- 1 The association between dietary habits and periodontal disease in young adult
- 2 women
- 3
- 4 Short title: Dietary habits and periodontal disease
- $\mathbf{5}$
- 6 Akemi Hosoda^{1,2}, Yuriko Komagamine^{1*}, Manabu Kanazawa¹, Yohei Hama¹,
- 7 Akiko Kojo², Shunsuke Minakuchi¹
- 8
- ⁹ ¹Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental
- 10 Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- ¹¹ ²Division of Medical Nutrition, Faculty of Healthcare, Tokyo Healthcare
- 12 University, Tokyo, Japan

- 14 *Corresponding author
- 15 Email: y.komagamine.gerd@tmd.ac.jp

17 Abstract

18 Background

Among middle-aged and elderly individuals, dietary habits have previously been 19reported to differ between patients with and without periodontal disease. 20However, in young adults, there are only a few reports that show a correlation 21between nutrient/food intake and periodontal disease. Moreover, no report has 2223assessed the correlation between dietary habits measured by а self-administered diet history questionnaire (DHQ) and periodontal disease. 24Therefore, we assessed the correlation between dietary habits, determined 25using a DHQ, and periodontal disease in young adult women who are likely to 2627develop a periodontal disease.

28 Methods

The participants were 120 healthy, non-smoking, female college students (mean age, 20.4 \pm 1.1 years) from two universities who did not have any systemic disease. The participants were assessed for periodontal disease according to community periodontal index (CPI) and were divided into two groups. Subjects with a CPI code of 0, 1, or 2 were assigned to non-periodontal disease group (non-PD), and subjects with a CPI code of 3 or 4 were assigned to periodontal

35	disease group (PD). Dietary habits were assessed using a DHQ. In addition,
36	physical status, level of difficulty in chewing food (dietary hardness), masticatory
37	performance, and quality of life (QoL) were assessed.
38	Results
39	The PD group had a significantly lower nutrient intake of minerals, fat,
40	water-soluble vitamins, and dietary fiber than the non-PD group. In terms of food
41	groups, the PD group consumed significantly lesser amounts of green and
42	yellow vegetables than the non-PD group. In addition, the PD group consumed
43	significantly lesser amounts of hard foods than the non-PD group.
44	Conclusion
45	Young adult women with a periodontal disease had a significantly lower

46 nutrient/food intake than young adult women without a periodontal disease.

47 **1. Introduction**

Periodontal disease is a chronic inflammatory disease that begins in the gingiva 48and spreads throughout the periodontal tissues, culminating to its destruction [1]. 49Periodontal disease occurs in young adulthood and progresses with age [2]. 50According to the results of the Survey of Dental Diseases 2016, the percentage 51of persons in Japan with periodontal pockets of ≥ 4 mm increased with age [3]. 52Moreover, since 17.6% individuals aged 15-24 years and 32.4% individuals 53aged 25-34 years have periodontal pockets of ≥4 mm, periodontal disease is 54now known to be common among the elderly and the young adults. Among 55middle-aged individuals, the prevalence of periodontal disease is higher in 56women than in men. The decrease in estrogen levels after menopause leads to 5758a decrease in bone density, which causes the progression of alveolar bone resorption, a symptom of periodontal disease [4]. Therefore, with age, women 59are at a greater risk of developing periodontal disease than men [4]. 60

It is important to prevent periodontal disease because it is known to affect systemic diseases such as cardiovascular disease [5], diabetes mellitus [6, 7], and metabolic syndrome [8] and premature/low-birth-weight delivery [9, 10]. Previous studies assessing the causes and etiology of periodontal disease

mainly focused on oral microbes and surrounding host environment [11, 12]. 65 Previously reported environmental factors predisposing the host to periodontal 66 disease include smoking habits, drinking habits [13], and dental hygiene [14]. 67 In addition, the nutrients and food consumed have also been reported to 68 be correlated with periodontal disease. Shariq Najeeb et al. suggested that 69 decreased consumption of vitamins and minerals, particularly vitamin C, which 70 has antioxidant activity, was highly associated with periodontal disease; 71however, vitamin C supplementation was not effective in treating periodontal 72disease [15]. Varun Kulkami et al. showed a similar intake of particular nutrients 73 in patients with and without periodontal disease. However, they pointed to a 74possible correlation between consumed nutrients and periodontal disease status 7576[16]. In addition, Yoshihara et al. showed a negative correlation between the intake of green and yellow vegetables and periodontal disease prevalence. 77However, it has also been reported that a high intake of cereals, nuts, sugar, 78sweets, and candy is positively correlated with the presence of periodontal 79disease [17]. As described above, most of the previous studies on the effect of 80 81 diet/nutrient targeted elderly patients, with very few studies targeting the young adults. 82

 $\mathbf{5}$

83	Our foods are divided into relatively hard foods and soft foods based on
84	physical properties. The hardness of food is regarded as the difficulty involved in
85	chewing, hereafter referred to as dietary hardness. Dietary hardness has been
86	assessed as an estimate of masticatory muscle activity for the habitual diet [28].
87	A positive correlation between dietary hardness and chewing muscle activity has
88	also been reported in a previous study [18].
89	Therefore, we aimed at assessing the correlation between dietary habits
90	and periodontal disease in young adult women. In addition, we assessed the
91	correlation between the intake of hard foods and periodontal disease.
92	
92 93	
	2. Materials and Methods
93	2. Materials and Methods 2.1. Participants
93 94	
93 94 95	2.1. Participants
93 94 95 96	2.1. Participants One hundred and twenty-seven female college students from the Tokyo Medical
93 94 95 96 97	2.1. Participants One hundred and twenty-seven female college students from the Tokyo Medical and Dental University and the Tokyo Healthcare University were recruited for the

smoker, taking gastrointestinal disease drugs, dry mouth, impaired oral
 movement and psychiatric illness.

After 6 smokers and 1 person taking gastrointestinal disease drugs were 103 104 excluded, 120 subjects (mean age, 20.4 years) were finally enrolled in the study. 105 One dentist with ≥5 years of experience in clinical trials assessed the subjects for periodontal disease. Two other evaluators practiced the chewing gum and 106 gummy jelly tests in advance so that their results matched. The Ethical 107 Committee of the Tokyo Medical and Dental University (#1002) and Tokyo 108 Healthcare University (#25-8) approved the study protocols. All participants 109provided written informed consent before enrolment in the study, and 110experiments were performed following the guidelines in the Helsinki Declaration 111 112on the use of human subjects for research.

113

114 **2.2. Dietary assessment**

Nutrient/food intake was measured using the self-administered diet history questionnaire (DHQ). The validity and reliability of the DHQ have previously been confirmed [19, 20]. The DHQ includes questions concerning the frequency of consumption, the semi-quantitative portions of 151 food and beverage items

119	consumed, general eating habits including skipping meals and eating irregularly,
120	use of dietary supplements, and major cooking methods. An ad hoc of food
121	composition in Japan was used to calculate the estimated dietary intake of
122	energy, food group items, and nutrients [21]. The nutrient/food intake was
123	converted to intake per 1,000 kcal of consumed energy. Since the total intake
124	was expected to vary with body size, physical activity, and energy intake the
125	nutrient/food intake was adjusted for total energy by using energy density (per
126	1,000 kcal) [22].

127

128 **2.3. Estimation of dietary hardness**

Dietary hardness was calculated using a previously described method [23]. Each food intake was multiplied by each masticatory muscle's activity for the habitual diet. Subsequently, dietary hardness was obtained by dividing the total sum of the above value-by the energy intake.

133

134 **2.4. Periodontal disease variables**

Each participant underwent assessments for periodontics according to the
Community Periodontal Index (CPI) from code 0 to code 4 (code 0: health

137	periodontal conditions; code 1: gingival bleeding on probing; code 2: calculus
138	and bleeding; code 3: periodontal pocket 4-5 mm; and code 4: periodontal
139	pocket \geq 6 mm) [24, 25]. Then, the participants were assigned to two groups,
140	namely, non-periodontal disease (non-PD) group for CPI codes 0-2 and
141	periodontal disease (PD) group for CPI codes 3-4.
142	
143	2.5. Anthropometry
143 144	2.5. Anthropometry Age and self-reported body heights were obtained from the DHQ. The weight
144	Age and self-reported body heights were obtained from the DHQ. The weight
144 145	Age and self-reported body heights were obtained from the DHQ. The weight and percentage of body fat were measured using a body composition meter

149

2.6. Measuring masticatory performance by using color-changeable

151 chewing gum and gummy jelly test

Mixing ability was measured using a color-changeable chewing gum
(Masticatory Performance Evaluating Gum XYLITOL, Lotte Co., Ltd, Tokyo
Japan). After mouth-rinsing with water for 15 seconds, the participants were then

155	allowed to chew the provided gum by free chewing at a rate of one stroke per
156	second with an electric metronome. The participants chewed the gum for 60
157	strokes. Changes in color were assessed using a colorimeter (CR-13,
158	Konica-Minolta sensing, Tokyo, Japan), and then the mean values of L^* , a^* , and
159	b^{\star} in the CIELAB color system were measured. Thereafter, the ΔE values were
160	obtained using following the equation [26, 27].
161	$\Delta E = \sqrt{\left(L^* - 72.3\right)^2 + \left(a^* + 14.9\right)^2 + \left(b^* - 33.0\right)^2}$
162	Comminution test was measured using a test gummy jelly (UHA Mikakuto Co.,
163	Ltd, Japan) and a reported scoring method [28]. The participants chewed the
164	test jelly on their preferred chewing side for a total of 30 strokes. Subsequently,
165	the chewed test jellies were evaluated on a scale of one to ten by using a visual
166	scoring method [29]. Higher scores represented better comminution.
167	

168 2.7. Health-related QoL

The general health-related QoL of the participants was evaluated by using the
Health-related quality of life scale, Short Form-8 (SF-8) [30, 31, 32].

171

172 **2.8. Statistical analyses**

173	Age, height, weight, BMI, body fat percentage, nutrient/food intake, dietary
174	hardness, masticatory performance, and health-related QoL were compared
175	between the two groups by using Student's <i>t</i> -test or Mann-Whitney U test. JMP
176	Pro 11.0.0 (SAS) software was used for analyses. $P < 0.05$ was considered
177	statistically significant. Except for physical status, dietary hardness, and QoL, all
178	the other variables were log-transformed to achieve a normal distribution.
179	
180	
181	3. Results
181 182	3. Results 3.1. Characteristics of participants
182	3.1. Characteristics of participants
182 183	3.1. Characteristics of participants The mean age, body fat percentage, weight, height, and BMI of each group are
182 183 184	3.1. Characteristics of participants The mean age, body fat percentage, weight, height, and BMI of each group are shown in Table 1. The average age of the participants was 20.4 ± 1.1 years.
182 183 184 185	3.1. Characteristics of participants The mean age, body fat percentage, weight, height, and BMI of each group are shown in Table 1. The average age of the participants was 20.4 ± 1.1 years. Seventy-one subjects were assigned to the non-PD group, and 49 subjects were

189

Table 1. The character of participants.

		Total		non-PD			PD	p		
		Mean	SD	 Mean	SD		Mean	SD		
Age ²⁾	yrs	20.4	1.1	20.4	1.1		20.3	1.1	0.1	0
Body height ²⁾	cm	158.9	5.8	158.4	5.3		159.0	6.3	0.9	1
Body weight1)	kg	51.2	6.9	51.2	7.4		51.1	6.2	0.8	9
BMI ²⁾	kg/m²	20.3	2.4	20.4	2.6		20.2	2.0	0.7	8
Body fat ¹⁾	%	27.0	5.2	27.0	5.8		27.0	4.1	0.9	7

Total n=120; non-PD n=71; PD n=49

1) Student's t-test

2) Mann-Whitney U test

190

191 **3.2. Intake of nutrients**

192Table 2 shows the results of the intake of nutrients. A comparison of energy intake and protein, fat, and carbohydrate energy ratio did not show a significant 193194 difference between the two groups. The intake of minerals such as potassium, calcium, magnesium, and iron was significantly lower in the PD group. Moreover, 195 the intake of fat-soluble vitamins, including vitamin A, beta-carotene 196equivalence, vitamin E, and vitamin K, was significantly lower in the PD group. 197 The intake of water-soluble vitamins, including pantothenic acid (vitamin B5), 198 vitamin B6, and folic acid (vitamin B9), were also significantly lower in the PD 199group. 200

201

202

Table 2. Nutrient intake in the PD and non-PD groups.

		Total		non-	non-PD		PD	
		Mean	SD	Mean	SD	Mean	SD	р
Energy ¹⁾	kcal/day	1769	403	1806	431	1715	356	0.27
Protein ¹⁾	% energy	14.1	1.9	14.3	1.9	13.8	1.8	0.16
Fat ²⁾	% energy	30.6	5.3	31.1	5.1	29.8	5.6	0.30
Carbohydrate ¹⁾	% energy	53.1	5.8	52.6	5.5	54.0	6.3	0.21
Sodium ²⁾	mg/1000kcal	2198	582	2223	644	2161	484	0.86
Potassium ²⁾	mg/1000kcal	1142	248	1185	244	1080	242	0.04*
Calcium ¹⁾	mg/1000kcal	273	90	285	81	256	101	0.02*
Magnesium ¹⁾	mg/1000kcal	124	27	128	28	117	25	0.02*
Phosphorus ¹⁾	mg/1000kcal	527	93.0	539	91	509	94	0.06
Iron ¹⁾	mg/1000kcal	3.9	0.8	4.0	0.1	3.6	0.1	0.01*
Zinc ¹⁾	mg/1000kcal	4.1	0.5	4.2	0.5	4.0	0.5	0.11
Copper ²⁾	mg/1000kcal	0.57	0.10	0.59	0.11	0.55	0.09	0.09
Manganese ²⁾	mg/1000kcal	1.98	0.7	1.96	0.74	2.02	0.57	0.22
Vitamin A ¹⁾	µg/1000kcal	297	155	325	167	256	128	0.007**
Retinol ²⁾	µg/1000kcal	141	120	151	132	128	102	0.55
b-Carotene equivalents ¹⁾	µg/1000kcal	1841	1004	2068	1041	1515	855	0.001**
Vitamin D ¹⁾	µg/1000kcal	3.5	1.9	3.4	1.8	3.5	2.2	0.97
Vitamin E ¹⁾	mg/1000kcal	4.5	1.1	4.7	1.2	4.1	1.0	0.002**
Vitamin K ¹⁾	µg/1000kcal	147	74	162	83	125	53	0.004**
Thiamin ¹⁾	mg/1000kcal	0.46	0.10	0.47	0.10	0.44	0.12	0.13
Riboflavin ²⁾	mg/1000kcal	0.72	0.16	0.73	0.16	0.72	0.18	0.36
Naiacin ¹⁾	mg/1000kcal	8.0	1.9	8.1	1.7	7.9	2.1	0.66
Vitamin B ₆ ¹⁾	mg/1000kcal	0.58	0.15	0.60	0.15	0.55	0.15	0.03*
Vitamin B ₁₂ ¹⁾	µg/1000kcal	3.0	1.2	3.0	1.2	3.0	1.3	0.75
Folic acid ¹⁾	µg/1000kcal	158	44	167	47	144	35	0.006**
Pantothenic acid ²⁾	mg/1000kcal	3.19	0.55	3.28	0.55	3.05	0.53	0.01*
Vitamin C ¹⁾	mg/1000kcal	50	22	52	22	48	22	0.25
Fatty acid ²⁾	g/1000kcal	29.63	5.40	30.16	5.29	28.85	5.52	0.39
Saturated ¹⁾	g/1000kcal	9.87	2.12	9.96	2.15	9.74	2.08	0.33
Monounsaturated ²⁾	g/1000kcal	12.02	2.63	12.21	2.52	11.73	2.79	0.38
Polyunsatutated ²⁾	g/1000kcal	7.45	1.60	7.67	1.55	7.12	1.63	0.12

n-3 Polyunsaturated ²⁾	g/1000kcal	1.28	0.36	1.30	0.35	1.25	0.38	0.50
n-6 Polyunsaturated ²⁾	g/1000kcal	6.27	1.31	6.48	1.26	5.95	1.31	0.06
Choresterol ²⁾	mg/1000kcal	173	61	177	69	167	49	0.67
Total dietary fiber ¹⁾	g/1000kcal	6.7	1.8	7.1	1.7	6.1	1.8	< 0.001***
Solubule dietary fiber ¹⁾	g/1000kcal	1.7	0.5	1.8	0.4	1.6	0.6	0.003**
Insoluble dietary fiber ¹⁾	g/1000kcal	4.7	1.3	5.0	1.3	4.3	1.2	< 0.001***

Total n=120; non-PD n=71; PD n=49

1) Student's t-test

2) Mann-Whitney U test

*P<0.05, **P<0.01, ***P<0.001

203

204

3.3. Intake of different food groups

The results of food intake per 1000 kcal of energy for each group are shown in 206Table 3. The intake of green and yellow vegetables and other vegetables was 207significantly lower in the PD group than in the non-PD group. Although there was 208 209no significant difference in the intake of seeds, nuts, and beans, their intake was lower in the PD group. In addition, the intake of sugar, animal fats, and 210beverages was higher in the PD group. When green and yellow vegetables and 211other vegetables were analyzed (Table 4), the intake of carrots (among green 212and yellow vegetables) and the intake of cabbage (among other vegetables) 213214were significantly lower in the PD group than in the non-PD group. Furthermore, although there was no significant difference, the intake of broccoli, as a green 215

and yellow vegetable, and that of cucumber, eggplant, and lotus root, as a part

of the other vegetables, were lower in the PD group.

219

Table 3. Food intake per 1000 kcal in the PD and non-PD groups.

g/1,000kcal

	Total		non	-PD	Р	-	
	Mean	SD	Mean	SD	Mean	SD	р
Cereals ²⁾	204.3	58.2	197.9	59.2	213.5	56.2	0.19
Nuts and seeds ²⁾	1.1	2.5	1.2	2.6	0.9	2.2	0.09
Potatoes ²⁾	13.9	8.4	14.8	8.4	12.7	8.4	0.06
Sugars ²⁾	6.2	3.0	6.1	2.6	6.3	3.6	0.86
Confectioneries ²⁾	51.4	25.1	51.3	25.3	51.6	25.1	0.89
Animal fat ²⁾	0.5	0.7	0.4	0.5	0.6	0.8	0.20
Vegetable fats and oil ²⁾	12.4	8.5	12.4	8.3	12.4	9.0	0.59
Pulses ¹⁾	38.2	41.1	42.9	48.4	31.5	26.2	0.17
Fruits ²⁾	45.6	38.1	46.7	41.6	43.9	32.6	0.93
Green and yellow vegetables ¹⁾	61.4	35.9	68.5	38.5	51.2	29.4	0.01
Other vegetables ¹⁾	61.6	34.4	67.3	37.7	53.3	27.5	0.02
Mushrooms ²⁾	7.3	7	7.3	6.5	7.4	8.7	0.21
Seaweeds ²⁾	7.4	7.3	7.6	6.7	7.0	8.2	0.57
Seasonings ²⁾	8.5	6.0	8.2	4.9	8.8	7.3	0.91
Alcholic beverages ²⁾	25.3	50.8	25.9	52.7	25.6	48.5	0.58
Beverages ²⁾	383.7	241.4	357.5	244.0	421.7	234.8	0.09
Fish ¹⁾	28.9	15.2	28.4	15.3	29.5	15.2	0.84
Meat ¹⁾	43.3	18.9	44.4	17.1	41.7	21.3	0.17
Eggs ²⁾	19.3	13.5	20.2	15.1	18.1	10.9	0.76
Milk produces ²⁾	69.3	61.6	71.4	54.9	66.2	70.8	0.28

Total n=120; non-PD n=71; PD n=49

1) Student's t-test

2) Mann-Whitney U test

*P<0.05

220

222

Table 4. Intake of green/yellow and other vegetables in the PD and non-PD groups.

g/1,000kcal

	Tot	tal	non-	non-PD		PD	
	Mean	SD	Mean	SD	Mean	SD	p
Green and yellow vegetables	;						
Carrots ²⁾	8.1	5.9	9.1	5.9	6.7	5.8	0.02*
Pumpkins ²⁾	3.8	5.1	4.1	5.8	3.5	4.0	0.94
Tomatoes ¹⁾	13.0	12.5	14.5	13.6	10.9	10.3	0.13
Sweet peppers ²⁾	2.9	3.3	3.1	3.6	2.6	2.8	0.36
Broccoli ²⁾	6.6	9.3	7.7	10.2	5.1	7.8	0.06
Green leafy vegetables ²⁾	17.7	18.5	20.8	22.3	13.3	9.5	0.15
Other vegetables							
Cabbage ¹⁾	14.7	14.9	17.1	16.6	11.2	11.3	0.01*
Cucumbers ¹⁾	4.8	5.7	5.5	5.5	3.8	4.3	0.05
Lettuce ²⁾	6.3	5.8	7.3	6.5	5.0	4.2	0.13
Chinese cabbage ²⁾	4.4	7.4	4.4	7.5	4.4	7.2	0.73
Bean sprouts ²⁾	5.4	7.1	5.7	7.0	5.0	7.2	0.60
Radishes ²⁾	6.4	6.0	7.0	6.5	5.6	5.2	0.43
Onions ¹⁾	10.9	9.5	11.3	10.2	10.3	8.6	0.59
Cauliflower ²⁾	0.3	0.9	0.4	1.1	0.2	0.6	0.25
Eggplants ²⁾	3.4	5.4	3.6	4.0	3.1	7.1	0.06
Burdock ²⁾	1.7	2.3	2.0	2.8	1.2	1.1	0.12
Lotus root ²⁾	0.8	1.1	0.9	1.3	0.7	0.9	0.06

Total n=120; non-PD n=71; PD n=49

1) Student's t-test

2) Mann-Whitney U test

*P<0.05

223

3.4. Dietary hardness

225 Masticatory muscle activity was analyzed as a measurement of dietary hardness

(Table 5). The results showed that the intake of hard foods was significantly

lower in the PD group when compared with the non-PD.

228

Table 5. Hard food intake in the PD and non-PD groups.

m•V/1000kcal

	Total		non-l	PD	PD					
	Mean	SD	Mean	SD	Mean	SD	р			
Intake of hard foods ¹⁾	204	30.4	208	31	197	30	0.046*			
Total n=120; non-PD n=71; PD n=49										

1) Student's t-test

*P<0.05

229

230 **3.5. Masticatory performance and health-related QoL**

231 Masticatory performance and QoL are shown in Table 6. There was no

significant difference in mixing ability, comminution ability, and QoL between the

two groups.

235

Table 6. Masticatory performance and health related QoL.

	Total		non-PD		PD		p
	Mean	SD	Mean	SD	Mean	SD	
Masticatory Perfomance							
Color-changeable chewing gum ¹⁾	22.5	5.0	22.2	5.3	22.9	0.7	0.42
Gummy jelly test ²⁾	6.2	0.9	6.1	0.1	6.3	0.1	0.45
SF-8 score							
Physical component summary ²⁾	53.4	4.4	53.2	0.5	53.8	0.6	0.52
Mental component summary ²⁾	44.4	7.0	44.5	7.1	44.3	6.9	0.82

Total n=120; non-PD n=71; PD n=49

1) Student's t-test

2) Mann-Whitney U test

236

237

238 4. Discussion

In this study, the two groups showed significant differences in the intake ofseveral nutrients.

In previous studies, subjects with periodontal disease significantly consumed less potassium and iron. In the present study, the intake of potassium and iron in the PD group was significantly lower than that in the non-PD group, which was consistent with that reported in previous studies. Magnesium is known to be involved in bone and tooth formation. It was reported that in 40-year-old individuals, serum magnesium concentration is associated with the

risk of periodontal disease [33]. The intake of magnesium was significantly lower 247in the PD group in the present study. We, therefore, think that there is a 248significant positive correlation between the presence of periodontal disease and 249low intake of magnesium in not only the elderly but also in young adults. Both 250animal and human studies have reported that a lack of calcium intake leads to 251alveolar bone resorption [34, 35] and a decrease in bone density [36], indicating 252that insufficient calcium intake might cause the progression of periodontal 253disease. In addition, it was shown that the risk of periodontal disease associated 254with calcium intake was observed in both men and women aged between 20 and 25539 years (odds ratio; 1.99 and 1.84), only in men aged between 40 and 59 years, 256and in neither men nor women aged ≥ 60 years [37]. In the present study, the 257intake of calcium was significantly lower in the PD group. Therefore, we think 258that low calcium intake is more strongly correlated with the presence of 259periodontal disease in younger adults than in older adults. 260

In the present study, the intake of vitamin C was lower, although not significantly, in the PD group, while the intake of vitamins A, K, and E and beta-carotene were significantly lower. Among the elderly and smokers, the prevalence of periodontal disease was reported to be associated with vitamin C

intake. There was a weak but significant dose-response increase in the risk of 265periodontal disease in subjects who had lower vitamin C intake [38]. Vitamin C is 266known to suppress oxidative stress through its antioxidant activity [39]. In 267268addition, vitamins A and K [40] and vitamin E and beta-carotene [41] have antioxidant activity. In previous studies, oxidative stress caused by reactive 269oxygen species in the tissues surrounding the gingiva affects the onset of 270periodontal disease [42]. Therefore, it was suggested that the antioxidant effect 271of several vitamins contributed to the absence of periodontal disease in the 272non-PD group. Low intake of folic acid is known to be related to increased 273bleeding during probing [43, 44], which supports our findings that the intake of 274folic acid was significantly lower in the PD group. In the present study, the intake 275276of pantothenic acid and vitamin B6, which are not known to have any correlation with periodontal disease, was significantly lower in the PD group. Previous 277reports have shown that decreased vitamin B complex intake reduced the 278efficiency of access flap surgery for periodontal disease treatment [45]. 279However, the effect of each specific vitamin B in the complex on periodontal 280281disease treatment has not been shown yet. Based on our findings, it was suggested that there is a positive correlation between the intake of pantothenic 282

acid and vitamin B6, among the vitamin B complex, and the absence of
 periodontal disease.

In a previous study, there was a significant positive correlation between the 285intake of whole grains and the absence of periodontal disease because whole 286grains contain dietary fiber [46]. Green and yellow vegetables and other 287vegetables like whole grains contain soluble and insoluble dietary fibers. 288Therefore, in this study, since the consumption of green/yellow vegetables and 289other vegetables was higher in the non-PD group than in the PD group, we think 290that dietary fibers play a protective role against the development of periodontal 291disease. 292

293It was reported that the risk for periodontal disease among elderly persons 294with low intake of docosahexaenoic acid is approximately 1.5 times that among those with high intake [47]. However, in the present study, there was no 295significant difference in the intake of fatty acids between the two groups. N-3 296 polyunsaturated 297 fatty acids such docosahexaenoic acid as and eicosapentaenoic acid exert anti-inflammatory effects by blocking intracellular 298299signaling systems required for producing inflammatory cytokines such as IL-1, IL-6, and TNF- α [47]. Therefore, the immunological differences between younger 300

adults and the elderly might have caused the difference in the findings between
 the present study and previous studies.

This study showed that the PD group significantly consumed foods with 303 304 lower dietary hardness when compared with the non-PD group. Yanagisawa, et al. classified foods into 10 ranks according to chewing muscle activity [18]. In the 305 study, carrots and cabbage were ranked 8th out of 10 (>1400 μ V · sec) and 306 carrots, cabbage, and lotus root were ranked 6th out of 10 (>1000 μ V · sec). We 307 found that the non-PD group routinely consumed hard dietary foods when 308 compared with the PD group. The quantity of saliva secreted has been reported 309 to increase proportionally with an increase in chew number, chewing time, or 310 chewing muscle activity [48]. Saliva washes away residual food particles and 311 312bacteria in the mouth. Saliva also contains lysozyme, amylase, peroxidase, and the proteins lactoferrin and IgA which possess antibacterial activity [49, 50]. 313 314Therefore, we think that eating foods with high dietary hardness (as seen in the non-PD group) protects against periodontal disease through oral washing and 315antibacterial activity resulting from increased saliva secretion. 316

In the present study, the participants in the PD group accounted for 40.8% of the total participants. The 2016 Survey of Dental Diseases reported that

319	women aged 20 to 24 with periodontal disease accounted for 16.7% of the total
320	population [3]. Thus, the high prevalence of periodontal disease observed in our
321	study population is likely because we did not comprehensively diagnose
322	periodontal disease by using multiple diagnostic methods. Our diagnoses were
323	based only on the CPI, which might have resulted in the observed high
324	prevalence.
324 325	prevalence. Presently, dietary or nutritional studies assessing how diet/nutrition can be
325	Presently, dietary or nutritional studies assessing how diet/nutrition can be

habits that effectively prevented or suppressed the progression of periodontaldisease are warranted.

331

332

333 5. Conclusion

Under the limited conditions of the present study, the intake of minerals (potassium, calcium, magnesium, and iron), fat-soluble vitamins (vitamin A, beta-carotene, vitamin E, and vitamin K), water-soluble vitamins (pantothenic

337	acid, vitamin B6, and folic acid), and dietary fibers was significantly lower in
338	young adult women with periodontal disease than in young adult women without
339	periodontal disease.
340	
341	
342	Acknowledgments
343	The authors thank all the participants from the Tokyo Medical and Dental
344	University and Tokyo Healthcare University.
345	
346	
347	References
348	1. Iwasaki M, Manz MC, Moynihan P, Yoshihara A, Muramatsu K,
349	Watanabe R, et al. Relationship between saturated fatty acids and periodontal
350	disease. J Dent Res. 2011; 90: 861-867.
351	
352	2. Williams RC Jr, Mahan CJ. Periodontal disease and diabetes in young
353	adults. J Am Med Assoc. 1960; 172: 776-778.
354	

3. Ministry of Health, Labor and Welfare of Japan. Report on survey of 355 dental diseases 2016, Table 21, p23. Available 356in Japan from: https://www.mhlw.go.jp/toukei/list/dl/62-28-02.pdf [accessed September 30, 357 2018] 358 359Shapiro LF, Freeman K. The relationship between estrogen, estrogen 360 4. receptors and periodontal disease in adult women. J Mich Dent Assoc. 2014; 96: 36140-44. 362 363 Teeuw WJ, Slot DE, Susanto H, Gerdes VE, Abbas F, D'Aiuto F, et al. 3645. Treatment of periodontitis improves the atherosclerotic profile: a systematic 365 review and meta-analysis. J Clin Periodontol. 2014; 41: 70-79. 366 367 6. Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two 368 common interrelated diseases. Nat Rev Endocrinol. 2011; 7: 738-748. 369 370 3717. Morita I, Inagaki K, Nakamura F, Noguchi T, Matsubara T, Yoshii S, et al. Relationship between periodontal status and levels of glycated hemoglobin. J 372

373 Dent Res. 2012; 91: 161-166.

374

375	8. Shimazaki Y, Saito T, Yonemoto K, Kiyohara Y, Iida M, Yamashita Y.
376	Relationship of metabolic syndrome to periodontal disease in Japanese women:
377	the Hisayama Study. J Dent Res. 2007; 86: 271-275.
378	
379	9. Corbella S, Taschieri S, Francetti L, De Siena F, Del Frabbro M.
380	Periodontal disease as a risk factor for adverse pregnancy outcomes: a
381	systematic review and meta-analysis of case-control studies. Odontology. 2012;
382	100: 232-240.
383	
384	10. Chambrone L, Gugielmetti MR, Pannuti CM, Chambrone LA. Evidence
385	grade associating periodontitis to preterm birth and/or low birth weight: I. A
386	systematic review of prospective cohort studies. J Clin Periodontol. 2011; 38:
387	795-808.
388	
389	11. Van Dyke TE, Dave S. Risk factors for periodontitis. J Int Acad
390	Periodontol 2005; 7: 3-7.

391

12. Cronin AJ, Claffey N, Stassen LF. Who is at risk? Periodontal disease
risk analysis made accessible for the general dental practitioner. Br Dent J.
2008; 205: 131-137.

395

Shimazaki Y, Saito T, Kiyohara Y, Kato I, Kubo M, Iida M, et al.
Relationship between drinking and periodontitis: the Hisayama Study. J
Periodontol. 2005; 76: 1534-1541.

399

14. Sakki TK, Knuuttila ML, Vimpari SS, Hartikainen MS. Association of
lifestyle with periodontal health. Community Dent Oral Epidemiol. 1995; 23:
155-158.

403

15. Najeeb S, Zafar MS, Khurshid Z, Zohaib S, Almas K. The role of
nutrition in periodontal health: an update. Nutrients. 2016; 8; pii: E530. Available
from https://www.mdpi.com/2072-6643/8/9/530

407

408 16. Kulkarni V, Bhatavadekar NB, Uttamani JR. The effect of nutrition on

409 periodontal disease: a systematic review. J Calif Dent Assoc. 2014; 42: 302-311.

410

411	17. Yoshihara A, Watanabe, Hanada N, Miyazaki H. A longitudinal study of
412	the relationship between diet intake and dental caries and periodontal disease in
413	elderly Japanese subjects. Gerodontology 2009; 26: 130-136.
414	
415	18. Yanagisawa Y, Tamura A, Teramoto Y, Akasaka M. A classification of
416	foods by the amount of masticatory action involved. Shoni Shikagaku Zasshi
417	1989; 27: 74-84.
418	
419	19. Ainamo J, Barmes D, Beagrie G, Cutress T, Martin J, Sardo-Infirri J.
420	Development of the World Health Organization (WHO) community periodontal
421	index of treatment needs (CPITN). Int Dent J. 1982; 32: 281-291.

422

20. Cutress TW, Ainamo J, Sardo-Infirri J. The community periodontal index
of treatment needs (CPITN) procedure for population groups and individuals. Int
Dent J. 1987; 37: 222-233.

426

21. Hama Y, Kanazawa M, Minakuchi S, Uchida T, Sasaki Y. Properties of 427 a color-changeable chewing gum used to evaluate masticatory performance. J 428Prosthodont Res. 2014; 58: 102-106. 429430 Willett W and Stampfer MJ. Total energy intake: implications for 431 22. epidemiologic analy 43243323. Murakami K, Sasaki S, Takahashi Y, Uenishi K, Yamasaki M, 434Hayabuchi H, et al. Hardness (difficulty of chewing) of the habitual diet in relation 435to body mass index and waist circumference in free-living Japanese women 436 aged 18-22 y. Am J Clin Nutr. 2007; 86: 206-213. 437 438Sasaki S, Yanagibori R, Amano K. Self-administered diet history 24. 439questionnaire developed for health education: a relative validation of the 440 test-version by comparison with 3-day diet record in women. J Epidemiol 1998; 441 4428: 203-215. 44325. Kobayashi S, Murakami K, Sasaki S, Okubo H, Hirota N, Notsu A, et al. 444

445	Comparison of relative validity of food group intakes estimated by
446	comprehensive and brief-type self-administered diet history questionnaires
447	against 16 d dietary records in Japanese adults. Public Health Nutr. 2011; 14:
448	1200-1211.

449

450 26. Ministry of Education, Culture, Sports, Science and Technology,
451 Science and Technology Agency. Standard Table of Food Composition in
452 Japan: Official Gazette Co-operation of Japan; 2015. Available from:
453 http://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/1374
454 030.htm

455

456 27. Tarkowska A, Katzer L, Ahlers MO. Assessment of masticatory
457 performance by means of a color-changeable chewing gum. J Prosthodont Res.
458 2017; 61: 9-19.

459

Yasui S, Nokubi T, Yoshimuta Y, Nokubi F, Kusunoki C, Kida M, et al.
Study on reliability for clinical application of a masticatory performance scoring
method using test gummy jelly. J Masticat & Health Soc. 2012; 22: 11-17.

463

464	29. Nokubi T, Yoshimuta Y, Nokubi F, Yasui S, Kusunoki C, Ono T, et al.
465	Validity and reliability of a visual scoring method for masticatory ability using test
466	gummy jelly. Gerodontology. 2013; 30: 76-82.
467	
468	30. Miyashita M, Yamaguchi A, Kayama M, Narita Y, Kawada N, Akiyama
469	M, et al. Validation of the Burden Index of Caregivers (BIC), a multi-dimensional
470	short care burden scale from Japan. Health Qual Life Outcomes. 2006; 4: 52.
471	
472	31. Sugimoto M, Takegami M, Suzukamo Y, Fukuhara S, Kakehi Y.
473	Health-related quality of life in Japanese men with localized prostate cancer:
474	assessment with the SF-8. Int J Urol. 2008; 15: 524-528.
475	
476	32. Fukuhara S, Suzukamo Y. Manual of the SF-8 Japanese Version.
477	Institute for Health Outcomes and Process Evaluation Research, Kyoto. 2004.
478	
479	33. Meisel P, Schwahn C, Luedemann J, John U, Kroemer HK, Kocher T.

480 Magnesium deficiency is associated with periodontal disease. J Dent Res. 2005;

84: 937-941.

483	34. Aral K., Alkan BA., Saraymen R., Yay A., Şen A., Önder GÖ.
484	Therapeutic effects of systemic vitamin K2 and vitamin D3 on gingival
485	inflammation and alveolar bone in rats with experimentally induced periodontitis.
486	J Periodontol. 2015; 86: 666-673.
487	
488	35. Gong A, Chen J, Wu J, Li J, Wang L, Goltzman D, et al.
489	1,25-Dihydroxyvitamin D deficiency accelerates alveolar bone loss independent
490	of aging and extracellular calcium and phosphorus. J Periodontol. 2018; 89:
491	983-994.
491 492	983-994.
	983-994.36. Song CH, Barrett-Connor E, Chung JH, Kim SH, Kim KS. Associations
492	
492 493	36. Song CH, Barrett-Connor E, Chung JH, Kim SH, Kim KS. Associations
492 493 494	36. Song CH, Barrett-Connor E, Chung JH, Kim SH, Kim KS. Associations of calcium and magnesium in serum and hair with bone mineral density in
492 493 494 495	36. Song CH, Barrett-Connor E, Chung JH, Kim SH, Kim KS. Associations of calcium and magnesium in serum and hair with bone mineral density in

499 **1057-1066**.

500

- 501 38. Nishida M, Grossi SG, Dunford RG, Ho AW, Trevisan M, Genco RJ.
- 502 Dietary vitamin C and the risk for periodontal disease. J Periodontol. 2000; 71:
 503 1215-1223.

504

39. Washko P, Rotrosen D, Levine M. Ascorbic acid in human neutrophils. J

506 Biol Chem. 1993; 268: 15531-15535.

507

- 40. Khmelevskiĭ luV, Danilevskiĭ NF, Borisenko AV, Poberezkina NV. Effect
- 509 of vitamins A, E, and K on the indices of the glutathione antiperoxide system in

510 gingival tissues in periodontitis. Vopr Pitan. 1985; 4: 54-56.

511

512 41. Moynihan PJ. The role of diet and nutrition in the etiology and 513 prevention of oral diseases. Bull World Health Organ. 2005; 83: 694–699.

514

515 42. Battino M, Bullon P, Wilson M, Newman H. Oxidative injury and
 516 inflammatory periodontal diseases: the challenge of anti-oxidants to free radicals

and reactive oxygen species. Crit Rev Oral Biol Med. 1999;10: 458-476

518

43. Erdemir EO Bergstrom J. Effect of smoking on folic acid and vitamin
B12 after nonsurgical periodontal intervention. J Clin Periodontol. 2007; 34:
1074-1081.

522

523 44. Esaki M, Morita M, Akhter R, Akino K, Honda O. Relationship between
524 folic acid intake and gingival health in non-smoking adults in Japan. Oral Dis.
525 2010; 16: 96-101.

526

45. Neiva RF, Al-Shammari K, Nociti FH Jr., Soehren S, Wang HL. Effects
of vitamin-B complex supplementation on periodontal wound healing. J.
Periodontol. 2005; 76: 1084–1091.

530

46. Nielsen SJ, Trak-Fellermeier MA, Joshipura K, Dye BA. Dietary fiber
intake is inversely associated with periodontal disease among US adults. J Nutr.
2016; 146: 2530-2536.

534

535	47. Iwasaki M, Yoshihara A, Moynihan P, Watanabe R, Taylor GW,
536	Miyazaki H. Longitudinal relationship between dietary $\omega\mathchar`-3$ fatty acids and
537	periodontal disease. Nutrition 2010; 26: 1105-1109.
538	
539	48. Yanagisawa Y, Wakabayashi T. The effect of difference in physical
540	property of cooked rice upon digestive speed of starch. J Masticat & Health Soc.
541	1991; 1: 45-52.
542	
543	49. Tenovuo JO. Human saliva: Clinical chemistry and microbiology. CRC
544	press; 1998.
545	
546	50. Edgar M, Dawes C, O'Mullane D. Saliva and oral health. 3th ed.
547	Stephen Hancocks Ltd; 2004.