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Abstract 15 

Genetic architecture reflects the pattern of effects and interaction of genes underling 16 

phenotypic variation. Most mapping and breeding approaches generally consider the additive 17 

part of variation but offer limited knowledge on the benefits of epistasis which explains in 18 

part the variation observed in traits. In this study, the cowpea multiparent advanced 19 

generation inter-cross (MAGIC) population was used to characterize the epistatic genetic 20 

architecture of flowering time, maturity, and seed size. In addition, considerations for 21 

epistatic genetic architecture in genomic-enabled breeding (GEB) was investigated using 22 

parametric, semi-parametric, and non-parametric genomic selection (GS) models. Our results 23 

showed that large and moderate effect sized two-way epistatic interactions underlie the traits 24 

examined. Flowering time QTL colocalized with cowpea putative orthologs of Arabidopsis 25 

thaliana and Glycine max genes like PHYTOCLOCK1 (PCL1 [Vigun11g157600]) and 26 

PHYTOCHROME A (PHY A [Vigun01g205500]). Flowering time adaptation to long and 27 

short photoperiod was found to be controlled by distinct and common main and epistatic loci. 28 

Parametric and semi-parametric GS models outperformed non-parametric GS model. Using 29 

known QTL as fixed effects in GS models improved prediction accuracy when traits were 30 

controlled by both large and moderate effect QTL. In general, our study demonstrated that 31 

prior understanding the genetic architecture of a trait can help make informed decisions in 32 

GEB. This is the first report to characterize epistasis and provide insights into the 33 

underpinnings of GS versus marker assisted selection in cowpea. 34 

 35 

Keywords: Cowpea, Genetic architecture, Epistasis, QTL, Genomic-enabled breeding, 36 

Genomic selection, flowering time, and photoperiod.  37 
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Introduction 38 

Asymmetric transgressive variation in quantitative traits is usuallly controlled by non-39 

additive gene action known as epistasis (Rieseberg, Archer and Wayne, 1999). Epistasis has 40 

been defined as the interaction of alleles at multiple loci (Mathew et al., 2018). The joint 41 

effect of the alleles at these loci may be lower or higher than the total effects of these loci 42 

(Johnson, 2008). In selfing species, epistasis is common due to high level of homozygousity 43 

(Volis et al., 2010) and epistatic interactions have been found among loci underlying 44 

flowering time in barley (Mathew et al., 2018), rice (Chen et al., 2015; M. Chen et al., 2018), 45 

and sorghum (Li et al., 2018). However, the direct quantification of the importance of 46 

epistasis for breeding purposes has not been fully realized due to the fact that most of the 47 

current statistical models cannot efficiently characterize or account for epistasis (Mackay, 48 

2001; Moore and Williams, 2009; Sun, Ma and Mumm, 2012; Mathew et al., 2018). 49 

Common quantitative traits mapping approaches are often single-locus analysis techniques. 50 

These techniques focus on the additive contribution of genomic loci (H.Barton and 51 

D.Keightley, 2002) which may explain a fraction of the genetic variation; thus leading to 52 

missing heritability.  53 

Regardless of the limitations of genomic mapping approaches, characterization of the 54 

genetic basis of complex agronomic traits has been beneficial for breeding purposes. For 55 

example, markers tagging quantitative trait loci (QTL) have been used in marker-assisted 56 

selection (MAS) in breeding programs (Zhang et al. 2003; Pan et al. 2006; Saghai Maroof et 57 

al. 2008; Foolad and Panthee 2012; Massman et al. 2013; Mohamed et al. 2014; Zhao et al. 58 

2014). However, the efficiency of QTL based MAS approach in breeding is limited. First, the 59 

small sample size of bi-parental populations where QTL are detected often result in 60 

overestimation of the respective QTL effect sizes; a phenomenon known as Beavis effect 61 

(Utz, Melchinger and Schön, 2000; Xu, 2003; King and Long, 2017). Second, genetic 62 

diversity is limited to the two parents forming the bi-parental population, thus QTL may not 63 

reflect the entire variation responsible for the trait and may not be transferable to other 64 

genetic backgrounds (Xu et al., 2017). Third, linkage mapping is limited in power to detect 65 

small effect loci, thus only the available large effects loci are used for MAS (Ben-Ari and 66 

Lavi 2012). Notably, MAS is more efficient with traits controlled by few genomic loci and 67 

not polygenic traits (Bernardo, 2008). In contrast, genomic selection (GS) that employs 68 

genome wide markers has been found to be more suited for complex traits, and also having 69 

higher response to selection than MAS (Bernardo and Yu, 2007; Wong and Bernardo, 2008; 70 

Cerrudo et al., 2018). 71 
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In GS, a set of genotyped and phenotyped individuals are first used to train a model 72 

that estimates the genomic estimated breeding values (GEBVs) of un-phenotyped but 73 

genotyped individuals (Jannink, Lorenz and Iwata, 2010). GS models often vary in 74 

performance with the genetic architecture of traits. Parametric GS models are known to 75 

capture additive genetic effects but not efficient with epistatic effects due to the 76 

computational burden of high-order interactions (Moore and Williams, 2009; Howard, 77 

Carriquiry and Beavis, 2014). Parametric GS models with incorporated kernels (marker based 78 

relationship matrix) for epistasis have recently been developed (Covarrubias-pazaran, 2017). 79 

Semi-parametric and non-parametric GS models capturing epistatic interactions have been 80 

developed and implemented in plant breeding (Gianola, Fernando and Stella, 2006; Gianola 81 

and de los Campos, 2008; De Los Campos et al., 2010). Semi-parametric models as 82 

Reproducing Kernel Hilbert Space (RKHS) reduces parametric space dimensions to 83 

efficiently capture epistatic interactions among markers (Jiang and Reif, 2015; de Oliveira 84 

Couto et al., 2017). Using simulated data, Howard et al. 2014 showed that semi-parametric 85 

and non-parametric GS models can improve prediction accuracies under epistatic genetic 86 

architectures. In general, GS has been widely studied in and applied to major crop species 87 

including both cereals and legumes. However, in orphan crop species, applications of 88 

genomic-enabled breeding (GEB) methods is still limited (Varshney et al., 2012). 89 

Cowpea (Vigna unguiculata L. Walp) is a widely adapted warm-season orphan 90 

herbaceous leguminous annual crop and an important source of protein in developing 91 

countries (Muchero et al., 2009; Varshney et al., 2012; Boukar et al., 2018; Huynh et al., 92 

2018). Cowpea is cultivated over 12.5 million hectares in tropical and sub-tropical zones of 93 

the world including Sub-Saharan Africa, Asia, South America, Central America, the 94 

Caribbean, United States of America and around the Mediterranean Sea. However, more than 95 

95 per cent of cultivation takes place in Sub-Saharan Africa (Boukar et al., 2018). It is the 96 

most economically important African leguminous crop and of vital importance to the 97 

livelihood of several millions of people. Due to its flexibility as a “hungry season crop” 98 

(Langyintuo et al., 2003), cowpea is part of the rural families’ coping strategies to mitigate 99 

the effect of changing climatic conditions.  100 

Cowpea’s nitrogen fixing and drought tolerance capabilities make it a valuable crop 101 

for low-input and smallholder farming systems (Hall et al., 2003; Boukar et al., 2018). 102 

Breeding efforts using classical approaches have been made to improve cowpea’s tolerance 103 

to both biotic (disease and pest) and abiotic (drought and heat) stressors (Hall et al., 2003; 104 

Hall, 2004). Advances in applications of next generation sequencing (NGS) and development 105 
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of genomic resources (consensus map, draft genome, and multiparent population) in cowpea 106 

have provided the opportunity for the exploration for GEB (Muchero et al., 2009; Boukar et 107 

al., 2018; Huynh et al., 2018). MAS and GS have improved genetic gain in soybean (Glycine 108 

max) (Jarquin, Specht and Lorenz, 2016; Kurek, 2018; Matei et al., 2018) and common bean 109 

(Phaseolus vulgaris) (Schneider, Brothers and Kelly, 1997; Yu, Park and Poysa, 2000; Wen 110 

et al., 2019). However, cowpea still lags behind major legumes in the area of GEB 111 

applications. GEB has the potential of enabling expedited cowpea breeding to ensure food 112 

security in developing countries where national breeding programs still depend on labor-113 

intensive and time-consuming classical breeding approaches.  114 

In this study, the cowpea multiparent advanced generation inter-cross (MAGIC) 115 

population was used to explore MAS and GS. The cowpea MAGIC population was derived 116 

from intercrossing among eight founder lines (Huynh et al., 2018) and offers greater genetic 117 

diversity than bi-parentals to identify higher-order epistatic interactions (Mathew et al., 118 

2018). Although, theoretical models and empirical studies involving simulations have 119 

suggested the significant role for epistasis in breeding (Melchinger et al., 2007; Volis et al., 120 

2010; Messina et al., 2011; Howard, Carriquiry and Beavis, 2014); empirical evidence from 121 

practical breeding are limited. Therefore, the epistatic genetic architecture of three traits in 122 

cowpea was evaluated alongside its considerations in genomic enabled breeding using 123 

parametric, semi-parametric, and non-parametric GS models. 124 

Materials and Methods 125 

Plant genetic resource and phenotypic evaluation 126 

This study was performed using publicly available cowpea MAGIC population’s 127 

phenotypic and genotypic data (Huynh et al., 2018). The MAGIC population was derived 128 

from intercross between eight founders. The F1s were derived from eight-way intercross 129 

between the founders and were subsequently selfed through single seed descent for eight 130 

generations. The F8 RILs were later genotyped with 51,128 SNPs using the Illumina Cowpea 131 

Consortium Array. A core set of 305 MAGIC RILs were selected and phenotyped (Huynh et 132 

al., 2018). The RILs were evaluated under two irrigation regimes. 133 

In this study, the flowering time (FLT), maturity (MAT), and seed size (SS) data were 134 

analyzed for environment-by-environment correlations and best linear unbiased predictions 135 

(BLUPs). The traits analyzed in this study are; FTFILD (flowering time under full irrigation 136 

and long day), FTRILD (flowering time under restricted irrigation and long day), FTFISD 137 

(flowering time under full irrigation and short day), FTRISD (flowering time under restricted 138 
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irrigation and short day), FLT_BLUP (BLUP of flowering time across environments), 139 

MFISD (maturity under full irrigation and short day), MRISD (maturity under restricted 140 

irrigation and short day), MAT_BLUP (BLUP of maturity across environments), SSFISD 141 

(seed size under full irrigation and short day), SSRISD (seed size under restricted irrigation 142 

and short day), SS_BLUP(BLUP of seed size across environments). In addition, using both 143 

genomic and phenotypic data, narrow sense heritability was estimated using RRBLUP 144 

package in R (Endelman, 2011). 145 

QTL and Epistasis Mapping 146 

QTL mapping was performed for all traits using the stepwise regression model 147 

implemented in TASSEL 5.0 standalone version (Bradbury et al., 2007). The approach 148 

implements both forward inclusion and backward elimination steps. The model accounts for 149 

major effect loci and reduces collinearity among markers. The model was designed for multi-150 

parental populations and no family term was used in the model since MAGIC population 151 

development involved several steps of intercross that reshuffles the genome and minimizes 152 

phenotype-genotype covariance. A total of 32,130 SNPs across 305 RILs were used in the 153 

analysis. A permutation of 1000 was used in the analysis. 154 

To characterize the epistatic genetic architecture underlying flowering time, maturity, 155 

and seed size, the Stepwise Procedure for constructing an Additive and Epistatic Multi-Locus 156 

model (SPAEML; (Chen et al., 2018)) epistasis pipeline implemented in TASSEL 5.0 was 157 

used to perform epistasis mapping for phenotypic traits (FTFILD, FTRILD, FTFISD, 158 

FTRISD, FT_BLUP, MFISD, MRISD, MT_BLUP, SSFISD, SSRISD, and SS_BLUP). One 159 

critical advantage of SPAEML that led to its consideration for this study is its ability to 160 

correctly distinguish between additive and epistatic QTL. SPAEML source code is available 161 

at https://bitbucket.org/wdmetcalf/tassel-5-threaded-model-fitter. The minor allele frequency 162 

of each QTL was estimated using a custom R script from http://evachan.org/rscripts.html. 163 

The proportion of phenotypic variation explained (PVE) by each QTL from both QTL and 164 

Epistasis mapping was estimated by multiplying the R2 obtained from fitting a regression 165 

between the QTL and the trait of interest by 100. The regression model for estimating PVE 166 

is; 167 

yij = 𝜇 + γ# + + ε#%                            [1] 168 

where yij is the phenotype, 𝜇 is the overall mean, γ# is the term for QTL, and ε#% is the residual 169 

term. 170 

 171 
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A set of a priori genes (n=100; Data S1) was developed from Arabidopsis thaliana 172 

and Glycine max flowering time and seed size genes obtained from literature and 173 

https://www.mpipz.mpg.de/14637/Arabidopsis_flowering_genes. The cowpea orthologs of 174 

these genes were obtained by blasting the A. thaliana and G. max sequence of the a priori 175 

genes on the new Vigna genome assembly v.1 on Phytozome (Goodstein et al., 2012). The 176 

corresponding cowpea gene with the highest score was selected as a putative ortholog. 177 

Colocalizations between the cowpea putative orthologs and QTL were identified using a 178 

custom R script. 179 

Marker Assisted Selection Pipeline 180 

In order to evaluate the performance of MAS in cowpea, a custom pipeline was 181 

developed in R. First, using subbagging approach, 80% of the 305 RILs randomly sampled 182 

without replacement was used as the training population; followed by performing a Multi-183 

locus GWAS (Multi-locus Mixed Model, MLMM) (Segura et al., 2012) on both genomic and 184 

phenotypic data of the training population. The MLMM approach implements stepwise 185 

regression involving both forward and backward regressions. This model accounts for major 186 

effect loci and reduces the effect of allelic heterogeneity. A K-only model that accounts for a 187 

random polygenic term (kinship relationship matrix) was used in the MLMM model. No term 188 

for population structure was used in the model since MAGIC population development 189 

involved several steps of intercross that reshuffles the genome and minimizes phenotype-190 

genotype covariance. A total of 32130 SNPs across 305 RILs were used in the GWAS 191 

analysis and coded as -1 and 1 for homozygous SNPs and 0 for heterozygous SNPs. 192 

Bonferroni correction with α = 0.05 was used to determine the cut-off threshold for each trait 193 

association (α/total number of markers = 1.6 e-06).  194 

y = Xβ + Zu + e                             [2] 195 

where y is the vector of phenotypic data, β is a vector of fixed effects other than SNP or 196 

population structure effects; u is an unknown vector of random additive genetic effects from 197 

multiple background QTL for RILs. X and Z are incident matrices of 1s and 0s relating y to β 198 

and u (Yu et al., 2006).  199 

Second, top three most significant associations were then selected from the genomic 200 

data of the training population to train a regression model by fitting the SNPs in a regression 201 

analysis with the phenotypic information. This training model was later used alongside the 202 

predict function in R to predict the phenotypic information of the validation population (20% 203 

that remained after sub-setting the training population). The prediction accuracy of MAS was 204 
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obtained as the correlation between this predicted phenotypic information and the observed 205 

phenotypic information for the validation data. 206 

Genomic Selection Pipeline 207 

In order to evaluate the performance of using known QTL as fixed effects in GS 208 

models and to compare the performance of parametric, semi-parametric and non-parametric 209 

GS models; a custom GS pipeline was developed in R. The GS pipeline was made up of four 210 

GS models, which were named as FxRRBLUP (Ridge Regression BLUP where markers were 211 

fitted as both fixed and random effects; parametric), RRBLUP (RRBLUP where markers 212 

were only fitted as random effects; parametric), Reproducing Kernel Hilbert Space (RKHS; 213 

semi-parametric), and Support Vector Regression (SVR; non-parametric). First, using 214 

subagging approach, 80% of the RILs were randomly sampled without replacement (training 215 

population) followed by running MLMM GWAS and selecting the three most significant 216 

associations, which were used as fixed effects in the FxRRBLUP. These three SNPs were 217 

removed from the rest of SNPs that were fitted as random effects in the FxRRBLUP model. 218 

The RRBLUP, RKHS, and SVR models were fitted simultaneously in the same cycle as 219 

FxRRBLUP to ensure unbiased comparison of GS models. Likewise, in order to ensure 220 

unbiased comparison between GS and MAS approaches; similar seed numbers were used for 221 

the subagging sampling of training populations across 100 cycles for GS and MAS. The 222 

validation set was composed of the remaining 20% of the RILs after sampling the 80% 223 

(training set). Prediction accuracy in GS was estimated as the Pearson correlation between 224 

measured phenotype and genomic estimated breeding values of the validation population. 225 

Also, for flowering time, each environment was used as a training population to predict the 226 

other three environments.  227 

Ridge Regression BLUP (RRBLUP) 228 

The RRBLUP models without and with fixed effects can be described as; 229 

 230 

𝒚 = 𝜇 +	∑ 𝒁,𝑢,
.
,/0 + 𝒆                              [3] 231 

 232 

𝒚 = 𝜇 + ∑ 𝑿3𝛼3
5
3/0 +	∑ 𝒁,𝑢,

.
,/0 + 𝒆        [4] 233 

 234 

where y is the vector (n x 1) of observations (simulated phenotypic data), 𝜇 is the vector of 235 

the general mean, q is the number of selected significant associated markers (q=3), 𝑿𝒌 is the 236 

kth column of the design matrix X, 𝛼 is the fixed additive effect associated with markers k . . . 237 
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q, u random effects term, with E(𝑢,) = 0, Var(𝑢,) = 𝜎9:
; (variance of marker effect), p is the 238 

marker number (p > n), 𝒁𝒎 is the mth column of the design matrix Z, u is the vector of 239 

random marker effects associated with markers m . . . p. In the model, u random effects term, 240 

with E(𝑢,) = 0, Var(𝑢,) = 𝜎9:
; (variance of marker effect), Var(e) = 𝜎; (residual variance), 241 

Cov(u, e) = 0, and the ridge parameter 𝜆 equals 𝜎>
;

𝜎9;
?   (Meuwissen, Hayes and Goddard, 242 

2001; Endelman, 2011; Howard, Carriquiry and Beavis, 2014). In this study RRBLUP with 243 

and without fixed effects were implemented using the mixed.solve function in rrBLUP R 244 

package (Endelman, 2011). 245 

Reproducing Kernel Hilbert Space (RKHS) 246 

Semi-parametric models are known to capture interactions among loci. The semi-247 

parametric GS approach used in this study was implemented as Bayesian RKHS in BLGR 248 

package in R (Perez, 2014), and described as follows:  249 

𝒚 = 𝟏𝜇 + 𝒖	 + 𝜺																            [5] 250 

where y is the vector of phenotype; 𝟏 is a vector of 1’s;  𝜇 is the mean; 𝒖 is vector of random 251 

effects ~MVN (0, 𝐊𝒉𝜎9;); and 𝜺 is the random residual vector ~ MVN (0, I𝜎E; ). In Bayesian 252 

RKHS, the priors 𝑝(𝜇, 𝒖, 𝜺) are proportional to the product of density functions MVN (0, 253 

𝐊𝒉𝜎9;) and MVN (0, I𝜎E; ). The kernel entries matrix (𝐊𝒉) with a Gaussian kernel uses the 254 

squared Euclidean distance between marker genotypes to estimate the degree of relatedness 255 

between individuals, and a smoothing parameter (h) multiplies each entry in 𝐊𝒉 by a 256 

constant. In the implementation of RKHS a default smoothing parameter h of 0.5 was used 257 

alongside 1,000 burns and 2,500 iterations. 258 

Support Vector Regression (SVR) 259 

Support vector regression method (Vapnik, 1995; Maenhout et al., 2007; Long et al., 260 

2011) was used to implement non-parametric GS approach in this study. The aim of the SVR 261 

method is to minimize prediction error by implementing models that minimizes large 262 

residuals (Long et al., 2011). Thus, it is also referred to as the “𝜀-intensive” method.  It was 263 

implemented in this study using the normal radial function kernel (rbfdot) in the ksvm 264 

function of kernlab R package (Karatzoglou et al., 2004).  265 

Parameters evaluated in GS and MAS 266 

Additional parameters were estimated to further evaluate the performance of GS and 267 

MAS models. A regression model was fitted between observed phenotypic information and 268 
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GEBV of the validation set to obtain both intercept and slope for both GS and MAS in each 269 

cycle of prediction. The estimates of the intercept and slope of the regression of the observed 270 

phenotypic information on GEBVs are valuable since their deviations from expected values 271 

can provide insight into deficiencies in the GS and MAS models (Daetwyler et al., 2013). 272 

The bias estimate (slope and intercept) signify how the range of values in measured and 273 

predicted traits differ from each other. In addition, the coincidence index between the 274 

observed and GEBVs for both GS and MAS models was evaluated. The coincidence index 275 

(Fernandes et al., 2018) evaluates the proportion of individuals with highest trait values 276 

(20%) that overlapped between the measured phenotypes and predicted phenotypic trait 277 

values for the validation population. 278 

Evaluation of the effect of marker density and training population size 279 

The effect of marker density and training population size on GS performance were 280 

evaluated. GS was performed using 20% (6426 SNPs), 40% (12852), 60% (19278), and 80% 281 

(25704) of the total number of markers available in this study (32130). Each proportion of the 282 

aforementioned marker densities was randomly sampled without replacement and used for 283 

training GS models and predict in the validation set and repeated for 100 cycles. 284 

Furthermore, to evaluate the effect of training population size on prediction accuracy, four 285 

levels (20% (61 RILs), 40% (122 RILs), 60% (183 RILs), and 80% (244 RILs)) of total 286 

population size (305 RILs) were used to train GS model and validate only 20% (61 RILs) of 287 

the total population size (305 RILs). Subagging approach was used to subset the training and 288 

validation sets at a time and repeated for 100 cycles.  289 

Results 290 

Phenotypic and genotypic variation in cowpea 291 

Results showed variation between number of days to 50% flowering under long-day 292 

photoperiod and short-day photoperiod. Days to flowering time were higher for RILs under 293 

long-day than short-day (Figure 1). Results showed positive correlations between 294 

environments for each trait (Table S1 and S2). Furthermore, genomic heritability were 295 

moderate for the traits ranging between 0.41 under long day photoperiod to 0.48 for 296 

flowering time under short-day photoperiod , 0.21 under restricted irrigation to 0.30 under 297 

full irrigation for maturity, and 0.39 under restricted irrigation to 0.47 under full irrigation for 298 

seed size (Table S1 and S2). 299 

 300 
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 301 
Figure 1:The norm of reaction plot for flowering time variation under long-day and short-day periods. 302 
Evaluation environments are represented on the x-axis (full irrigation and long day [FILD], full irrigation and 303 
short day [FISD], restricted irrigation and long day [RILD], and restricted irrigation and short day [RISD]). The 304 
number of days to 50% flowering is represented on the y-axis. 305 

Genetic architecture of traits 306 

Main effect QTL 307 
The cowpea MAGIC population facilitated the characterization of the genetic 308 

architecture of flowering time, maturity and seed size. In this study QTL associated with 309 

flowering time, maturity, and seed size were identified using stepwise regression analysis 310 

(Table S3, Data S2). Results showed that 32 QTL (22 unique) in total were associated with 311 

flowering time traits (FT_BLUP [8 QTL, explaining 73.2 % of phenotypic variation (PV)], 312 

FTFILD [5 QTL, explaining 66.2% of PV], FTRILD [5 QTL explaining 48.6% of PV], 313 

FTFISD [8 QTL explaining 52.1% of PV], and FTRISD [6 QTL explaining 43.9% of PV]). 314 

Each of the total QTL associated with flowering time traits explained between 2% to 28% of 315 

the phenotypic variation. QTL qVu9:23.36, qVu9:24.77, and qVu9:22.65 (MAF= 0.29, 0.28, 316 

and 0.49) explained the largest proportion of variation (28%, 24%, and 19%) with additive 317 

effects of 7, 7, and 6 days respectively. The minor allele frequency (MAF) of the flowering 318 

time QTL ranges from 0.13 to 0.50. For maturity traits, 13 QTL (11 unique QTL) in total 319 

were identified with five QTL (explaining 35.9% of PV) for MAT_BLUP, 4 QTL (explaining 320 

24.5% of PV) for MFISD, and 4 QTL (explaining 27.9% of PV) for MRISD. All maturity 321 
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traits QTL explained between 4.5 to 10% of phenotypic variation and MAF ranges from 0.15 322 

to 0.49.  323 

Furthermore, for seed size traits, 10 QTL (7 unique QTL) in total were identified with 324 

3 QTL (explaining 39.3% of PV) for SS_BLUP, 3 QTL (explaining 41% of PV) for SSFISD, 325 

and 4 QTL (explaining 39.4% of PV) for SSRISD. QTL qVu8:74.21, qVu8:74.29, 326 

qVu8:76.81 associated with SSFISD, SS_BLUP, and SSRISD explained the largest PV 327 

(29%, 25%, and 20%). All seed size trait QTL explained between 3 to 29% of PV and with 328 

MAF range between 0.21 and 0.49. A pleiotropic QTL qVu8:74.21 (MAF=0.24) was 329 

associated with both MRISD and SSRISD (explained 5% and 29% of PV respectively). 330 

Two-way epistatic interaction QTL 331 
Currently there is limited knowledge about what role epistasis plays in phenotypic 332 

variation in cowpea. Our results identified epistatic QTL underlying flowering time, maturity, 333 

and seed size (Table S4, Data S3). For flowering time traits, there were 42 two-way epistatic 334 

interactions at 84 epistatic loci (only 65 loci were unique). Among these are; 20 epistatic loci 335 

for FLT_BLUP, 18 epistatic or FTFILD, 12 epistatic loci for FTRILD, 14 epistatic loci for 336 

FTFISD, and 20 epistatic loci for FTRISD. Some large effect loci were involved in epistatic 337 

interactions in flowering time; examples include, QTL qVu9:25.39 (MAF=0.28, FT_BLUP 338 

PVE=23.5%, FTFILD PVE=24.5%, FTRILD PVE=26%) and QTL qVu9:3.46 (MAF=0.35, 339 

FLT_BLUP PVE=13.5%, FTRILD PVE=14.1%). For maturity, there were 17 pairwise 340 

epistatic interactions across 34 loci (of which 30 were unique). Among the maturity QTL, 341 

qVu9:8.37 had the largest effect explaining ~9% of the phenotypic variation. One epistatic 342 

interaction overlapped with both FTRISD, MRISD, and MT_BLUP (qVu2:48.05+ 343 

qVu9:8.37, MAF=0.30 and 0.39 respectively). For seed size, there were 13 interactions at 26 344 

loci (19 were unique). Only one QTL (qVu8:74.29, MAF=0.25) had interactions with 345 

multiple QTL. The largest effect epistatic QTL associated with the three seed size traits 346 

(SS_BLUP, SSFISD, and SSRISD) is qVu8:74.29 (MAF0.25). Some QTL were found to 347 

overlap among main effect QTL and epistatic effect QTL for flowering time (nine QTL), 348 

maturity (three QTL), and seed size (three QTL) (Figure S1). 349 

Main effect and epistatic QTL colocalized with a priori genes 350 
Gene functions can be conserved across species (Huang et al., 2017). In this study, a 351 

set of a priori genes was compiled from both A. thaliana and G. max. Both main effect QTL 352 

and epistatic QTL colocalized with putative cowpea orthologs of A. thaliana and G. max 353 

flowering time and seed size genes (Figure 2 - 5, Figure S2 - S11, Data S4). A putative 354 

cowpea ortholog (Vigun09g050600) of A. thaliana circadian clock gene phytochrome E 355 
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(PHYE; AT4G18130) (Aukerman and Sakai, 2003) colocalized with FTFILD QTL 356 

(qVu9:22.65; PVE=19.5%; main effect QTL) at the same genetic position. Also, a putative 357 

cowpea ortholog (Vigun07g241700) of A. thaliana circadian clock gene TIME FOR 358 

COFFEE (TIC; AT3G22380) (Hall et al., 2003) colocalized at the same genetic position with 359 

FTFISD QTL (qVu7:86.92; PVE=2.6%; main effect QTL). The cowpea flowering time gene 360 

(VuFT; Vigun06g014600; CowpeaMine v.06) colocalized with an epistatic QTL (qVu6:0.68; 361 

PVE=3.5%) associated with FLT_BLUP and FTRILD at the same genetic position. The 362 

cowpea ortholog (Vigun11g157600) of A. thaliana circadian clock gene PHYTOCLOCK1 363 

(PCL1; AT3G46640) (Hazen et al., 2005) colocalized with an epistatic QTL (qVu11:50.94; 364 

PVE=8-10%) associated with both FTFILD and FTRILD at the same genetic position. A 365 

putative cowpea ortholog (Vigun11g148700) of A. thaliana photoperiod gene TARGET OF 366 

EAT2 (TOE2; AT5G60120) (Mathieu et al., 2009) was found at a proximity of 0.6cM from a 367 

QTL (qVu11:49.06; PVE=7-11%; main effect QTL) associated with FTFILD, FTRILD, and 368 

FLT_BLUP. Some of the a priori genes colocalized with some QTL that are both main effect 369 

and epistatic QTL. For instance, the cowpea ortholog (Vigun01g205500) of G. max flowering 370 

time gene phytochrome A (PHYA; Glyma19g41210) (Tardivel et al., 2014) colocalized with a 371 

FTFILD QTL (qVu1:66.57; PVE=5.3%; both main effect and epistatic QTL) at the same 372 

genetic position (Data S4). Lastly, a putative cowpea ortholog (Vigun08g217000) of A. 373 

thaliana histidine kinase2 gene (AHK2; AT5G35750) (Orozco-Arroyo et al., 2015) was 374 

found at a proximity of about 1-2cM from three QTL (qVu8:74.29, qVu8:74.21, qVu8:76.81; 375 

PVE=25%, 29.3%, and 20% respectively; main effect and epistatic QTL) associated with 376 

seed size traits SS_BLUP, SSFISD, and SSRISD). 377 

In addition, some a priori genes were associated with multiple traits. The putative 378 

cowpea ortholog (Vigun05g024400) of A. thaliana circadian clock gene CONSTANS (CO; 379 

AT5G15840) (Wenkel et al., 2006) colocalized at the same genetic position with a QTL 380 

(qVu5:8.5; PVE=6-8%; both main effect and epistatic QTL) associated with flowering time 381 

and maturity traits (FLT_BLUP, FTFISD, FTRILD, FTRISD, MAT_BLUP, and MFISD); 382 

The putative cowpea ortholog (Vigun09g025800) of A. thaliana circadian clock gene 383 

ZEITLUPE (ZTL; AT5G57360) (Somers et al., 2000) colocalized at the same genetic position 384 

with a QTL (qVu9:8.37; PVE=9-11%; both main effect and epistatic QTL) associated with 385 

flowering time and maturity traits (FTFISD, FTRISD, and MRISD).  386 

 387 
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 388 
Figure 2: Main QTL plot for flowering time traits in the cowpea MAGIC population. QTL plots for 389 
flowering time under full irrigation and long day (FTFILD), flowering time under restricted irrigation and long 390 
day (FTRILD), flowering time under full irrigation and short day (FTFISD), flowering time under restricted 391 
irrigation and short day (FTRISD), and BLUPs of environments (FLT_BLUP). The chromosome numbers are 392 
located on the x-axis and the negative log of the P-values on the y-axis. The genetic position of the 393 
colocalization between QTL and a priori genes are indicated by broken vertical lines. The texts displayed on the 394 
vertical broken lines are the names of a priori genes. 395 

 396 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 14, 2019. ; https://doi.org/10.1101/576819doi: bioRxiv preprint 

https://doi.org/10.1101/576819
http://creativecommons.org/licenses/by-nd/4.0/


 15 

 397 

 398 
Figure 3: Epistatic QTL for FLT_BLUP for MAGIC population. Chromosomes are shown in shades of 399 
gray, two-way interacting loci are connected with black solid lines, and colocalized a priori genes are texts 400 
between chromosomes and genetic map. 401 
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 402 
Figure 4: Epistatic QTL for MAT_BLUP in MAGIC population. Chromosomes are shown in shades of 403 
gray, two-way interacting loci are connected with black solid lines, and colocalized a priori genes are texts 404 
between chromosomes and genetic map. 405 
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 407 
Figure 5: Epistatic QTL for MAT_BLUP in MAGIC population. Chromosomes are shown in shades of 408 
gray, two-way interacting loci are connected with black solid lines, and colocalized a priori genes are texts 409 
between chromosomes and genetic map. 410 

GS and MAS for flowering time 411 

Prior knowledge about the genetic architecture of a trait can help make informed 412 

decisions in breeding. First to compare the performance of GS and MAS models for 413 

flowering time within each daylength results showed that under long day length (FTFILD and 414 

FTRILD); FxRRBLUP (mean prediction accuracy [mPA] = 0.68, 0.68; mean coincidence 415 

index [mCI]=0.49, 0.40) and MAS [mPA=0.64, 0.61; mCI=0.45, 0.37] outperformed 416 

RRBLUP [mPA=0.55, 0.58; mCI=0.37, 0.35], RKHS [mPA=0.55, 0.58; mCI=0.37, 0.36], 417 

and SVR [mPA=0.54, 0.50; mCI=0.35, 0.28] (Figures 6 and 7, Table S 3 and 4). For 418 

flowering time under long day, coincidence index values were higher under full irrigation 419 
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than under restricted irrigation. For flowering time under short day (FTFISD and FTRISD), 420 

all GS models outperformed MAS [mPA=0.33, 0.25; mCI=0.30, 0.26]. Among the GS 421 

models, RKHS and RRBLUP had the highest prediction accuracies. However, the 422 

coincidence index of FxRRBLUP was higher than the rest of the GS models for FTRISD. In 423 

general, the mean of the slope and intercept for the GS models except SVR were usually 424 

close to the expected (1 and 0) (Figure S12-S13). MAS also deviated away from the expected 425 

slope and intercept (1 and 0) more than the FxRRBLUP, RKHS, and RRBLUP for FTRISD 426 

(Figure S12-S13). Second to evaluate the effect of photoperiod and irrigation regime on the 427 

performance of training population, each environment (day length and irrigation regime 428 

combination) was used as a training population to predict the rest in a di-allele manner. 429 

Results showed that prediction accuracy between environments in the same photoperiod was 430 

higher than environments in different photoperiod (Figure S14). Also, when training 431 

populations were under full irrigation, their prediction accuracies were higher than when 432 

training populations were under restricted irrigation (Figure S14). For FT_BLUP, GS models 433 

outperformed MAS except SVR which had the same mPA [0.59] as MAS while FxRRBLUP 434 

had the highest mPA and mCIs among the GS models (Figure S 15 and 16).  435 

GS and MAS for maturity and seed size 436 

For maturity (MT_BLUP, MFISD, and MRISD), RKHS and RRBLUP had better 437 

performance (Figures 6 and 7; Table S4 and S5) than the rest of the models including MAS. 438 

All models deviated from the expected slope and intercept estimates, but RRBLUP had the 439 

least deviation for MRISD. For seed size, FxRRBLUP had the best performance followed by 440 

MAS compared to the rest of the GS models (RKHS, RRBLUP, and SVR) (Figures 6 and 7; 441 

Table S5 and S6). GS and MAS models had varying levels of deviation from the expected 442 

estimates of slope and intercept. RKHS and RRBLUP were closer to the expected than 443 

FxRRBLUP and MAS (Figure S12-S13). SVR had the highest deviation. 444 

Effect of marker density and training population size 445 
The effect of marker density and population size on GS in cowpea was investigated 446 

with the aim of making recommendations for resource limited national research centers in 447 

developing countries. For the effect of marker density on prediction accuracy, no significant 448 

relationship was observed between marker densities for MTBLUP while a significant 449 

increase in prediction accuracy was only observed between marker density 20% - 60% for 450 

FTBLUP, and between marker densities 40% - 60% and 40% - 80% for SSBLUP (Figure 451 

S19A). For the training population size effect, results revealed that prediction accuracy 452 

increased with increasing the size of the training set. All difference between training set sizes 453 
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were significantly increased with the training population size increase (Tukey test P-value < 454 

0.001) (Figure S19B).  455 

 456 

 457 
Figure 6: Comparison of prediction accuracy across GS and MAS models. Boxplots in each panel showed the 458 
distribution of prediction accuracy values across 100 cycles for FxRRBLUP (Ridge Regression Best Linear Unbiased 459 
Prediction: Parametric model with fixed effects), RKHS (Reproducing Kernel Hilbert Space; Semi-Parametric model), 460 
RRBLUP (Ridge Regression Best Linear Unbiased Prediction: Parametric model with no fixed effects), SVR (Support 461 
Vector Regression: Non-Parametric model), and MAS (Marker Assisted Selection) for flowering time under full irrigation 462 
and long day (FTFILD), flowering time under restricted irrigation and long day (FTRILD), flowering time under full 463 
irrigation and short day (FTFISD), flowering time under restricted irrigation and short day (FTRISD), maturity under full 464 
irrigation and short day (MFISD), maturity under restricted irrigation and short day, seed size under full irrigation and short 465 
day (SSFISD), and seed size under restricted irrigation and short day (SSRISD). 466 

●0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

FTFILD

Pr
ed

ic
tio

n 
ac

cu
ra

cy

FxR
RBLU

P

RKHS

RRBLU
P

SVR
MAS

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

FTFISD

Pr
ed

ic
tio

n 
ac

cu
ra

cy

FxR
RBLU

P

RKHS

RRBLU
P

SVR
MAS

●

●●

●

●

●

●

●●

●

●

●

●
●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

FTRILD

Pr
ed

ic
tio

n 
ac

cu
ra

cy

FxR
RBLU

P

RKHS

RRBLU
P

SVR
MAS

●

●
●

●●

●●

●

● ●

●

●
●

●

●
●

0.
0

0.
2

0.
4

0.
6

0.
8

FTRISD

Pr
ed

ic
tio

n 
ac

cu
ra

cy

FxR
RBLU

P

RKHS

RRBLU
P

SVR
MAS

●−0
.2

0.
2

0.
4

0.
6

MFISD

Pr
ed

ic
tio

n 
ac

cu
ra

cy

FxR
RBLU

P

RKHS

RRBLU
P

SVR
MAS

●
●

●●

●
●

●

−0
.4

0.
0

0.
4

0.
8

MRISD

Pr
ed

ic
tio

n 
ac

cu
ra

cy

FxR
RBLU

P

RKHS

RRBLU
P

SVR
MAS

●

●

●

●●

−0
.2

0.
2

0.
4

0.
6

SSFISD

Pr
ed

ic
tio

n 
ac

cu
ra

cy

FxR
RBLU

P

RKHS

RRBLU
P

SVR
MAS

●

●

●
●
●

●

●

0.
0

0.
2

0.
4

0.
6

SSRISD

Pr
ed

ic
tio

n 
ac

cu
ra

cy

FxR
RBLU

P

RKHS

RRBLU
P

SVR
MAS

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 14, 2019. ; https://doi.org/10.1101/576819doi: bioRxiv preprint 

https://doi.org/10.1101/576819
http://creativecommons.org/licenses/by-nd/4.0/


 20 

s467 

 468 
Figure 7: Comparison of coincidence index across GS and MAS models. Boxplots in each panel showed the distribution 469 
of coincidence index values across 100 cycles for FxRRBLUP (Ridge Regression Best Linear Unbiased Prediction: 470 
Parametric model with fixed effects), RKHS (Reproducing Kernel Hilbert Space; Semi-Parametric model), RRBLUP (Ridge 471 
Regression Best Linear Unbiased Prediction: Parametric model with no fixed effects), SVR (Support Vector Regression: 472 
Non-Parametric model), and MAS (Marker Assisted Selection) for flowering time under full irrigation and long day 473 
(FTFILD), flowering time under restricted irrigation and long day (FTRILD), flowering time under full irrigation and short 474 
day (FTFISD), flowering time under restricted irrigation and short day (FTRISD), maturity under full irrigation and short 475 
day (MFISD), maturity under restricted irrigation and short day, seed size under full irrigation and short day (SSFISD), and 476 
seed size under restricted irrigation and short day (SSRISD). 477 

Discussion 478 

Epistasis play important roles in determining the genetic architecture of agronomic 479 

traits in cowpea 480 

Multi-parental populations have demonstrated ability to facilitate robust characterization 481 

of genetic architecture in terms of genetic effect size, pleiotropy, and epistasis (Buckler et al., 482 

2009; Brown et al., 2011; Peiffer et al., 2014; Bouchet et al., 2017; Mathew et al., 2018). 483 

Using the cowpea MAGIC population, this study showed that both additive main QTL and 484 

additive x additive epistatic QTL with large and (or) moderate effects underlie flowering 485 

time, maturity, and seed size in cowpea. Although most of the epistatic QTL identified were 486 

two-way interacting loci, results showed some of them were involved in interactions with 487 

more than one independent loci (Figure 3-5 and Figure S4-11). This implies the possibility of 488 

three-way epistatic interactions underlying some of the traits. Our inability to identify and 489 

discuss three-way epistatic interactions is due to the mapping approach used, which only 490 

mapped two-way epistatic interactions. Three-way epistatic interactions have been found to 491 

underlie flowering time in the selfing crop specie barley (Mathew et al., 2018). Furthermore, 492 

overlaps between main and epistatic QTL (Figure S2) indicate these to be main QTL that are 493 
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involved in epistatic interactions with other loci. However, one caveat that may also be 494 

responsible for some of the QTL among the overlaps is the false positive rate of SPEAML. 495 

The SPEAML software used for epistasis mapping showed high false positive rate with a 496 

sample size of 300 individuals (Chen et al., 2018). It is possible that some of the overlapped 497 

QTL are main QTL that were miscategorized as epistatic loci by SPEAML since our cowpea 498 

MAGIC population had 305 RILs.      499 

Flowering time is an important adaptive trait in breeding. In this study, our results 500 

demonstrated that the flowering time variation in cowpea is due to large and moderate main 501 

effects and epistatic loci (Table S3 and Table S4). Epistatic loci underlie flowering time in 502 

both selfing (Huang et al., 2013; Juenger et al., 2005; Komeda, 2004;Mathew et al., 2018) 503 

(Chen et al., 2018)(Li et al., 2018) and outcrossing (Buckler et al., 2009; Durand et al., 2012) 504 

species. In addition, the effect size of flowering time loci differs between selfing and out 505 

crossing species as QTL effect sizes are large in the former (Lin, Schertz and Paterson, 1995; 506 

Maurer et al., 2015) and small in the later (Buckler et al., 2009). In the present study, the 507 

large effects (up to 25% PVE and additive effect of 7 days) flowering time loci were only 508 

identified under long day photoperiod and not under short-day photoperiod (Table S3 and 509 

Table S4). The loci detected under short day photoperiod were of moderate effects 510 

(PVE=1%-10% and maximum additive effect size of 2 days). A trait’s genetic architecture is 511 

a reflection of its stability over evolutionary time and traits subjected to strong recent 512 

selection were characterized with large effect loci (Brown et al., 2011). Our result suggests 513 

that cowpea flowering time adaptation to long-day photoperiod has undergone a recent 514 

selection compared to flowering time under short-day photoperiod. 515 

Distinct and common genetic regulators underlie flowering time 516 

Conserved genetic pathways often underlie traits in plant species (Liu et al., 2013; 517 

Huang et al., 2017). Examination of colocalizations between a priori genes and main effect 518 

and epistatic QTL in this study identified putative cowpea orthologs of A. thaliana and G. 519 

max flowering time and seed size genes that may be underlie phenotypic variation in cowpea. 520 

Flowering time is affected by photoperiodicity and regulated by a network of genes (Sasaki, 521 

Frommlet and Nordborg, 2017) involved in floral initiation, circadian clock regulation, and 522 

photoreception (Lin, 2002). Photoperiod impacted days to flowering time as observed from 523 

the norm of reaction plot for cowpea MAGIC flowering time data which showed drastic 524 

reductions in days to flowering for RILs under short day compared to long days (Figure 1). 525 

Our mapping results (main effect and epistatic) showed both unique and common loci 526 

underlying flowering time under both long and short photoperiod (Figure 1; Figure S4-S8). In 527 
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addition, certain a priori genes were unique to either flowering time under long day or short 528 

day. For instance, cowpea putative orthologs of photoreceptors (PHY A [Vigun01g205500] 529 

and PHY E [Vigun09g050600]) and circadian clock gene PHYTOCLOCK1 (PCL1 530 

[Vigun11g157600]) colocalized with only QTL associated with flowering time under long 531 

day, while cowpea putative orthologs of circadian clock genes (Time for Coffee [TIC 532 

(Vigun07g241700)] and Zeitlupe [ZTL]) colocalized with only QTL associated with 533 

flowering time under short day. However, the cowpea putative ortholog of photoperiod gene 534 

CONSTANS (CO [Vigun05g024400]) colocalized with QTL associated with flowering time 535 

under both long and short days. Thus, our study suggests that distinct and common genetic 536 

regulators control flowering time adaptation to both long and short-day photoperiod in 537 

cowpea. Further studies utilizing functional approaches will be helpful to decipher gene 538 

regulation patterns under both long and short photoperiod in cowpea. 539 

Genetic architecture influenced GS and MAS performance 540 
GS models differ in their efficiency to capture complex cryptic interactions among 541 

genetic markers (de Oliveira Couto et al., 2017). The traits evaluated in this study are 542 

controlled by both main effect and epistatic loci. In this study, comparison among the GS 543 

models showed that parametric and semi-parametric GS models outperformed non-544 

parametric GS model for all traits. SVR, a non-parametric model had the least prediction 545 

accuracy and coincidence index and also had the highest bias (Figure S12 and S13). Previous 546 

studies have shown that semi-parametric and non-parametric models increased prediction 547 

accuracy under epistatic genetic architecture (Howard, Carriquiry and Beavis, 2014; Jacquin, 548 

Cao and Ahmadi, 2016). In this study, none of semi-parametric and non-parametric models 549 

outperformed parametric models (Figure 6 and 7). Some of the studies comparing the 550 

performance of parametric, semi-parametric and non-parametric GS models were based on 551 

simulations of traits controlled solely by epistatic genetic architectures. Therefore, the 552 

performance of the models under simulated combined genetic effects (additive + epistasis) is 553 

not well understood. The comparable performance of RKHS to RRBLUP (parametric model) 554 

in this study in terms of prediction accuracy, coincidence index, and bias estimates, attests to 555 

RKHS ability to capture both additive and epistatic interactions (Gianola, Fernando and 556 

Stella, 2006; Gianola and Van Kaam, 2008; De Los Campos et al., 2010; Gota and Gianola, 557 

2014) for both prediction accuracy and selection of top performing lines. The performance of 558 

GS models’ is often indistinguishable and RRBLUP has been recommended as an efficient 559 

parametric GS model (Heslot et al., 2012; Lipka et al., 2015). SVR had the worst 560 

performance with extremely high bias estimates. 561 
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Understanding the genetic architecture of agronomic traits can help improve 562 

predictions (Hayes et al., 2010; Swami, 2010). Our study demonstrated that the effect size of 563 

QTL associated with a trait played a role in the performance of GS and MAS models. For 564 

instance, for traits controlled by both large and moderate effects loci (FTFILD, FTRILD, 565 

SSFISD, and SSRISD) parametric model with known loci as fixed effect (FxRRBLUP) 566 

followed by MAS outperformed the rest of the GS models (RRBLUP, RKHS, and SVR). The 567 

use of known QTL as fixed effects has been shown to increase prediction accuracy 568 

(Bernardo, 2014; Spindel et al., 2016) in parametric GS models. For traits that were 569 

controlled by moderate effects loci (FTFISD, FTRISD, MFISD, and MTRISD), our results 570 

showed that the two parametric GS models (FxRRBLUP and RRBLUP) and semi-parametric 571 

(RKHS) had similar prediction accuracy, however FxRRBLUP had higher bias than 572 

RRBLUP and RKHS (Figure S12 - S13). Accuracy of prediction is influenced by genetic 573 

architecture (Hayes et al., 2010). Furthermore, the performance of MAS in comparison to GS 574 

models in this study showed that large effects loci are important influencers of MAS 575 

(Bernardo, 2008). For small breeding programs in developing countries, MAS might be a 576 

prudent choice over GS for traits controlled only loci of large effects in cowpea since GS will 577 

require genotyping of more markers than MAS. The large effect QTL identified in this study 578 

can be transferred to different breeding populations because they were identified in a MAGIC 579 

population with wide genetic background (Chen et al., 2018; Huynh et al., 2018). Our study 580 

thus demonstrates that prior knowledge of the genetic architecture of a trait can help make 581 

informed decision about the best GEB method to employ in breeding. 582 

Experimental design considerations for GS in cowpea 583 
An important consideration in this study is to provide recommendations to breeders 584 

on resources needed for the implementation of GS in cowpea. First, this study demonstrated 585 

that genomic prediction within the same photoperiod is more efficient than across different 586 

photoperiod (Figure S14). Prediction between irrigation regimes had similar performance. 587 

The differences observed for GS between photoperiods showed that genotype x environment 588 

(GxE) interaction is an important factor to consider in cowpea flowering time GS. Increased 589 

genetic gains were observed in GS approaches that modeled GxE interactions (Lopez-Cruz et 590 

al., 2015; Crossa et al., 2016; de Oliveira Couto et al., 2017). Second, our results showed that 591 

the size of the training population had an effect on prediction accuracy as prediction accuracy 592 

increased with increase in training population size. The size of a training population is an 593 

important factor influencing prediction accuracy (Liu et al., 2018) and studies have shown 594 

increase in prediction accuracy with increase in training population size in several crop 595 
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species (Albrecht et al., 2011; Spindel et al., 2015). Third, increase in marker density only 596 

significantly increased prediction between 20-60% for FLT_BLUP and 40-60% and 60-80% 597 

for SS_BLUP (Figure S19). Though these differences were significant, the mean prediction 598 

accuracy values were close to each other for all marker densities (Figure S19A). If using 20% 599 

of markers (6424 SNPs) gave similar prediction accuracy as 32,130 SNPs; then it might be 600 

more cost efficient for a breeder to use a small marker density. For instance, for flowering 601 

time, 6424 SNPs gave a mean prediction accuracy of 0.665 and 32130 SNPs gave a 602 

prediction accuracy of 0.671, then it might be logical and cost efficient to use ~6000 markers 603 

for GS. 604 

In summary, to the best of our knowledge, this is the first study that will characterize 605 

epistasis and provide insights into the underpinnings of genomic selection versus marker 606 

assisted selection in cowpea. Our study identified both main QTL and two-way epistatic loci 607 

underlying flowering time, maturity, and seed size. We also found that flowering time is 608 

under the control of both large and moderate effect loci similar to findings in other inbreeding 609 

species. The large effect QTL and their colocalized a priori genes identified in this study will 610 

serve as pedestal for future studies aimed at the molecular characterization of the genes 611 

underlying flowering time and seed size in cowpea. We demonstrated that prior knowledge of 612 

the genetic architecture of a trait can help make informed decision in GEB. Together, our 613 

findings in this study are relevant for crop improvement in both developed and developing 614 

countries. 615 
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Tables 986 

Supplementary figures 987 
 988 

 989 
Figure S 1: Venn diagram of QTL overlap between main effect QTL mapping (Q.MAP) and epistasis 990 
mapping (E.MAP) for flowering time, maturity, and seed size. 991 

Flowering Time

Maturity

Seed Size

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 14, 2019. ; https://doi.org/10.1101/576819doi: bioRxiv preprint 

https://doi.org/10.1101/576819
http://creativecommons.org/licenses/by-nd/4.0/


 34 

 992 
Figure S 2: QTL plot for maturity traits in the cowpea MAGIC population. QTL plots for maturity 993 
under full irrigation and short day (MFISD), maturity under restricted irrigation and short day (MRISD), 994 
and BLUPs of environments (MAT_BLUP). The chromosome numbers are located on the x-axis and the 995 
negative log of the P-values on the y-axis. The genetic position of the colocalization between QTL and a 996 
priori genes are indicated by broken vertical lines. The texts displayed on the vertical broken lines are the 997 
names of a priori genes. 998 

 999 

 1000 
Figure S 3: QTL plot for seed size traits in the cowpea MAGIC population.QTL plots for maturity 1001 
under full irrigation and short day (SSFISD), maturity under restricted irrigation and short day (SSRISD), 1002 
and BLUPs of environments (SS_BLUP). The chromosome numbers are located on the x-axis and the 1003 
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negative log of the P-values on the y-axis. The genetic position of the colocalization between QTL and a 1004 
priori genes are indicated by broken vertical lines. The texts displayed on the vertical broken lines are the 1005 
names of a priori genes. 1006 

 1007 
Figure S 4: Genetic map of the cowpea multiparent advanced generation inter-cross population (MAGIC) 1008 
with pairwise interactions between epistatic QTL for FTFILD (Flowering time under full irrigation and 1009 
long day). Chromosomes are shown in shades of gray, two-way interacting loci are connected with black solid 1010 
lines, and colocalized a priori genes are texts between chromosomes and genetic map. 1011 
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 1013 
Figure S 5: Genetic map of the cowpea multiparent advanced generation inter-cross population (MAGIC) 1014 
with pairwise interactions between epistatic QTL for FTRILD (Flowering time under restricted 1015 
irrigation and long day). Chromosomes are shown in shades of gray, two-way interacting loci are connected 1016 
with black solid lines, and colocalized a priori genes are texts between chromosomes and genetic map. 1017 
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 1019 
Figure S 6: Genetic map of the cowpea multiparent advanced generation inter-cross population (MAGIC) 1020 
with pairwise interactions between epistatic QTL for FTFISD (Flowering time under full irrigation and 1021 
short day). Chromosomes are shown in shades of gray, two-way interacting loci are connected with black solid 1022 
lines, and colocalized a priori genes are texts between chromosomes and genetic map. 1023 
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 1025 
Figure S 7: Genetic map of the cowpea multiparent advanced generation inter-cross population (MAGIC) 1026 
with pairwise interactions between epistatic QTL for FTRISD (Flowering time under restricted irrigation 1027 
and short day). Chromosomes are shown in shades of gray, two-way interacting loci are connected with black 1028 
solid lines, and colocalized a priori genes are texts between chromosomes and genetic map. 1029 
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 1032 
Figure S 8: Genetic map of the cowpea multiparent advanced generation inter-cross population (MAGIC) 1033 
with pairwise interactions between epistatic QTL for MFISD (Maturity under full irrigation and short 1034 
day). Chromosomes are shown in shades of gray, two-way interacting loci are connected with black solid lines, 1035 
and colocalized a priori genes are texts between chromosomes and genetic map. 1036 
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 1038 
Figure S 9: Genetic map of the cowpea multiparent advanced generation inter-cross population (MAGIC) 1039 
with pairwise interactions between epistatic QTL for MRISD (Maturity under restricted irrigation and 1040 
short day). Chromosomes are shown in shades of gray, two-way interacting loci are connected with black solid 1041 
lines, and colocalized a priori genes are texts between chromosomes and genetic map. 1042 
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 1044 
Figure S 10: Genetic map of the cowpea multiparent advanced generation inter-cross population 1045 
(MAGIC) with pairwise interactions between epistatic QTL for SSFISD (Seed Size under full irrigation 1046 
and short day). Chromosomes are shown in shades of gray, two-way interacting loci are connected with black 1047 
solid lines, and colocalized a priori genes are texts between chromosomes and genetic map. 1048 

 1049 

0

30

60

1

0

30

60

2

0

30

60

90

120

3

0

30

60

4

0

30

60

90 50
30

60

6

0

30

60

90

7

0

30

60

8

0

30

60

90

9

0

30

60

10

0

30

60

11

AHK2

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 14, 2019. ; https://doi.org/10.1101/576819doi: bioRxiv preprint 

https://doi.org/10.1101/576819
http://creativecommons.org/licenses/by-nd/4.0/


 42 

 1050 
Figure S 11: Genetic map of the cowpea multiparent advanced generation inter-cross population 1051 
(MAGIC) with pairwise interactions between epistatic QTL for SSRISD (Seed size under restricted 1052 
irrigation and short day). Chromosomes are shown in shades of gray, two-way interacting loci are connected 1053 
with black solid lines, and colocalized a priori genes are texts between chromosomes and genetic map. 1054 
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 1055 
Figure S 12: Comparison of Slope of regression between observed and predicted trait values across GS and MAS 1056 
models. Boxplots in each panel showed the distribution of slope values across 100 cycles for FxRRBLUP (Ridge Regression 1057 
Best Linear Unbiased Prediction: Parametric model with fixed effects), RKHS (Reproducing Kernel Hilbert Space; Semi-1058 
Parametric model), RRBLUP (Ridge Regression Best Linear Unbiased Prediction: Parametric model with no fixed effects), 1059 
SVR (Support Vector Regression: Non-Parametric model), and MAS (Marker Assisted Selection) for flowering time under 1060 
full irrigation and long day (FTFILD), flowering time under restricted irrigation and long day (FTRILD), flowering time 1061 
under full irrigation and short day (FTFISD), flowering time under restricted irrigation and short day (FTRISD), maturity 1062 
under full irrigation and short day (MFISD), maturity under restricted irrigation and short day, seed size under full irrigation 1063 
and short day (SSFISD), and seed size under restricted irrigation and short day (SSRISD). 1064 

 1065 

 1066 
Figure S 13: Comparison of intercept of regression between observed and predicted trait values across GS and MAS 1067 
models. Boxplots in each panel showed the distribution of intercept values across 100 cycles for FxRRBLUP (Ridge 1068 
Regression Best Linear Unbiased Prediction: Parametric model with fixed effects), RKHS (Reproducing Kernel Hilbert 1069 
Space; Semi-Parametric model), RRBLUP (Ridge Regression Best Linear Unbiased Prediction: Parametric model with no 1070 
fixed effects), SVR (Support Vector Regression: Non-Parametric model), and MAS (Marker Assisted Selection) for 1071 
flowering time under full irrigation and long day (FTFILD), flowering time under restricted irrigation and long day 1072 
(FTRILD), flowering time under full irrigation and short day (FTFISD), flowering time under restricted irrigation and short 1073 
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day (FTRISD), maturity under full irrigation and short day (MFISD), maturity under restricted irrigation and short day, seed 1074 
size under full irrigation and short day (SSFISD), and seed size under restricted irrigation and short day (SSRISD). 1075 

 1076 

 1077 
Figure S 14: Environment by environment prediction values across GS models. Boxplots in each panel showed the 1078 
distribution of intercept values across 100 cycles for (A) FxRRBLUP (Ridge Regression Best Linear Unbiased Prediction: 1079 
Parametric model with fixed effects), (B) RKHS (Reproducing Kernel Hilbert Space; Semi-Parametric model), (C) 1080 
RRBLUP (Ridge Regression Best Linear Unbiased Prediction: Parametric model with no fixed effects), and (D) SVR 1081 
(Support Vector Regression: Non-Parametric model) for flowering time under full irrigation and long day (FTFILD), 1082 
flowering time under restricted irrigation and long day (FTRILD), flowering time under full irrigation and short day 1083 
(FTFISD), flowering time under restricted irrigation and short day (FTRISD) 1084 
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 1085 
 1086 

 1087 
Figure S 15:  Comparison of prediction accuracy across GS and MAS models. Boxplots in each panel showed the 1088 
distribution of prediction accuracy values across 100 cycles for FxRRBLUP (Ridge Regression Best Linear Unbiased 1089 
Prediction: Parametric model with fixed effects), RKHS (Reproducing Kernel Hilbert Space; Semi-Parametric model), 1090 
RRBLUP (Ridge Regression Best Linear Unbiased Prediction: Parametric model with no fixed effects), SVR (Support 1091 
Vector Regression: Non-Parametric model), and MAS (Marker Assisted Selection) for flowering time BLUP (FLT_BLUP), 1092 
maturity BLUP (MAT_BLUP), seed size BLUP (SS_BLUP). 1093 

 1094 
 1095 

 1096 
Figure S 16: Comparison of coincidence index across GS and MAS models. Boxplots in each panel showed the 1097 
distribution of coincidence index values across 100 cycles for FxRRBLUP (Ridge Regression Best Linear Unbiased 1098 
Prediction: Parametric model with fixed effects), RKHS (Reproducing Kernel Hilbert Space; Semi-Parametric model), 1099 
RRBLUP (Ridge Regression Best Linear Unbiased Prediction: Parametric model with no fixed effects), SVR (Support 1100 
Vector Regression: Non-Parametric model), and MAS (Marker Assisted Selection) for flowering time BLUP (FLT_BLUP), 1101 
maturity BLUP (MAT_BLUP), seed size BLUP (SS_BLUP). 1102 

●

●

●

●

●

●

●

0.
4

0.
5

0.
6

0.
7

0.
8

FLT_BLUP

Pr
ed

ic
tio

n 
ac

cu
ra

cy

FxR
RBLU

P

RKHS

RRBLU
P

SVR
MAS

●

●

●●

●

●

●

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

MAT_BLUP

Pr
ed

ic
tio

n 
ac

cu
ra

cy

FxR
RBLU

P

RKHS

RRBLU
P

SVR
MAS

●

0.
0

0.
2

0.
4

0.
6

SS_BLUP

Pr
ed

ic
tio

n 
ac

cu
ra

cy

FxR
RBLU

P

RKHS

RRBLU
P

SVR
MAS

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

FLT_BLUP

C
oi

nc
id

en
ce

 In
de

x

FxR
RBLU

P

RKHS

RRBLU
P

SVR
MAS

●

●●

●

●

●

●

●

●●

●

●

●●●

●

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

MAT_BLUP

C
oi

nc
id

en
ce

 In
de

x

FxR
RBLU

P

RKHS

RRBLU
P

SVR
MAS

●

● ● ●

●

●

●●

●

●●

●

●

●

●

0.
2

0.
4

0.
6

0.
8

SS_BLUP

C
oi

nc
id

en
ce

 In
de

x

FxR
RBLU

P

RKHS

RRBLU
P

SVR
MAS

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 14, 2019. ; https://doi.org/10.1101/576819doi: bioRxiv preprint 

https://doi.org/10.1101/576819
http://creativecommons.org/licenses/by-nd/4.0/


 46 

  1103 
 1104 
 1105 
 1106 
 1107 
 1108 
 1109 

 1110 
Figure S 17:  Comparison of slope values across GS and MAS models. Boxplots in each panel showed the distribution of 1111 
slope values across 100 cycles for FxRRBLUP (Ridge Regression Best Linear Unbiased Prediction: Parametric model with 1112 
fixed effects), RKHS (Reproducing Kernel Hilbert Space; Semi-Parametric model), RRBLUP (Ridge Regression Best 1113 
Linear Unbiased Prediction: Parametric model with no fixed effects), SVR (Support Vector Regression: Non-Parametric 1114 
model), and MAS (Marker Assisted Selection) for flowering time BLUP (FLT_BLUP), maturity BLUP (MAT_BLUP), seed 1115 
size BLUP (SS_BLUP). 1116 
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 1120 
Figure S 18:  Comparison of intercept values across GS and MAS models. Boxplots in each panel showed the 1121 
distribution of intercept values across 100 cycles for FxRRBLUP (Ridge Regression Best Linear Unbiased Prediction: 1122 
Parametric model with fixed effects), RKHS (Reproducing Kernel Hilbert Space; Semi-Parametric model), RRBLUP (Ridge 1123 
Regression Best Linear Unbiased Prediction: Parametric model with no fixed effects), SVR (Support Vector Regression: 1124 
Non-Parametric model), and MAS (Marker Assisted Selection) for flowering time BLUP (FLT_BLUP), maturity BLUP 1125 
(MAT_BLUP), seed size BLUP (SS_BLUP). 1126 
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 1128 
Figure S 19: The effect of marker density and training population size on prediction accuracy. (A) Boxplots showing 1129 
comparison among different marker densities (20%, 40%, 60%, and 80%). (B) Boxplots showing comparison among 1130 
different training population sizes (20%, 40%, 60%, and 80%). 1131 
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Supplementary Tables 1133 
Table S 1: Environment by Environment correlation for flowering time. 1134 

Traits FTFILD FTRILD FTFISD FTRISD 
FTFILD - 0.76 0.50 0.44 
FTRILD  - 0.57 0.52 
FTFISD   - 0.86 
FTRISD    - 

Heritability (h2) 0.41 0.42 0.48 0.46 
 1135 
Table S 2: Environment by environment correlation for maturity and seed size. 1136 

Traits MFISD MRISD SSFISD SSRISD 
Heritability (h2) 0.30 0.21 0.47 0.39 
MFISD - 0.64 - - 
SSFISD   - 0.80 
 1137 
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 1166 
 1167 
 1168 
Table S 3: QTL identified by stepwise regression explaining at least 6% of phenotypic variation. 1169 

Trait QTL Chr. Pos. PVE ADE MAF 
FLT_BLUP qVu9:24.77 9 24.7747 24.2 3.1 0.28 
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FLT_BLUP qVu9:5.85 9 5.8471 13.0 2.1 0.4 
FLT_BLUP qVu11:49.06 11 49.0616 8.9 1.7 0.36 
FLT_BLUP qVu5:8.5 5 8.5038 7.8 1.6 0.48 
FLT_BLUP qVu4:29 4 29.0011 7.1 1.5 0.49 
FTFILD qVu9:24.77 9 24.7747 25.0 7 0.28 
FTFILD qVu9:22.65 9 22.648 19.5 5.6 0.49 
FTFILD qVu11:49.06 11 49.0616 10.9 4.4 0.36 
FTFISD qVu9:8.37 9 8.367 10.5 1.5 0.35 
FTFISD qVu4:31.3 4 31.2954 8.4 1.3 0.47 
FTFISD qVu5:8.5 5 8.5038 7.9 1.9 0.13 
FTFISD qVu4:20.34 4 20.3441 7.5 1.7 0.14 
FTFISD qVu2:40.37 2 40.3707 7.1 1.2 0.37 
FTRILD qVu9:23.36 9 23.3558 27.5 6.9 0.29 
FTRILD qVu5:8.5 5 8.5038 7.3 3.3 0.48 
FTRILD qVu11:49.06 11 49.0616 7.0 3.3 0.36 
FTRISD qVu4:19.99 4 19.9946 10.6 2.2 0.15 
FTRISD qVu1:55.11 1 55.111 8.2 1.4 0.47 
FTRISD qVu9:8.37 9 8.367 8.0 1.4 0.35 
FTRISD qVu4:31.3 4 31.2954 6.8 1.3 0.47 
FTRISD qVu5:3.9 5 3.8966 6.8 1.3 0.46 
MAT_BLUP qVu2:45.2 2 45.203 9.5 3.3 0.31 
MAT_BLUP qVu9:5.85 9 5.8471 8.6 3 0.38 
MAT_BLUP qVu4:19.99 4 19.9946 6.0 3.5 0.15 
MFISD qVu5:13.76 5 13.7582 8.2 3.5 0.35 
MFISD qVu9:5.85 9 5.8471 6.6 3 0.49 
MRISD qVu2:45.2 2 45.203 9.6 6.1 0.31 
MRISD qVu9:8.37 9 8.367 8.6 5.5 0.39 
SS_BLUP qVu8:74.29 8 74.2918 25.2 2.1 0.25 
SS_BLUP qVu6:78.35 6 78.3467 10.7 1.2 0.49 
SSFISD qVu8:74.21 8 74.2124 29.3 2.5 0.24 
SSFISD qVu6:78.35 6 78.3467 9.2 1.3 0.49 
SSRISD qVu8:76.81 8 76.8132 19.7 2.4 0.23 
SSRISD qVu6:78.35 6 78.3467 10.0 1.5 0.49 

Quantitative trait loci (QTL), Chromosome (Chr.), Position (Pos. in centimorgan), Additive 1170 
effect (ADE), Phenotypic variation explained (PVE), and Minor allele frequency (MAF). 1171 
  1172 
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Table S 4: Epistatic QTL identified by SPAEML and their effect sizes. 1173 

Trait QTL1 ADE1 MAF1 QTL2 ADE2 MAF2 
FLT_BLUP qVu9:25.39 3.1 0.28 qVu11:62.84 1.9 0.14 
FLT_BLUP qVu9:5.86 2.1 0.39 qVu11:42.83 1.8 0.14 
FLT_BLUP qVu5:12.79 1.7 0.34 qVu6:78.36 0.5 0.47 
FLT_BLUP qVu4:31.3 1.3 0.48 qVu6:1.47 1.6 0.15 
FLT_BLUP qVu1:66.57 1.6 0.12 qVu9:26.8 1.5 0.26 
FLT_BLUP qVu4:30.21 0.2 0.44 qVu7:45.81 0.4 0.43 
FTFILD qVu9:25.39 7 0.28 qVu11:50.94 4.6 0.26 
FTFILD qVu5:12.79 2.9 0.34 qVu11:35.28 1.6 0.40 
FTFILD qVu1:66.38 3.3 0.22 qVu4:31.03 2.3 0.47 
FTFILD qVu1:66.57 4.3 0.12 qVu5:52.97 0.9 0.37 
FTFILD qVu6:32.5 1.2 0.12 qVu9:86.49 1.1 0.34 
FTFISD qVu4:31.3 1.2 0.48 qVu9:28.65 0.8 0.41 
FTFISD qVu1:55.11 1.2 0.37 qVu5:25.01 0.4 0.10 
FTFISD qVu2:48.05 0.9 0.30 qVu9:8.37 1.4 0.39 
FTFISD qVu7:84.88 0.6 0.38 qVu10:10.07 0.8 0.36 
FTFISD qVu5:5.81 0.6 0.16 qVu5:8.91 1 0.49 
FTRILD qVu9:25.39 6.6 0.28 qVu11:62.84 3.8 0.14 
FTRILD qVu5:12.79 3.7 0.34 qVu6:0.68 2.4 0.39 
FTRISD qVu4:20.34 2.1 0.14 qVu9:8.37 1.3 0.39 
FTRISD qVu1:54.81 1.3 0.37 qVu4:31.3 1.2 0.48 
FTRISD qVu1:66.38 1.2 0.22 qVu11:49.06 1.1 0.39 
FTRISD qVu7:80.11 0.3 0.47 qVu8:37.41 0.6 0.48 
MAT_BLUP qVu2:48.05 2.8 0.30 qVu9:8.37 3 0.39 
MFISD qVu5:12.79 3.4 0.34 qVu7:50.14 2 0.27 
MFISD qVu2:39.29 2.4 0.36 qVu8:73.15 2.4 0.34 
MFISD qVu5:8.5 2.8 0.19 qVu9:8.37 2.8 0.39 
MRISD qVu2:48.05 5.3 0.30 qVu9:8.37 5.5 0.39 
MRISD qVu2:35.19 5.4 0.21 qVu8:75.88 4.8 0.24 
SS_BLUP qVu6:78.36 1.1 0.47 qVu7:18.1 0.4 0.11 
SS_BLUP qVu6:78.35 0.8 0.13 qVu8:74.29 2.1 0.25 
SSFISD qVu4:62.75 0.8 0.10 qVu8:74.29 2.5 0.25 
SSFISD qVu5:20.54 0.6 0.11 qVu6:78.36 1.2 0.47 
SSRISD qVu6:78.35 1 0.13 qVu8:74.29 2.2 0.25 
SSRISD qVu6:3.67 0.8 0.12 qVu6:78.36 1.4 0.47 
Quantitative trait loci (QTL), Linkage group (LG), Position (Pos. in centimorgan), Additive 1174 
effect (ADE), , and Minor allele frequency (MAF). 1175 
 1176 
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Table S 5: Mean and standard deviation of prediction accuracy across GS and MAS models. 1177 

Trait FxRRBLUP RKHS RRBLUP SVR MAS 
FT_BLUP 0.71±0.05 0.65±0.07 0.65±0.07 0.59±0.08 0.59±0.06 
FTFILD 0.68±0.05 0.55±0.08 0.55±0.08 0.54±0.08 0.64±0.06 
FTFISD 0.56±0.20 0.59±0.07 0.59±0.07 0.55±0.08 0.33±0.11 
FTRILD 0.68±0.07 0.58±0.08 0.58±0.07 0.50±0.08 0.61±0.08 
FTRISD 0.58±0.17 0.58±0.07 0.58±0.07 0.53±0.08 0.25±0.10 
MT_BLUP 0.40±0.23 0.42±0.09 0.42±0.09 0.40±0.10 0.33±0.09 
MFISD 0.30±0.20 0.39±0.09 0.39±0.09 0.36±0.09 0.20±0.10 
MRISD 0.25±0.29 0.37±0.11 0.37±0.11 0.34±0.12 0.30±0.10 
SS_BLUP 0.56±0.10 0.52±0.08 0.53±0.08 0.49±0.09 0.53±0.09 
SSFISD 0.58±0.14 0.54±0.08 0.54±0.08 0.51±0.09 0.57±0.08 
SSRISD 0.50±0.11 0.45±0.08 0.45±0.08 0.43±0.09 0.47±0.10 
 1178 
Table S 6: Mean and standard deviation of coincidence index of GS and MAS models. 1179 

Trait FxRRBLUP RKHS RRBLUP SVR MAS 
FLT_BLUP 0.47±0.11 0.40±0.11 0.42±0.11 0.37±0.10 0.37±0.09 
FTFILD 0.49±0.09 0.37±0.10 0.37±0.10 0.35±0.11 0.45±0.10 
FTFISD 0.43±0.16 0.44±0.10 0.44±0.10 0.42±0.09 0.30±0.11 
FTRILD 0.40±0.09 0.36±0.10 0.35±0.10 0.28±0.10 0.37±0.10 
FTRISD 0.45±0.15 0.43±0.09 0.42±0.10 0.42±0.10 0.26±0.09 
MT_BLUP 0.34±0.15 0.35±0.09 0.36±0.10 0.33±0.11 0.27±0.10 
MFISD 0.32±0.12 0.30±0.09 0.30±0.10 0.31±0.09 0.26±0.09 
MRISD 0.31±0.18 0.34±0.10 0.35±0.10 0.33±0.10 0.33±0.10 
SS_BLUP 0.44±0.11 0.37±0.11 0.36±0.10 0.36±0.10 0.42±0.11 
SSFISD 0.48±0.11 0.44±0.09 0.44±0.09 0.43±0.09 0.46±0.10 
SSRISD 0.42±0.11 0.36±0.11 0.37±0.11 0.36±0.10 0.40±0.10 
 1180 
 1181 
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