associated with reef-building corals. *PeerJ* 4, e2275 (2016).
- 482 11. Gochfeld, D. J. & Aeby, G. S. Antibacterial chemical defenses in Hawaiian
 483 corals provide possible protection from disease. *Mar. Ecol. Prog. Ser.* 362, 119–128
 484 (2008).
- 485 12. Ritchie, K. B. Regulation of microbial populations by coral surface mucus
 486 and mucus-associated bacteria. *Mar. Ecol. Prog. Ser.* 322, 1–14 (2006).
- 487 13. Shnit-Orland, M. & Kushmaro, A. Coral mucus-associated bacteria: a
- 488 possible first line of defense. *FEMS Microbiol. Ecol.* **67**, 371–380 (2009).
- 489 14. Galloway, S. B. et al. Coral Disease and Health Workshop: Coral
- 490 *Histopathology II.* (NOAA Technical Memorandum NOS NCCOS 56 and NOAA
- 491 Technical Memorandum CRCP 4, National Oceanic and Atmospheric

492 Administration, Silver spring, 2007).

- 493 15. Peixoto, R. S., Rosado, P. M., Leite, D. C. de A., Rosado, A. S. & Bourne, D.
- 494 G. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral
 495 Health and Resilience. *Front. Microbiol.* 8, (2017).
- 496 16. Yang, S.-H. *et al.* Long-Term Survey Is Necessary to Reveal Various Shifts
 497 of Microbial Composition in Corals. *Front. Microbiol.* 8, (2017).
- 498 17. Prazeres, M., Ainsworth, T., Roberts, T. E., Pandolfi, J. M. & Leggat, W.
- 499 Symbiosis and microbiome flexibility in calcifying benthic foraminifera of the Great
 500 Barrier Reef. *Microbiome* 5, 38 (2017).

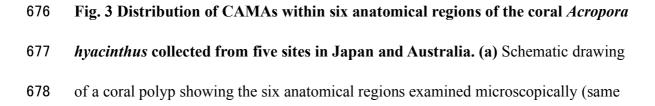
501 18. Shiu, J.-H. et al. A Newly Designed Primer Revealed High Phylogenetic 502 Diversity of Endozoicomonas in Coral Reefs. Microbes Environ. 33, 172-185 503 (2018). 504 19. Hernandez-Agreda, A., Leggat, W., Bongaerts, P., Herrera, C. & Ainsworth, 505 T. D. Rethinking the Coral Microbiome: Simplicity Exists within a Diverse 506 Microbial Biosphere. *mBio* 9, e00812-18 (2018). 507 20. Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and 508 cophylogeny. Nat. Commun. 9, 4921 (2018). 21. 509 Knowlton, N. & Rohwer, F. Multispecies Microbial Mutualisms on Coral 510 Reefs: The Host as a Habitat. Am. Nat. 162, S51-S62 (2003). 511 22. Ritchie, K. B. & Smith, G. W. Microbial Communities of Coral Surface 512 Mucopolysaccharide Layers. in Coral Health and Disease (eds. Rosenberg, P. E. & 513 Loya, P. Y.) 259–264 (Springer Berlin Heidelberg, 2004). 514 23. Bourne, D. G. & Munn, C. B. Diversity of bacteria associated with the coral 515 Pocillopora damicornis from the Great Barrier Reef. Environ. Microbiol. 7, 1162-516 1174 (2005). 517 Koren, O. & Rosenberg, E. Bacteria Associated with Mucus and Tissues of 24. the Coral Oculina patagonica in Summer and Winter. Appl. Environ. Microbiol. 72, 518 519 5254-5259 (2006). 520 Johnston, I. S. & Rohwer, F. Microbial landscapes on the outer tissue surfaces 25. 521 of the reef-building coral Porites compressa. Coral Reefs 26, 375–383 (2007). 522 26. Chiu, H.-H., Mette, A., Shiu, J.-H. & Tang, S.-L. Bacterial Distribution in the 523 Epidermis and Mucus of the Coral Euphyllia glabrescens by CARD-FISH. Zool. 524 Stud. 11 (2012). 525 27. Ainsworth, T. D. et al. The coral core microbiome identifies rare bacterial 526 taxa as ubiquitous endosymbionts. ISME J. 9, 2261–2274 (2015). 527 28. Yang, S.-H. et al. Prevalence of potential nitrogen-fixing, green sulfur 528 bacteria in the skeleton of reef-building coral Isopora palifera. *Limnol. Oceanogr.* 61, 529 1078–1086 (2016). 530 Glasl, B., Herndl, G. J. & Frade, P. R. The microbiome of coral surface 29. 531 mucus has a key role in mediating holobiont health and survival upon disturbance. 532 ISME J. 10, 2280–2292 (2016).

30. Ainsworth, T. D., Fine, M., Roff, G. & Hoegh-Guldberg, O. Bacteria are not
the primary cause of bleaching in the Mediterranean coral Oculina patagonica. *ISME*J. 2, 67–73 (2007).

- 536 31. Work, T. & Aeby, G. Microbial aggregates within tissues infect a diversity of
 537 corals throughout the Indo-Pacific. *Mar. Ecol. Prog. Ser.* 500, 1–9 (2014).
- 538 32. Peters, E., Oprandy, J. & Yevich, P. Possible causal agent of "white band
- disease" in Caribbean acroporid corals. J. Invertebr. Pathol. **396**, 394–396 (1983).
- 540 33. Peters, E. A survey of cellular reactions to environmental stress and disease in
 541 Caribbean scleractinian corals. *Helgol Meeresunters* 137, 113–137 (1984).
- 542 34. Ainsworth, T. & Hoegh-Guldberg, O. Bacterial communities closely
- associated with coral tissues vary under experimental and natural reef conditions and
 thermal stress. *Aquat. Biol.* 4, 289–296 (2009).
- 545 35. Neave, M. J. *et al.* Differential specificity between closely related corals and
 546 abundant Endozoicomonas endosymbionts across global scales. *ISME J.* (2016).
 547 doi:10.1038/ismej.2016.95
- 548 36. Work, T. M. & Aeby, G. S. Pathology of tissue loss (white syndrome) in
 549 Acropora sp. corals from the Central Pacific. *J. Invertebr. Pathol.* 107, 127–31
 550 (2011).
- 551 37. Wada, N. *et al. In situ* visualization of bacterial populations in coral tissues:
 552 pitfalls and solutions. *PeerJ* 4, e2424 (2016).
- 38. Wilson, A. C. C. & Duncan, R. P. Signatures of host/symbiont genome
 coevolution in insect nutritional endosymbioses. *Proc. Natl. Acad. Sci.* 112, 10255–
 10261 (2015).
- 556 39. Kohl, K. D. & Carey, H. V. A place for host-microbe symbiosis in the
 557 comparative physiologist's toolbox. *J. Exp. Biol.* 219, 3496–3504 (2016).
- 55840.Petersen, J. M. *et al.* Chemosynthetic symbionts of marine invertebrate5591
- animals are capable of nitrogen fixation. *Nat. Microbiol.* **2**, 16195 (2017).
- 560 41. Yellowlees, D., Rees, T. A. V. & Leggat, W. Metabolic interactions between
 561 algal symbionts and invertebrate hosts. *Plant Cell Environ.* 31, 679–694 (2008).
- 562 42. Petrou, K., Nielsen, D. A. & Heraud, P. Single-Cell Biomolecular Analysis of
 563 Coral Algal Symbionts Reveals Opposing Metabolic Responses to Heat Stress and
- 564 Expulsion. Front. Mar. Sci. 5, (2018).

565 43. Tada, K., Sakai, K., Nakano, Y., Takemura, A. & Montani, S. Sizefractionated phytoplankton biomass in coral reef waters off Sesoko Island, Okinawa, 566 567 Japan. J. Plankton Res. 25, 991–997 (2003). 568 44. Tanaka, Y. Nutrient uptake by reef building corals and the ecophysiological 569 effects. Oceanogr. Jpn. 101-117 (in Japanese) (2012). 570 45. Brodie, J. E., Devlin, M., Haynes, D. & Waterhouse, J. Assessment of the 571 eutrophication status of the Great Barrier Reef lagoon (Australia). *Biogeochemistry* 572 106, 281–302 (2011). 573 46. Berkelmans, R., Weeks, S. J. & Steinberga, C. R. Upwelling linked to warm 574 summers and bleaching on the Great Barrier Reef. Limnol. Oceanogr. 55, 2634-2644 575 (2010). 47. 576 Bourne, D., Iida, Y., Uthicke, S. & Smith-Keune, C. Changes in coral-577 associated microbial communities during a bleaching event. ISME J. 2, 350-363 578 (2007). 579 48. Dinsdale, E. a *et al.* Microbial ecology of four coral atolls in the Northern 580 Line Islands. *PloS One* **3**, e1584–e1584 (2008). 581 49. Vega Thurber, R. L. et al. Metagenomic analysis of stressed coral holobionts. 582 Environ. Microbiol. 11, 2148–2163 (2009). 583 50. Littman, R., Willis, B. L. & Bourne, D. G. Metagenomic analysis of the coral 584 holobiont during a natural bleaching event on the Great Barrier Reef. Environ. 585 Microbiol. Rep. 3, 651–660 (2011). 586 51. Kelly, L. W. et al. Local genomic adaptation of coral reef-associated 587 microbiomes to gradients of natural variability and anthropogenic stressors. Proc. 588 Natl. Acad. Sci. 111, 10227–10232 (2014). 589 52. Shiu, J.-H. et al. Dynamics of coral-associated bacterial communities 590 acclimated to temperature stress based on recent thermal history. Sci. Rep. 7, 14933 591 (2017). 592 53. Glasl, B., Webster, N. S. & Bourne, D. G. Microbial indicators as a diagnostic 593 tool for assessing water quality and climate stress in coral reef ecosystems. Mar. 594 Biol. 164, 91 (2017). 595 54. Garren, M. & Azam, F. New Method for Counting Bacteria Associated with 596 Coral Mucus. Appl. Environ. Microbiol. 76, 6128–6128 (2010).

597 55. Garren, M. & Azam, F. Corals shed bacteria as a potential mechanism of 598 resilience to organic matter enrichment. ISME J. 6, 1159–1165 (2012). 599 56. Sudek, M., Work, T. M., Aeby, G. S. & Davy, S. K. Histological observations 600 in the Hawaiian reef coral, Porites compressa, affected by Porites bleaching with 601 tissue loss. J. Invertebr. Pathol. 111, 121-125 (2012). 602 57. Bayer, T. et al. The Microbiome of the Red Sea Coral Stylophora pistillata Is 603 Dominated by Tissue-Associated Endozoicomonas Bacteria. Appl. Environ. 604 Microbiol. 79, 4759-4762 (2013). 605 58. van Teeseling, M. C. F., de Pedro, M. A. & Cava, F. Determinants of 606 Bacterial Morphology: From Fundamentals to Possibilities for Antimicrobial 607 Targeting. Front. Microbiol. 8, (2017). 608 59. Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and 609 in situ detection of individual microbial cells without cultivation. Microbiol Mol Biol 610 Rev 59, 143–169 (1995). 611 60. Wagner, M., Horn, M. & Daims, H. Fluorescence in situ hybridisation for the 612 identification and characterisation of prokaryotes. Curr. Opin. Microbiol. 6, 302-309 613 (2003).61. 614 Bouvier, T. & del Giorgio, P. A. Factors influencing the detection of bacterial 615 cells using fluorescence in situ hybridization (FISH): A quantitative review of 616 published reports. FEMS Microbiol. Ecol. 44, 3-15 (2003). 617 62. Prophet, E. B. Laboratory methods in histotechnology. (Amer Registry of 618 Pathology, 1992). 619 63. Riou, V., Périot, M. & Biegala, I. C. Specificity Re-evaluation of 620 Oligonucleotide Probes for the Detection of Marine Picoplankton by Tyramide 621 Signal Amplification-Fluorescent In Situ Hybridization. Front. Microbiol. 8, (2017). 622 64. Siboni, N., Ben-Dov, E., Sivan, A. & Kushmaro, A. Global distribution and 623 diversity of coral-associated Archaea and their possible role in the coral holobiont 624 nitrogen cycle. Environ. Microbiol. 10, 2979–2990 (2008). 625 Arp, D. J. & Bottomley, P. J. Nitrifers: more than 100 years from isolation to 65. genome sequences. Microbe-Am. Soc. Microbiol. 1, 229 (2006). 626 627 Feng, G., Sun, W., Zhang, F., Karthik, L. & Li, Z. Inhabitancy of active 66. 628 Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing 629 bacteria in the sponge Theonella swinhoei. Sci. Rep. 6, 24966 (2016).

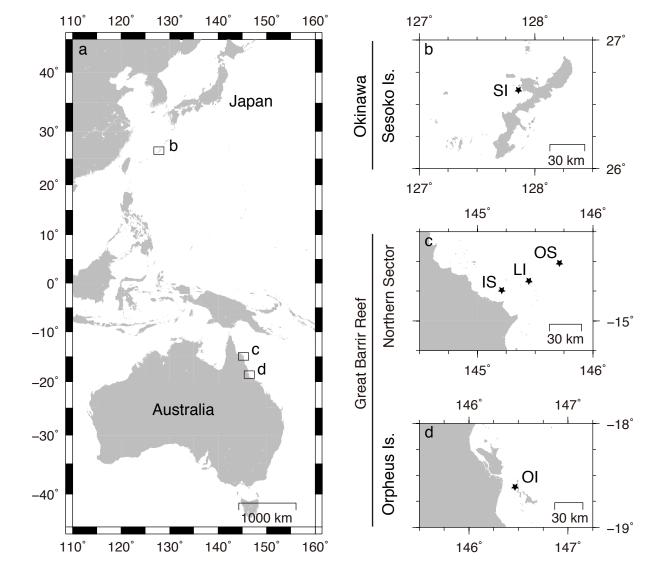

630	67.	Wallner, G., Amann, R. & Beisker, W. Optimizing fluorescent in situ		
631	hybridization with rRNA-targeted oligonucleotide probes for flow cytometric			
632	identification of microorganisms. Cytometry 14, 136-43 (1993).			
633	68.	Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. The		
634	domai	n-specific probe EUB338 is insufficient for the detection of all Bacteria:		
635	develo	opment and evaluation of a more comprehensive probe set. Syst. Appl.		
636	Micro	<i>biol.</i> 22 , 434–44 (1999).		
637	69.	R Core Team. R: A Language and Environment for Statistical Computing.		
638	Vienn	a, Austria: R Foundations for Statistical Computing. (2013).		
639	70.	Signorell, A. DescTools: Tools for descriptive statistics (R package version		
640	0.99.2	6). The Comprehensive R Archive Network (2018).		
641	71.	Wickham, H., François, R., Henry, L., Müller, K. & RStudio. dplyr: a		
642	grammar of data manipulation (R package version 0.7.6). The Comprehensive R			
643	Archiv	ve Network (2018).		
644	72.	Ogle, D., Wheeler, P. & Dinno, A. FSA: Simple Fisheries Stock Assessment		
645	Metho	ods (R package version 0.8.20). The Comprehensive R Archive Network (2018).		
646	73.	Sarkar, D. Lattice: multivariate data visualization with R. (Springer Science		
647	& Bus	siness Media, 2008).		
648	74.	Mangiafico, S. rcompanion: Functions to Support Extension Education		
649	Progra	am Evaluation (R package version 2.0.0). The Comprehensive R Archive		
650	Netwo	rrk (2018).		
651				
050				
652				
653	Figure le	egends		
654				
655	Fig. 1 M	ap showing the locations of five study sites in two countries: (a, b) Sesoko		
656	Island (S	I) in Okinawa, Japan; (a, c) Inner Shelf (IS), Lizard Island (LI) and Outer Shelf		
	 			

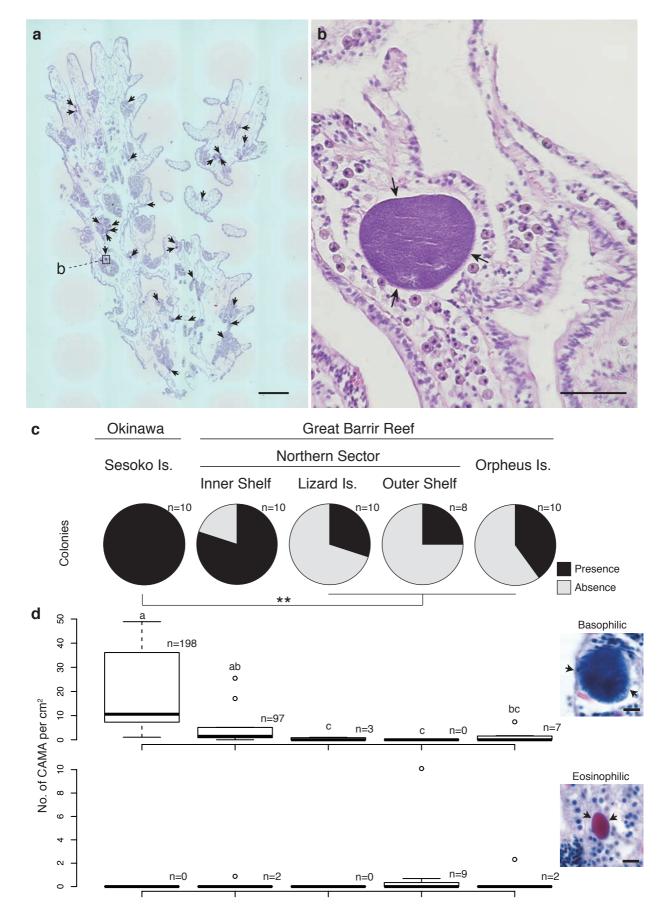
657 (OS) sites in the Northern Great Barrier Reef; and (a, d) Orpheus Island (OI) in the658 central Great Barrier Reef, Australia.

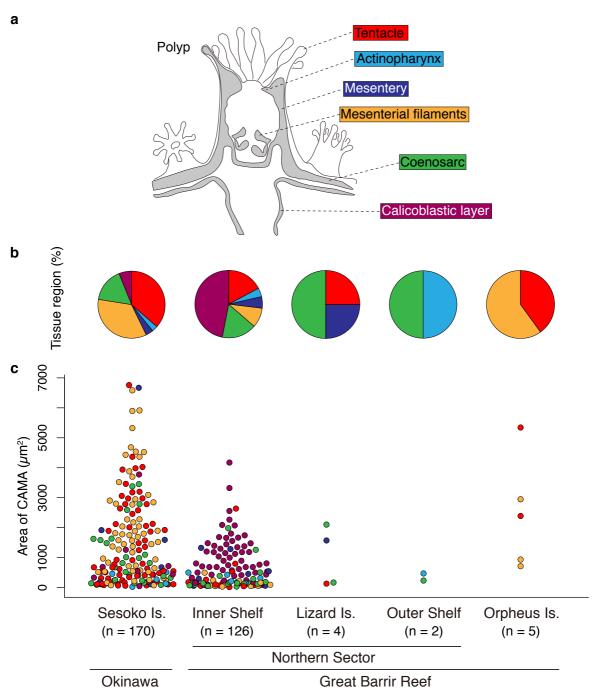
659

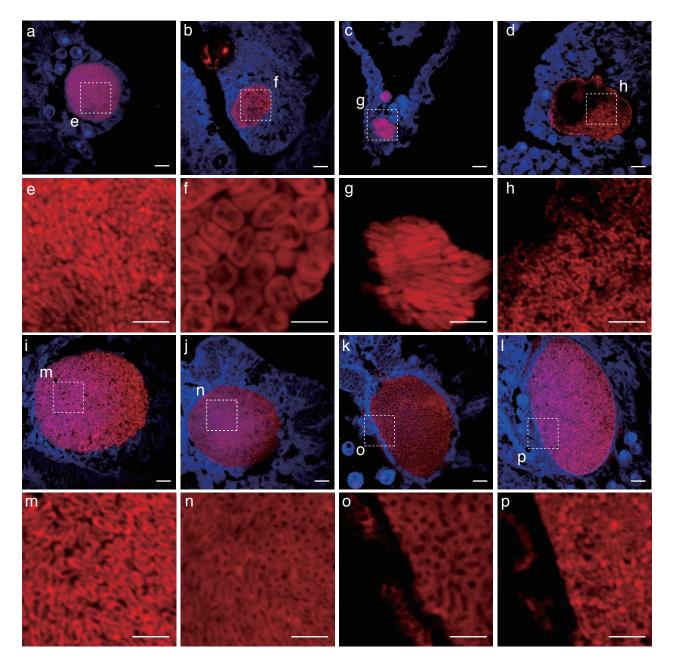
660 Fig. 2 Histological appearance, occurrence and density of CAMAs in the coral

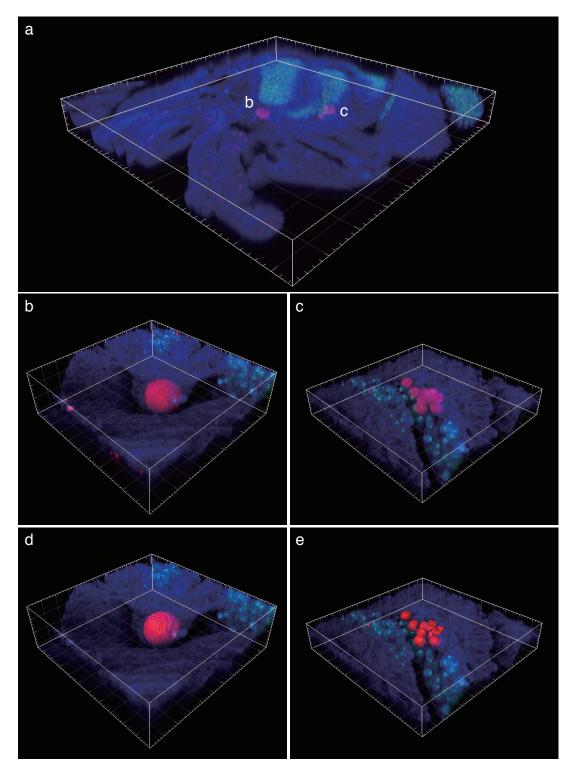
- 661 Acropora hyacinthus. (a) Numerous CAMAs (indicated by arrows) are visible in a
- histological section stained by hematoxylin and eosin of a colony from Sesoko, Japan.
- **663** (b) Right panel shows close-up of a CAMA located in a mesentery of a polyp from the
- branch sectioned in (a). (c) Pie diagrams showing the proportion of colonies sampled
- that contained CAMAs at five sites in Japan and Australia. A significantly higher
- 666 proportion of Sesoko Is. samples contained CAMAs than samples collected from three
- 667 more offshore sites (Lizard Is., Outer Shelf northern GBR site, and Orpheus Is.)
- 668 (** $p \le .005$; G test followed by a post-hoc bonferroni). (d) Densities of basophilic-
- staining (upper graph) or eosinophilic-staining (lower graph) CAMAs at five sites.
- 670 Densities of basophilic CAMAs were significantly greater in samples from Sesoko Is.
- 671 than in samples from the three offshore sites (Lizard Is., Outer Shelf site, and Orpheus
- 672 Is, as were densities in the Inner shelf GBR site compared to the two offshore northern
- 673 sector sites (** p < 005; Kruskal-Wallis test, with Dunn's multiple comparison followed
- by a bonferroni correction). Scale bars indicate 600 μ m (**a**), 50 μ m (**b**) and 10 μ m (**d**).
- 675


679	colour coding used in b) and c)). b) Pie charts showing the distribution of CAMAs				
680	among six anatomical regions in samples from the five sites. (c) Dot plots comparing				
681	the size of CAMAs among anatomical regions for each location. N=307 CAMAs				
682	detected in tissues treated with FISH.				
683					
684	Fig. 4 Morphological variation in bacteria housed within different CAMAs. Note				
685	that bacteria within each CAMA are morphologically similar. Dotted lines (in a – d and				
686	i–l) delineate regions magnified in close-up images (e–h and m–p). Overall, five				
687	bacterial morphologies were detected: rod-like (a, e), pleomorphic (b, f), long rods (c,				
688	g), filamentous-like (d, h), rod-shaped with spore-like structures (i–j and m–n), and				
689	putative amorphous masses (k–l and o–p). Scale bars indicate 10 μ m (a–d and i–l) and :				
690	μm (e – h and m – p).				
691					
692	Fig. 5 Three-dimensional (3D) images of CAMAs (red) within a tentacle of the				
693	coral Acropora hyacinthus, as visualized using FISH. (a) Section of tentacle showing				
694	localization of two types of CAMAs (10x magnification). (b) Single aggregation of				
695	bacteria in a large structure within the ectoderm (40x magnification; composed of 92 z-				
696	stack images). (c) Multiple aggregations of bacteria in smaller structures within the				
697	gastrodermis (40x magnification; composed of 56 z-stack images). 3D rendering of				
698	CAMAs (d and e) reconstructed from 3D images in b and c. Coral tissue and				
699	Symbiodiniaceae appear as blue and green structures, respectively.				
700					


701	Suppl. Fig. 1 Calculating the area of CAMAs.	(a) A single large CAMA, comprised
-----	--	------------------------------------


- 702 of rod-shaped bacteria, was calculated to be 175.7 μ m² in cross-sectional area from 3D
- images. (b) Smaller, numerous aggregations were calculated to be, on average, 22.6±4.2
- 704 μm^2 in cross-sectional area (n = 8). Scale bars indicate 20 μm .
- 705


```
706 Suppl. Fig. 2 Schematic drawing showing how coral fragments were sectioned for
```


- 707 H&E staining and FISH. In total, nine sections were collected from each sample
- 708 (three sets of sections, each set comprised of three serial sections). *1: Distance between
- 709 each set was $100 \ \mu m$.
- 710

