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Abstract

Brain decoding — the process of inferring a person’s momentary cognitive state from
their brain activity — has enormous potential in the field of human-computer
interaction. In this study we propose a zero-shot EEG-to-image brain decoding approach
which makes use of state-of-the-art EEG preprocessing and feature selection methods,
and which maps EEG activity to biologically inspired computer vision and linguistic
models. We apply this approach to solve the problem of identifying viewed images from
recorded brain activity in a reliable and scalable way. We demonstrate competitive
decoding accuracies across two EEG datasets, using a zero-shot learning framework
more applicable to real-world image retrieval than traditional classification techniques.

Introduction 1

Research in the field of Brain-Computer Interfaces (BCI) began in the 1970s [1] with 2

the aim of providing a new, intuitive, and rich method of communication between 3

computer systems and their users. Typically, these methods involve measuring some 4

aspect of neural activity and inferring or decoding an intended action or particular 5

characteristic of the user’s cognitive state. Although BCI is still in its infancy, there are 6

already practical applications in assistive technology as well as disease diagnosis [2, 3]. 7

Brain-controlled prosthetics [4] and spellers [5] have shown their potential to enable 8

natural interaction in comparison with more traditional methods, such as mechanical 9

prosthetics or eye-movement-based spellers. Other relevant applications include 10

identifying the image that a user is viewing, usually referred as image retrieval, of 11

particular interest in the field of visual attention applied to advertising and marketing, 12

searching and organising large collections of images, or reducing distractions during 13

driving, to name a few. 14

Although brain decoding technology has immense potential in diverse applications, it 15

faces multiple challenges related to speed and accuracy that must be overcome before it 16

emerges as a disruptive technology. The complexity of BCI stems from the naturally low 17

signal-to-noise ratio (SNR) and high dimensionality of raw brain data, which often 18

complicates automated analysis and can force researchers to manually analyse 19

previously recorded neural activation data. This is typically done either by examining 20

the frequency domain or by plotting Event-Related Potentials (ERPs). In an ERP 21

experiment the participant will be presented several times with a similar stimulus and 22

their neural response each time can be recorded and averaged. These ERPs can be 23

analysed against well-known response patterns or, alternatively, characteristics such as 24
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the strength and timing of signal peaks can be quantified and analysed automatically. 25

ERP analysis is well established and has strong applications in medical diagnosis [6] and 26

in cognitive neuroscience research [7, 8]; however, the broad characterisation of brain 27

response used in traditional ERP methods is not richly informative enough to decode 28

the level of detail required to make predictions about a participant’s cognitive state, as 29

required for BCI image identification. 30

Given the complexities of decoding the nature of an arbitrary visual stimulus from a 31

person’s brain activity, cognitive neuroscientists and BCI researchers have traditionally 32

tackled the simpler task of determining which of some finite set of category labels 33

corresponds to a particular pattern of brain activity. In one of the first such studies, 34

Haxby and colleagues [9] collected functional Magnetic Resonance Imaging (fMRI) data 35

as participants viewed a series of images from the categories of human faces, cats, 36

houses, chairs, scissors, shoes and bottles, along with images of random noise. The 37

researchers were able to determine with 83% accuracy which category of object the 38

participant was viewing. 39

However, fMRI is impractical for general BCI applications. Murphy et al. [10] used 40

Electroencephalography (EEG) rather than fMRI and achieved 72% accuracy in 41

classification across the two classes of mammals and tools. While this study addressed a 42

much simpler problem with only two possible classes, it demonstrated category decoding 43

using relatively inexpensive and less intrusive EEG data collection methods (fMRI and 44

EEG technologies are discussed in more detail in Section ‘Brain Data’). 45

In the studies mentioned above the classifiers would not determine specifically which 46

stimulus image was displayed (as required for image retrieval), instead they only 47

determine the category which the stimulus image belongs to. Moreover, as a 48

classification approach, this is not scalable to new classes and, although it may yield a 49

high accuracy, it becomes less accurate with increasing number of classes. An 50

alternative approach to BCI image classification makes use of rapid serial visual 51

presentation (RSVP) [11,12]. The participant is presented with a rapid stream of 52

images (approximately 10 each second) and is instructed to count the number of times a 53

particular target image or object appears. A classifier can then reliably decode whether 54

for a given segment of brain data, the participant had been presented with a target or 55

non-target image. This RSVP approach could be more directly applied to our problem 56

by showing a participant a target image from a gallery, and then presenting all of the 57

images in a gallery one by one with the expectation that when the target image should 58

illicit neural activity sufficiently different from the non-target images to identify it. 59

However, as the number of images in the gallery grows, it becomes impractical to 60

present them in a real-world searching scenario. 61

As a more scalable solution, zero-shot learning presents a novel approach to brain 62

decoding in which some feature space is created which can describe each stimulus class, 63

and a mapping is defined between neural activation data and the stimulus feature space. 64

Such a mapping can be defined with a subset of the full set of classes and/or instances, 65

and tested using withheld classes/instances. With this approach, the system can decode 66

arbitrary stimulus images it has not yet been exposed to. Introducing a feature-based 67

model comes at a cost however, as it also impacts the overall accuracy of the system. At 68

present most zero-shot systems in this area [13,14] exhibit performance insufficient for 69

real-world applications. 70

Following the work in Haxby et al. [9], Mitchell et al. [13] used fMRI to decode the 71

meanings of nouns corresponding to concrete objects, using as features each noun’s 72

textual co-occurrence frequency with a set of 25 verbs. This study was one of the first 73

to make use of zero-shot learning, allowing them to decode classes (i.e. nouns) from 74

outside the training set. Others have used visual image features rather than semantic 75

features to decode cognitive states associated with viewing stimulus images in a 76
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zero-shot framework [15]. Using a Gabor-based voxel decoder, Kay et al. [15] achieved 77

accuracy of 51% and 32% among 1620 images in a single-trial identification task, for 2 78

distinct subjects. These and other studies, while using fMRI rather than EEG data, 79

demonstrate the relevance of both semantic and visual information in image decoding. 80

In related work, Palatucci et al. [14] used a similar procedure to Mitchell et al. [13] 81

but with EEG data. In a study by Carlson et al. [16] using visual images, Linear 82

Discriminant Analysis (LDA) was used to determine the categories of objects presented 83

to participants. The aim of this study was to map out the stages of object recognition 84

by comparing the decoding accuracies across different levels of object representation and 85

different time windows. They found that the peak decoding rate for distinguishing 86

between images of the human body was 120ms after the image appeared, whereas the 87

higher-level semantic distinction between animate and inanimate images was best 88

determined after 240ms. Using a combination of low-level visual features and semantic 89

features, Clarke et al. [17] demonstrated that decoding accuracy was significantly 90

improved by the incorporation of the semantic features from around 200ms 91

post-stimulus-onset. Similarly, Sudre et al. [18] also obtained high decoding accuracy 92

using brain data using both visual and semantic feature sets. These studies both use 93

magnetoencephalography (MEG), which is impractical for real-world BCI technology; 94

however, their conclusions suggest that decoding of neural activation data using visual 95

and semantic models can be a feasible approach to image decoding in a real-world BCI 96

framework. 97

In this project, we aim to make use of these different levels of information in brain 98

activity explicitly by using specifically chosen feature generation models rather than 99

implicitly by grouping our images into different categories. We also aim to perform a 100

more difficult task: where Carlson et al. [16] utilises zero-shot learning only to 101

determine membership of the stimulus to a particular object category, our approach will 102

aim to determine which actual image was viewed. To this aim, this paper proposes an 103

EEG zero-shot learning framework for individual image retrieval which makes full use of 104

both advanced visual and semantic image features. This approach is motivated by the 105

ultimate goal of designing a system which can retrieve any arbitrary image specified by 106

a neural activation generated by a user thinking about that image, although as a 107

preliminary step towards this goal we restrict our experiments to cases where images are 108

viewed rather than imagined. 109

The main contributions of this paper are: 110

• First time visual and semantic features are used together for EEG zero-shot 111

learning, which translates to potential for a real-world BCI image retrieval system. 112

• State-of-the-art performance for the particular task of EEG-driven image retrieval 113

in a zero-shot framework. 114

• Evaluation across two datasets from different sources including a large open 115

dataset for future comparative studies. 116

• Analysis of how well the feature sets chosen reflect the expected brain activity. 117

General Methodology 118

Our framework comprises of three main components. First the brain data must be 119

cleaned and a subset of the EEG features extracted to represent the underlying 120

cognitive states. Then we apply our chosen computer vision and semantic models to the 121

stimuli, to create a representation of each image in this visuo-semantic feature space. 122

Finally we use a linear regression algorithm to find a mapping between the brain and 123
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stimulus spaces which makes the brain decoding possible. A high-level overview of this 124

architecture can be found in Figure 1. 125

Fig 1. Information flow in the image retrieval architecture. Overview of the
flow of information and processing during a single fold of cross-validation (‘Zero-shot
Prediction’ Section). Model performance is determined by fit of the predicted feature
vectors: in the example above, the true target features are in the second position of a
sorted list of neighbours. In this case with a total of seven possible images, this results
in a rank of 2, and a CMC AUC of 78.57% (‘Measure of Accuracy’ Section).

Brain Data 126

Two of the most widely used approaches to recording brain activity are functional 127

Magnetic Resonance Imaging (fMRI) and Electroencephalography (EEG). The former 128

can localize the physical source of brain activity with high spatial accuracy. However, 129

the temporal resolution of fMRI is limited to a sampling rate of 1-2 seconds. Moreover, 130

fMRI requires an MRI scanner, a large and expensive piece of equipment using powerful 131

magnetic fields and liquid helium coolant, making it unsuitable for BCI systems outside 132

of laboratory or clinical settings. As a cheaper and more convenient alternative, 133

Electroencephalography (EEG) can be used to measure the electrical activity produced 134

in the brain. As neurons communicate, they produce a small electrical current. 135

Individually this electrical activity is weak, however, often these cells fire in groups and 136

produce an effect strong enough to be detected by sensitive conductors (or sensors) 137

placed around the scalp. EEG is the technique of recording these small variations in 138

electrical activity as a multi-channel signal. Measuring the electrical activity rather 139

than blood oxygenation (as in fMRI) gives much higher temporal resolution, and as 140

such EEG can operate in windows of <10ms. However, the collective nature of the 141

electrical activity detected by EEG – and the fact that the electrical activity must 142

propagate to the scalp – make it much more challenging to localise each source. There 143

is therefore a trade-off between cost/convenience and the quality of the information 144

recorded; compared with fMRI (or MEG), EEG data is easier to obtain, but is more 145

difficult to analyse in terms of the underlying brain activity. EEG is also impacted by a 146

greater sensitivity to a variety of external artefacts, such as muscle movement, cardiac 147

activity, ambient electrical activity, and electro-ocular activity, all of which negatively 148

impact SNR. Some of these noise sources can be isolated and removed either with signal 149

processing algorithms or by hand. 150

As we are interested in eliciting cognitive states associated with particular images, 151

the experimental paradigms used for the EEG data in this study involve repeated 152

presentations of images on a computer screen (‘Datasets’ Section). Each time an image 153

is presented is termed a “trial” and the small window of EEG data associated with 154

these trials are known as “epochs”. We use epochs which begin when an image is 155

presented and are one second long to comfortably encompass the informative brain 156

activity [16]. It is these epochs which we attempt to map to images features and aim to 157

determine which image was presented at the time the epoch was recorded. 158

Preprocessing Approach (FASTER) 159

Preprocessing is a necessary stage of EEG data analysis that involves aligning, 160

normalising and otherwise cleaning the raw data in order to make it more suitable for 161

downstream analyses. The main goal of preprocessing the EEG data in our framework 162

is to remove sources of noise in order to minimise obfuscation of underlying useful 163

patterns in the data. Recordings are first filtered to remove ambient interference. One 164
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Fig 2. Preprocessing Overview.

of the strongest noise sources in EEG is ambient electrical activity near the recording 165

equipment, such as personal computers, large lights, or improperly insulated wiring. 166

These signals are relatively easy to separate from brain activity based on their 167

frequency, typically 60hz or 50hz (in America and Europe respectively). A lower 168

frequency cut-off must also be established to remove slower sources of noise – these are 169

generally slow changes in the electrical profile of the scalp or sensors such as a gradual 170

increase or decrease of perspiration leading to a change in conductivity. A band-pass 171

filter was used to remove any signals in our data with a frequency outside the range 172

1-40hz as in [10,11,14,19–22]. 173

Channels with poor contact with the scalp were then identified using the variation, 174

mean correlation and Hurst component, and these were removed and then interpolated 175

from nearby sensors similar to [19,23]. A section of the EEG lasting one second was 176

extracted each time an image was displayed. These epochs were baselined [19,22] by 177

subtracting the average value from the 500ms prior to the image presentation. Epochs 178

which fell outside the threshold for amplitude range, variance or channel deviation were 179

removed as in [11,19,21,23]. Following this, Independent Component Analysis 180

(ICA) [24] was performed primarily to identify artefacts related to eye movement as 181

in [10,19,20]. In this step the input signal is decomposed into an approximation of its 182

sources, each component is then correlated with sensors placed nearest the eyes and 183

thresholds set for spatial kurtosis, Hurst exponent and mean gradient. Components 184

identified as isolating sources of noise are removed and the EEG signal reconstructed 185

from the remaining components. 186

Next, within each epoch, channels were examined for short term artefacts using 187

variance, median gradient, amplitude range and channel deviation. Channels identified 188

as noisy within the bounds of the epoch were replaced by an interpolation from other 189

nearby channels within that epoch. The recording is also downsampled to a rate of 190

120hz as in [11,14,20] to reduce dimensionality before machine learning is applied. 191

All the above preprocessing steps were implemented using the EEG preprocessing 192

toolkit FASTER [19]. 193

As a final preprocessing step before the EEG data are used in our regression model, 194

the data are z-scored (standardised). We primarily perform this step to ensure that the 195

mean of the data is zero as this can simplify the parametrisation of our machine 196

learning. This takes place each iteration of the cross validation, the mean values for the 197

transformation are calculated using only the training samples and the transformation is 198

then applied to the training and testing samples to avoid any influence of the latter in 199

the former. 200

EEG Feature Selection 201

After preprocessing, an EEG feature extraction process is used to continue reducing the
dimensionality of the data by extracting the most discriminatory features from the
preprocessed data, and further removing uninformative and noisy dimensions of the
data. This facilitates the successful mapping of EEG data to our image feature space by
extracting only those aspects of the EEG signal which are likely to be informative about
the visual and semantic feature sets. Following the approaches used in Mitchell et
al. [13] and evaluated in Caceres et al. [25], we ignore all but the features with the
highest collinearity across presentations of the same stimulus on the screen. Concretely,
the EEG data for a particular participant following preprocessing is a 3D-matrix of size
nE× nC× nT, where nE is the number of epochs (i.e. the number of stimulus
presentation events), nC is the number of channels (or sensors) in the EEG headset, and
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nT is the number of timepoints in an epoch (the number of times during an epoch
sensor values were recorded). In this work, we use an epoch length of one second and
downsample the data to 120Hz, giving nT = 120. We treat the data from each time
sample and each sensor as a separate feature, giving a total of nC× nT candidate
features. In order to calculate feature collinearity, we reshape the nE× nC× nT data
matrix to a 2D-matrix of size nE× (nC× nT), or, equivalently, (nS× nP)× nF where
nS is the number of stimuli, nP is the number of times each stimulus was presented in a
recording, and nF is the number of EEG features. We then transform this back into a
3D-matrix of shape nF× nP× nS and term this matrix D. D is therefore composed of a
nP× nS feature matrix for each EEG feature f . To calculate a stability score for a
feature, we measure the consistency of the feature across different presentations of the
same stimulus – we calculate the Pearson correlation for each pair of rows in D and use
the mean of these correlations as the stability score for that EEG feature f :

Stability(f) =
1

nCom

nP∑
i=1.

nCom∑
j=1,i!=j.

.
cov(Df,i,:, Df,j,:)

σDf,i,:
σDf,j,:

where σx is the standard deviation of x and

nCom =
nP(nP− 1)

2

In each iteration of our cross-validation, we calculate the stability of each EEG 202

feature using the training set and select the most stable features for fitting the 203

regression model. More detail of the cross-validation architecture can be found in the 204

‘Zero-shot Prediction’ Section. 205

Image Feature Space 206

Computer vision is the field of study devoted to designing algorithms to interpret digital 207

images, so it is a natural place to look for a feature space. Different computer vision 208

models extract features at different levels of abstraction, ranging from recognising 209

simple lines or colours through to recognising objects. Previous research [16,17,26–29] 210

shows that these levels of abstraction are evaluated sequentially in the human ventral 211

visual processing stream. In light of these findings, we expect earlier EEG features to 212

contain predominantly low-level visual information, with higher-level visual features 213

being increasingly present in later EEG features. For maximal decoding performance, it 214

is therefore essential to find a set of computer vision models which cover each level of 215

abstraction that will be represented in the EEG features. Furthermore, we chose feature 216

sets which are grounded in similar mechanics to human visual processing, under the 217

rationale that these feature sets have the potential to best match with human brain 218

activity. 219

Gabor Filters 220

In order to model human edge and texture detection we chose to use Gabor Filter 221

Banks as this well-established computer vision technique identifies visual edges in a very 222

similar way to the lowest-level of human visual processing in cortical areas V1 and 223

V2 [30–33]. A bank is comprised of a set of filters which each represent an edge with a 224

particular orientation and spatial frequency, these filters can be used to identify where 225

in an image there is a matching edge. The filter bank used here contains eight evenly 226

spaced orientations (θ) and four standard deviation values (σ) ranging from two to five, 227

resulting in a bank of 32 filters. The rest of the parameters were fixed at default with 228
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ksize = (31, 31), wavelength of the sinusoidal factor (λ) = 6.0, spatial aspect ratio (γ) 229

= 0.5 and phase offset (ψ) = 0. 230

Each pixel co-ordinate in an image x, y is convolved with a Gabor filter described by
the parameters above:

g(x, y;λ, θ, ψ, σ, γ) = exp
(
− x′2 + γ2y′2

2σ2

)
exp
(
i
(
2π
x′

λ
+ ψ

))
where

x′ = x× cosθ + y × sinθ y′ = −x× sinθ + y × cosθ

Let Lθ and Lσ denote the sets of parameter values defining the filter bank: 231

Lθ =
{

0,
1

7
π,

2

7
π, ...

}
Lσ = {2, 3, 4, 5}

Each image in our feature set was convolved with every filter, and the result summed to 232

generate a histogram of 32 dimensions vgabor for each image: 233

vgabor(image) =



∑
x,y∈grid g(x, y, λ,Lθ1, ψ,Lσ1, γ)

...∑
x,y∈grid g(x1, y1, λ,Lθ8, ψ,Lσ1, γ)

...∑
x,y∈grid g(x1, y1, λ,Lθ1, ψ,Lσ2, γ)

...∑
x,y∈grid g(x1, y1, λ,Lθ8, ψ,Lσ4, γ)



T

We stack the vgabor vectors to create the final matrix of Gabor features for our
image set:

xgabor =


vgabor(image1)
vgabor(image2)

...
vgabor(imagenS)


Scale Invariant Feature Transform 234

The brain is also sensitive to higher-level visual information which is not adequately 235

captured by simple and spatially local Gabor Filters. In order to make use of 236

higher-level visual processing in our system we chose to apply a prominent computer 237

vision model which detects and describes keypoints in an image; locations with 238

particular visual saliency. Scale Invariant Feature Transform (SIFT) identifies these 239

keypoints using difference of Gaussians and generates a descriptor for the pixel 240

neighbourhood [34]. We then applied Visual Bag Of Words (VBOW) [35] to the 241

extracted SIFT features. Implementing VBOW involves generating SIFT keypoint 242

descriptors for a large corpus of images and then selecting the most informative 243

descriptors to compile a codebook. Our goal in this project is to create an approach 244

applicable to real-world BCI systems, and to achieve this our image feature space must 245

have some capacity to describe and discriminate novel images. To this end, we used a 246

SIFT codebook trained with a large, diverse corpus of images taken from ImageNet [36]. 247

Each SIFT Descriptor represents a 4× 4 grid around some keypoint in the image. 248

Difference of Gaussian (DoG) is run on each segment of this grid and the results 249

compiled into a histogram with eight bins. A SIFT descriptor is the resulting 250

8× 4× 4 = 128 dimensional vector, indexed by x-y. Each element of the codebook is a 251
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SIFT Descriptor. K-means clustering was performed with a random subset of 10 million 252

SIFT descriptors generated over the ImageNet corpus to produce 1000 clusters. The 253

centroid of each cluster was then taken to produce a codebook of 1000 dimensions to 254

categorise future SIFT descriptors. 255

Using VBOW has the benefit of finding features that generalise well across multiple
different objects and as such have the best chance of extending to new classes.
Moreover, it removes spatial data making the feature vector invariant to spatial
transformations such as rotation, translation and scale which is less relevant to
intermediate-level visual information. A list of imageDescriptors were generated for an
image, and used to produce a histogram vsift of how often each ‘visual word’ encoded in
the codebook appeared in the stimulus image.

vsift(image) = [hs1,hs2, ...,hs1000]

where
hsi =

∑
k∈imageDescriptors

I(k = codebooki)

and I is an indicator function evaluating to 1 if the argument is true and 0 otherwise. 256

This implementation made use of Dense SIFT, meaning the keypoints correspond to 257

a regularly sampled grid, rather than a set of natural keypoints estimated for an image. 258

A histogram vsift was generated for each image, and collated into a matrix representing 259

our stimulus image SIFT features xsift. 260

xsift =


vsift(image1)
vsift(image2)

...
vsift(imagenS)


Colour Histogram 261

Finally, as none of the previous visual features encapsulates colour information, we
chose a global HSV histogram to model colour in our approach, since there is some
evidence that a HSV colour space comes closer to reflecting human vision than
RGB [37]. A HSV histogram vhsv is generated for each image using a quantisation of
four bits per pixel and channel:

vhsv(image) = [h1, h2, ..., h16, s1, s2, ..., s16, v1, v2, ..., v16]

hi =
16∑
j=1

∑
k∈iP

I(khue = j) si =
16∑
j=1

∑
k∈iP

I(ksat = j) vi =

16∑
j=1

∑
k∈iP

I(kvalue = j)

Where iP is the list of pixels in the image, and khue, ksat and kvalue are the hue,
saturation, and value of the pixel k respectively. This gives each HSV channel 16 bins to
produce a histogram of 48 features. The histograms are then collated into a matrix
representing our HSV feature space xhsv.

xhsv =


vhsv(image1)
vhsv(image2)

...
vhsv(imagenS)


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Global vectors for Word Representation 262

While visual features allow us to describe images at low and intermediate levels, 263

higher-level semantic processing requires us to characterise the image in terms of the 264

object it contains. To model object-level information, we included a general set of 265

features describing the semantic differences between concepts. We chose a set derived 266

with the Global Vectors for Word Representation (GloVe) algorithm as it is well 267

established [38–40] and state-of-the-art vector datasets are readily available. The 268

learning objective of GloVe is to generate for each word an M -dimensional vector such 269

that the dot product of two of the vectors equals the logarithm of the probability of the 270

associated words co-occurring in text. As M increases, a larger number of words can be 271

more accurately described; however this increases the computation time both in training 272

GloVe and in any downstream analyses which use GloVe vectors as input. In this 273

project, we make use of a pretrained matrix gMat of 1.9 million words with 300 274

dimensions indexed by the word. 275

Firstly a name is assigned to each stimulus image to describe the subject of the 276

image. A number of our stimulus images were labeled with a Multi-Word Expression 277

(MWE) which did not have a corresponding feature vector in gMat. In these cases we 278

used the mean of its composite words, following [41]. For example, the stimulus “plaster 279

trowel” was set to the mean of the vector for “plaster” and the vector for “trowel”. 280

For each of our images we chose a single word or MWE to represent the content (i.e. 281

the depicted object), and take the row of the GloVe matrix which corresponds to that 282

word as the feature vector for the image in our high-level semantic feature space. 283

xsem =


gMatnames1

gMatnames2
...

gMatnamesnS


where 284

names = {armadillo,axe,badger,beaver,...,zebra}

Combining the Feature Sets 285

The complete visuo-semantic feature set is then composed by combining xgabor, xsift, 286

xhsv and xsem. Concatenating the raw feature sets together would result in a poor and 287

imbalanced feature space due to the differences in dimensionality and value scaling 288

across the different constituent feature sets. We therefore normalise each feature set to 289

ensure that the values in each row range from zero to one and perform Principal 290

Component Analysis (PCA) to reduce the dimensionality of the concatenated feature 291

space. 292

With y ∈ xgabor and z be the length of y, we normalise the feature vector by its 293

range and stack the results to form xgaborR: 294

vgabor(image) =


y1−min(y)

max(y)−min(y)
y2−min(y)

max(y)−min(y)

...
yz−min(y)

max(y)−min(y)


T

February 27, 2019 9/18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2019. ; https://doi.org/10.1101/576983doi: bioRxiv preprint 

https://doi.org/10.1101/576983
http://creativecommons.org/licenses/by/4.0/


xgaborR =


vgaborR(xgabor1)
vgaborR(xgabor2)

...
vgaborR(xgabornS

)

 (1)

The final complete set of features is the concatenation of the features from each of
the component visual and semantic models:

featuresvs = [xgab, xhsv, xsift, xsem]

Finally, before using these features in our classification model, we apply one further 295

feature selection based on a measure of fit from the regression model (as described in 296

Section ‘Zero-shot Prediction’). 297

EEG Mapping 298

The mapping of our EEG data to our visuo-semantic feature space is essentially a 299

problem of fitting a regression model fi for each image feature i such that 300

f(EEGy) = [f1, ..., fi] ≈ featuresy where EEGy is the preprocessed 301

nC× nT-dimensional brain activity vector associated with stimulus image y. Assuming 302

a linear relationship exists between these two components, multiple linear regression can 303

be applied to find some set of weights w1 such that 304

f1(EEGy) = vEEG1
∗ w10 + vEEG2

∗ w11 + . . . will produce a value as close as possible 305

to featuresy1
, some vector of weights w2 such that 306

f2(EEGy) = vEEG1
∗ w20 + vEEG2

∗ w21 + . . . will produce a value as close as possible 307

to featuresy2 , and so on until a vector can be stacked which is as close as possible to 308

featuresy. 309

Prior studies [10,13,14] have shown success using a linear regression model with 310

brain data when they are regularised. This coupled with its speed and simplicity made 311

it a natural choice for a baseline approach. L2 regularisation is used to reduce 312

overfitting and improve the generalisation properties of the model. This choice is 313

preferred over L1 regularisation given the expected high collinearity of our samples, i.e. 314

signals recorded from nearby locations in very similar temporal instants should register 315

very similar sources in brain activity. A good model will be able to generalise the 316

relationship rather than being limited to projecting the particular samples and/or 317

classes used in training. If this is achieved, the mapping mechanism and the 318

representative feature spaces could be used within a zero-shot learning architecture. 319

Zero-shot Prediction 320

Once a mapping between EEG data and the image feature space has been learned from 321

training, a prediction of image features can be made for an EEG epoch withheld from 322

the training set. To ensure a zero-shot framework, we use leave-one-class-out 323

cross-validation to iteratively withhold all epochs associated with a particular 324

stimulus/image for testing in each iteration. Concretely, this means we withhold the 325

data for trials related to Stimulus 1, and train a regression model from the trials for the 326

rest of the stimuli. We then pass the withheld testing trials into our regression model to 327

produce a predicted image feature vector for each trial. We then return the trials for 328

Stimulus 1 to the training set and instead withhold the trials for Stimulus 2. A separate 329

regression model is trained from scratch for this new training set, and then predicted 330

image feature vectors are produced for the Stimulus 2 trials. This pattern is repeated 331

for each stimulus image in the recording. 332

February 27, 2019 10/18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2019. ; https://doi.org/10.1101/576983doi: bioRxiv preprint 

https://doi.org/10.1101/576983
http://creativecommons.org/licenses/by/4.0/


Following the regression, there is one final step of feature selection over the predicted 333

image features before moving to the feature matching for image retrieval. We do not 334

make use of all image features in the predicted image feature vector, but instead select 335

just those which are best represented in the EEG data. To make the distinction 336

between useful and under-represented features, we approximate each feature’s 337

informativeness by calculating the measure of fit of our regression model. When 338

predictions are fed to the classifier, we ignore the columns of the feature space and the 339

predicted feature vectors with the lowest measure of fit. For each iteration of train/test 340

split, after the regression model has been fit, an R2 measure of fit is calculated for each 341

image feature column in features. For each epoch in a recording we produce a predicted 342

image feature vector and collate these vectors into the matrix p. Each epoch is 343

associated with a particular stimulus image and each stimulus image is associated with 344

a feature vector in features, so we generate t such that ti is the feature vector associated 345

with the stimulus image used in epoch i. 346

These fit values are then averaged across iterations to produce an estimate of which 347

image features are best represented in the EEG data. This estimation is reached 348

entirely without influence from the withheld epochs. The last step of the brain decoding 349

mechanism is implemented using a nearest neighbour classifier between the predicted 350

image feature vector pj from the EEG and the target image feature vector tj . This 351

allows us to order all the images in our database (including the target stimuli) in the 352

image feature space by their distance from the predicted feature vector. We can then 353

convert this ordered list of stimuli into a rank by counting how far down the list the 354

target image is, where a perfect prediction results in rank one and where the expected 355

rank assuming chance performance is nS/2, where nS is the number of stimuli images. 356

Results 357

Datasets 358

Two different datasets are used to evaluate our zero-shot prediction architecture, in 359

order to reduce the risk of overfitting to a particular dataset and limiting the generality 360

of our conclusions. To facilitate comparison with previous approaches, two datasets 361

with similar tasks, “Trento” and “Stanford”, are used. 362

Trento Data 363

The first collection of EEG data analysed in this study is the Trento set [10] which uses 364

60 grayscale photographs as stimuli. Since this dataset was initially designed for 365

classification, images are grouped in 30 pictures of 30 different land mammals and 30 366

pictures of 30 different hand tools. However, as explained in the introduction, in our 367

image retrieval setting this category-level information is discarded and the stimuli is 368

treated as 60 individual images. In an EEG experimental session, these images were 369

each presented six times to the participant, for a total of 360 trials (i.e. 360 epochs). 370

There were three participants, two of which took part in two experimental sessions and 371

one participant who took part in one session. Participants were instructed to silently 372

name the image with whatever term occurs naturally whilst EEG data was collected 373

with a 64-channel EEG headset sampling at 500Hz. More details of the paradigm and 374

recording of the data can be found in Murphy et al. [10]. The epoched data for each 375

session therefore consists of a matrix of shape nE× nC× nT, where nE = 360, nC = 64 376

and nT = 500. Through the preprocessing steps outlined in the ‘Preprocessing 377

Approach (FASTER)’ Section (including removal of noisy epochs), the resulting cleaned 378

set was a matrix of size 340× 7680 on average per recording. The number of epochs is 379
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approximate as for each experimental session, a different number of low quality epochs 380

are removed during preprocessing. In the original study, the aim was to train a linear 381

binary classifier to distinguish between epochs associated with mammal or tool stimuli, 382

which differs from our goal of matching epochs to particular images. As such, the 383

Trento materials use a narrow selection of stimuli from just two semantic categories, and 384

each object image will be visually and semantically similar to many other images in the 385

set. This provides a strong test of our methods ability to predict the correct image from 386

a set of possible and very close alternatives. 387

Stanford Data 388

The second EEG dataset we used to test our approach is an open dataset compiled at 389

Stanford University [20]. Participants were presented with a series of colour 390

photographs, drawn from the categories human body, human face, animal body, animal 391

face, fruit/vegetable, or man-made (inanimate object). There were 12 images in each 392

category and each image was presented 12 times in random order for a total of 864 393

trials per recording. Again, categories are discarded and the experiment is treated as an 394

image retrieval task with 72 individual images. There were 10 participants, all of whom 395

completed two sessions which each comprised of three separate EEG recordings for a 396

total of 60 recordings. The EEG was recorded using a 128-channel headset sampling at 397

1kHz. Each recording therefore contained 864 epochs, each with 128,000 features in its 398

raw form. The resulting cleaned set after preprocessing measured approximately 792 399

epochs × 128 channels × 120 timepoints, giving a EEG feature matrix of size 792 × 400

15,360 per recording. Across the recordings in the Stanford dataset, preprocessing 401

resulted in the interpolation of approximately five channels, the removal of four 402

independent components, and the removal of 0-2 trials of each stimulus. Following 403

removal of noisy trials during preprocessing, four of these recordings were left with no 404

trials for one of their stimuli; these recordings were excluded from further analysis. 405

Measure of Accuracy 406

Given the difficulty of the zero-shot prediction task, we used an accuracy metric more 407

sensitive to small improvements in prediction power based on the Cumulative Match 408

Curve (CMC). Once a set of predicted visuo-semantic image features is produced for the 409

EEG associated to a particular image presentation, all the images were ranked by their 410

Euclidean distance from the predicted feature vector. A CMC was then generated by 411

counting how often the true target appears in the top X ranked images as shown in 412

Figure 4. For example, the first value on the x-axis represents the percent of cases where 413

the target image is the nearest to the predicted features in the feature space, the second 414

value on the x-axis represents the percent of cases in which the target image was one of 415

the two closest images to the predicted features, and so on. The Area Under Curve 416

(AUC) is calculated as the normalised volume below the curve for use as the final metric. 417

Parameter Optimisation 418

A short gridsearch was performed to empirically optimise the parameters. A random 419

recording from each dataset was chosen and used to perform this gridsearch for each 420

experiment below. We then used the highest performing parameter set to perform the 421

decoding for the rest of the recordings with the same dataset and image feature set. We 422

do expect that different recordings will perform best under different parameter settings, 423

and as such accuracy could be maximised with a more rigorous approach to 424

gridsearching. That said we have chosen to determine parameters from a single 425

recording in order to better reflect training in a real-world BCI system. In Tables 1 and 426
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2 the recording used for each dataset has been marked (GS) and removed from the 427

mean column. 428

Alpha values {1e-2, 1e-1, 1e0, 1e1, 5e1, 1e2} were tested for the ridge regressor. The 429

number of EEG features retained during feature selection (‘EEG Feature Selection’ 430

Section) was tested over the values {25, 50, 75, 100, 125, 150, 175, 200, 250, 500, 750, 431

1000, 1500, 2000, 2500, 3000}. 432

Decoding Accuracy 433

In order to compare the effectiveness of our chosen image feature models and confirm
our expectation that combining the models would provide more predictive power than
using them in isolation, the AUC for both datasets were calculated when using all
visuo-semantic features (featuresvs) and compared against using only visual feature set
(featuresv) or the semantic feature set (featuress) individually.

featuresvs = [xgab, xhsv, xsift, xsem]

featuresv = [xgab, xhsv, xsift]

featuress = xsem

Results are shown in Table 1 for the Trento dataset and Table 2 for the Stanford 434

dataset. 435

Table 1. Trento Decoding Accuracies (CMC AUC %).

Feature Set S1 R1 S2 R1 S3 R1 S1 R2 S2 R2 S4 R1 GS Mean

Visual 57.2 65.12 58.72 55.75 64.58 67.18 62.03 62.56
Semantic 57.74 64.74 56.26 61.66 65.98 63.9 64.28 61.71
Visuo-semantic 57.63 63.32 58.46 62.8 62 63.72 66.06 61.32

Table 2. Stanford Decoding Accuracies (CMC AUC %).

Feature Set S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 GS Mean

Visual 59.27 56.91 57.28 57.51 62.57 60.96 56.59 54.5 54.11 61.08 61.97 58.08
Semantic 60.12 56.89 61.38 60.35 65.49 63.93 62.36 55.93 58.07 64.28 64.82 60.88
Visuo-semantic 61.86 58.45 60.8 61.85 67.9 66.08 63.07 56.59 57.84 65.77 66.01 62.02

All the exemplar decoding results we present above are significantly above chance 436

(50%), indicating a mapping between EEG activity and the image feature sets we have 437

chosen that can be used for zero-shot brain decoding. For the Stanford dataset, which 438

uses a larger and more diverse set of object images, the semantic feature set gives better 439

accuracy than the visual feature set, and best performance is obtained with the 440

combined visuo-semantic feature set. In the results for the Trento dataset, these trends 441

are less clear, but it can be seen that the combination of all features is a robust 442

approach overall. 443

EEG Feature Selection Visualisation 444

In order to demonstrate that our EEG feature selection was performing as expected and 445

was properly selecting activity from channels and timepoints known to relate to 446

meaningful visual processing, we analysed which EEG features were assigned the highest 447

score by the stability measure outlined in the ‘EEG Feature Selection’ Section. Figures 448

3a and 4a show a grand average of the stability scores at different times during an 449
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epoch. These values were generated by taking the mean of the scores across each 450

channel for the time offset in question. Figures 3b-d and 4b-d show snapshots of the 451

stability values at particular timepoints from the temporal plots, distributed over the 452

EEG sensor locations. 453

Fig 3. Trento EEG Feature Stability by Time and Location. The areas shaded
in red signify the locations with highest EEG stability, while areas shaded in blue
signify the lowest.

Fig 4. Stanford EEG Feature Stability by Time and Location. The areas
shaded in red signify the locations with highest EEG stability, while areas shaded in
blue signify the lowest.

Stability peaks within the expected time window [16], indicating that the feature 454

selection method is properly determining the most informative features within the EEG 455

activity. Based on previous research [16,17,27], we would expect the posterior sensors 456

to be more useful early in an epoch when there is more visual processing, and that 457

informative areas later on would be more spatially diffuse, when activity reflects more 458

widely-distributed semantic processing of the stimulus. The stability analysis reflects 459

this pattern, more clearly in the Trento dataset than the Stanford dataset. 460

Comparison with State-of-the-art 461

Because of our zero-shot analysis framework, a study with directly comparable results 462

could not be identified in a review of relevant EEG literature. However, the studies 463

mentioned in the background section can provide a frame of reference. While Palatucci 464

et al. [14] used image stimuli and decoded the image from brain activity, the focus was 465

on decoding semantic information about the object in the image rather than retrieving 466

the stimulus image based on the brain data. The datasets we have access to in this 467

study involve much more visually complex image stimuli. Where Palatucci et al. [14] 468

made use of minimilistic line drawings, the photographs used in both datasets analysed 469

in this study are much more visually complex. In order to best leverage this extra visual 470

information, we added several visual feature sets to our analysis. 471

The leave-one-class-out task performed by Palatucci et al. [14] is similar enough to 472

the task in this study to give context to our results, though given the two studies use 473

different datasets a direct comparison with our approach is not possible. The paradigm 474

used in this study was very similar to those used in the Trento and Stanford 475

experiments, with participants being presented with a series of images and asked to 476

silently name them. Compared with the Palatucci et al. [14] study, we obtain slightly 477

stronger results (Table 3). 478

Table 3. Leave-one-class-out task percent rank accuracy.

Dataset Name Rank Accuracy

Palatucci et al. [14] (their approach) 56%
Trento dataset (our approach) 61.1%
Stanford dataset (our approach) 61.65%

Conclusion 479

In this paper we proposed an approach to zero-shot image retrieval in EEG data using a 480

novel combination of feature sets, feature selection, and regression modeling. We have 481
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shown that a combination of visual and semantic feature sets performs better than 482

using either of those feature sets in isolation. We also analysed the performance of each 483

image feature model used in our approach individually to help identify where future 484

improvements could be made. 485

We hope that future work can improve upon this approach using the same open 486

dataset for comparison as it is difficult to accurately predict how well our approach 487

would perform on the other datasets mentioned in Sections ‘Introduction’ and 488

‘Comparison with State-of-the-art’. We have demonstrated that the features we 489

extracted for the EEG data and images are justified and perform significantly above 490

chance. However it is possible that our image features do not accuracy reflect all stages 491

of human visual processing, and that a different set of features would better facilitate a 492

regression model. For example, large neural networks that recognise images have a 493

hierarchical architecture which reflects some aspects of human visual processing [42,43] 494

and which could provide an effective model for our feature space. Alternatively we 495

could replace our semantic features with a set derived from a distributional word 496

embedding model such as word2vec [44] or fastText [45]. 497

Moreover, our EEG feature selection may correctly quantify the usefulness of each 498

particular timepoint in each channel, however it is likely that features which are close in 499

time and location will have very similar information and thus similar scores, and so a 500

feature selection method may select a set of good quality but redundant features. In 501

future work, we will explore feature selection methods that produce a small set of 502

maximally informative EEG features. Nevertheless, our approach has demonstrated a 503

marked improvement over current state-of-the-art for EEG zero-shot image decoding 504

and is a step towards the application of EEG to real-world BCI technologies. 505
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