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Abstract

Estimating the future course of cancer is invaluable to physicians; however, current
clinical methods fail to effectively use the vast amount of multimodal data that is
available for cancer patients.

To tackle this problem, we constructed a deep neural network based model to predict
the survival of patients for 20 different cancer types using gene expressions, microRNA
data, clinical data and histopathology whole slide images (WSIs). We developed an
unsupervised encoder to compress these four data modalities into a single feature vector
for each patient, handling missing data through a resilient, multimodal dropout method.
Encoding methods were tailored to each data type - using deep highway networks to
extract features from genomic and clinical data, and convolutional neural networks
extract features from pathology images. We then used these feature encodings trained
on pancancer data to predict pancancer and single cancer survival data, achieving a
C-index of 0.784 overall.

This work shows that it is possible to build a pancancer model for prognosis that
also predicts prognosis in single cancer sites. Furthermore, our model handles multiple
data modalities, efficiently analyzes WSIs, and summarizes patient details flexibly into
an unsupervised, informative profile. We thus present a powerful automated tool to
accurately determine prognosis, a key step towards personalized treatment for cancer
patients.

Introduction 1

Estimating tumor progression or predicting prognosis can aid physicians significantly in 2

making decisions about care and treatment of cancer patients. To determine the 3

prognosis of these patients, physicians can leverage several types of data including 4

clinical data, genomic profiling, histology slide images, and radiographic images, 5

depending on the tissue site. Yet, the high-dimensional nature of some of these data 6

modalities necessarily implies that physicians can not always manually interpret these 7

multimodal biomedical data to determine treatment and estimate prognosis [1, 2]. 8

The presence of inter-patient heterogeneity warrants that characterizing tumors 9

individually is essential to improving the treatment process [3]. Previous research has 10

shown how molecular signatures such as gene expression patterns can be mined using 11

machine learning and are predictive of treatment outcomes and prognosis. Similarly, 12
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recent work has shown that quantitative analysis of histopathology images using 13

computer vision algorithms can provide additional information on top of what can be 14

discerned by pathologists [4]. Thus, automated machine-learning systems, which can 15

discern patterns among high-dimensional data may be the key to better estimate disease 16

aggressiveness and patient outcomes. Another implication of inter-patient heterogeneity 17

is that tumors of different cancer types may share underlying similarities. Thus, 18

pancancer analysis of large-scale data across a broad range of cancers has the potential 19

to improve disease modeling by exploiting these pancancer similarities. 20

Multi-institutional projects such as The Cancer Genome Atlas (TCGA) [5–7], which 21

collected standardized clinical, multi-omic and imaging data for a wide array of cancers, 22

are crucial to enable this kind of pancancer modeling. 23

Automated prognosis prediction however remains a difficult task mainly due to the 24

heterogeneity and high dimensionality of the available data. For example, each patient 25

in the TCGA database has thousands of genomic features (e.g. microRNA or mRNA) 26

and high resolution histopathology whole slide images (WSIs). Yet, based on previous 27

work, only a subset of the genomic image features are relevant for predicting prognosis. 28

Thus, to successfully develop a multi-modal model for prognosis prediction, an approach 29

is required that can efficiently work with clinical, genomic and image data, in essence 30

multimodal data. Here, we tackle this challenging problem by developing a pancancer 31

deep learning architecture drawing from unsupervised and representation learning 32

techniques, and developing a resilient learning architecture that exploits large-scale 33

genomic and image data to the fullest extent. 34

The main goal of this contribution is to harness the vast amount of TCGA data 35

available to develop a robust representation of tumor characteristics that can be used to 36

cluster and compare patients across a variety of different metrics. Using unsupervised 37

representation techniques, we develop pancancer survival models for cancer patients 38

using multi-modal data including clinical, genomic and WSI data. 39

Background 40

Prognosis prediction can be formulated as a censored survival analysis problem [8,9], 41

predicting both if and when an event (i.e. patient death) occurs within a given time 42

period. Given the unique statistical distribution of survival times, they are canonically 43

parametrized using the ”hazard function”, such as in standard Cox regression. 44

In recent years, many different approaches have been attempted to predict cancer 45

prognosis using genomic data. For example, Zhang et al., used an augmented Cox 46

regression on TCGA gene expression data to get a C -index of 0.725 in predicting 47

glioblastoma [10]. MicroRNA data in particular have shown high relevance as a measure 48

for disease modeling and prognosis [11–14], with Christinat et al., achieving a C-index 49

of 0.77 on a subset of renal cancer data using random forest classifiers [15]. However, 50

despite the high performance of machine learning models based one molecular data 51

alone, there is still some scope for improvement; after all, the tumor environment is a 52

complex, rapidly evolving milieu [16–18] that is difficult to characterize through 53

molecular profiling alone. 54

Recently, the use of whole slide image (WSI) data has been shown to improve the 55

performance and generality of prognosis prediction. As WSIs are high resolution images 56

of cellular architecture and environment with potentially only a fraction of the slide 57

relevant to predicting prognosis, much of the literature focuses on hybrid approaches 58

involving pathologist annotation of regions of interest (ROIs). For example, Wang et al., 59

match the performance of genomic models by using 500 by 500 pixel, physician-selected 60

ROIs and handcrafted slide features to predict prognosis [19]. More recently, deep 61

learning provides a significant boost in predictive power. For example, Yao et al., are 62

able to significantly outperform all molecular profiling-based methods on two lung 63

March 13, 2019 2/15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/577197doi: bioRxiv preprint 

https://doi.org/10.1101/577197
http://creativecommons.org/licenses/by-nc-nd/4.0/


cancer data sets using only physician-selected ROIs and convolutional neural networks 64

(CNNs) [20]. Other reports, including Beck et al. and Bejnordi et al. showing that 65

histopathology image data contains important prognostic information that is 66

complementary to molecular data [21,22]. Yet, multimodal prognosis models are still 67

highly underexplored [23]. To our knowledge, only one paper explores combining 68

genomic and image data for prognosis, showing that a lung-cancer genomic model 69

(C-index 0.660) and WSI-based model with hand-annotated ROIs (C-index 0.613) can 70

be combined to get a final classifier with C-index 0.691 [24]. 71

Moreover, the WSI-based methods discussed above require a pathologist to 72

hand-annotate ROIs, a tedious task. Arguably the most difficult part of automated, 73

multimodal prognosis prediction is finding clinically relevant ROIs automatically. In the 74

related field of tumor classification from WSIs, a ”decision-fusion” model that randomly 75

samples patches and integrates them into a Gaussian mixture has yielded accurate 76

predictions [25]. Moreover, more recent work has focused on using attention 77

mechanisms to learn what patches are important [26]. However, in prognosis prediction, 78

truly-automated WSI-based systems have had limited success. One report uses a 79

slide-based approach that relies on unsupervised learning – Zhu et al.’s recent paper 80

uses K-means clustering to characterize and adaptively sample patches within slide 81

images, achieving 0.708 C-index on lung cancer data [27], a result that nearly rivals 82

genomic-data approaches. 83

All previous research has focused on only single-cancer data sets, missing the 84

opportunity to explore commonalities and relationships between tumors in different 85

tissues. And although previous papers explore both genomic and imaging based 86

approaches, few models have been developed that integrate both data modalities. By 87

exploiting multimodal data, as well as developing better methods to automate WSI 88

scoring and extract useful information from slides, we have the potential to improve 89

upon the state-of-the-art. 90

In recent years, CNNs have been used to significantly improve machine learning 91

tasks [28] including missing value estimation in genomic data [29] and prediction of 92

prognostic factors based on WSI [26]. A key component of the success of CNNs is their 93

ability to deal with high-dimensional, unstructured data, in particular image data [30]. 94

For example, CNNs can accurately classify scenes from images by learning a set of 95

flexible, hierarchical features [31]. Even if the majority of pixel inputs are ”dropped out” 96

completely for some samples, this model can still be trained to predict accurately and 97

can handle the uncertainty [32]. 98

The prognosis prediction task is more unstructured than traditional deep learning 99

tasks; instead of classifying from relatively small images (224 by 224 for ImageNet, for 100

example), we must predict survival times from biopsy slides that are much larger. 101

Furthermore, patients span a wide variety of cancer types, and are often missing some 102

form of imaging, clinical, or genomic data, making it difficult to apply standard CNNs. 103

Unsupervised learning has shown significant promise [33]. By learning unsupervised 104

correlations among imaging features and genomic features, it may be possible to 105

overcome the paucity of data labels. Similarly, representation learning techniques might 106

allow us to exploit similarities and relationships between data modalities [34]. In 107

prognosis prediction, it is crucial that the model maps similar patients to the same 108

abstract representation in a way that is agnostic to data modality and availability. 109

Taking inspiration from unsupervised and representation learning should help tackle 110

many of the challenges that make prognosis prediction using multimodal data difficult. 111
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Materials and Methods 112

Data Sets and Tools 113

Our main source of data is the TCGA database, 114

(http://cancergenome.nih.gov/) [5–7], which contains microRNA data for 1,881 115

microRNAs, gene expression data for 60,383 genes, a wide range of clinical data, and 116

WSI data for over 11,000 patients. Table 1 describes the data distribution in more 117

detail. It is clear that many patients do not have all their data available, implying that 118

classifiers and architectures that can deal with missing data might perform better. Each 119

patient has a time of death recorded, right-censored up to a maximum of 11,000 days 120

after diagnosis across all cancer sites. The 20 cancers we examine have significantly 121

different survival patterns, as can be seen in Fig 1. We rely on the Python package 122

openslide to efficiently read and parse WSIs and the PyTorch framework to enable the 123

creation of neural network models. To train our models, we use an NVIDIA™ GTX 1070 124

GPU. 125

Fig 1. Kaplan-Meier survival curves for all cancer sites in the TCGA database
showing that survival is very tissue specific.

Table 1. Data distribution of TCGA data including missing data. Survival data is available for the majority of
patients, while microRNA and clinical data are missing in a subset of patients. Nearly 43% of patients have at least one
type of missing data.

Data type Number of cases Number of missing cases Percentage missing

gene expression data 10198 962 8.62%
microRNA expression data 10125 1035 9.27%
WSI slide data 10914 246 2.2%
clinical data 7512 3648 32.69%
survival target data (time of death) 11121 39 0.35%
patients with complete data 6404 4756 42.62%

The TCGA dataset of 11,160 patients was split into training and testing data sets in 126

85/15 ratio, stratifying by cancer type in order to ensure the same distribution of 127

cancers in both the training and test sets. 128

Deep Unsupervised Representation Learning 129

In order to train a pancancer model for prognosis prediction, we first attempt to 130

compress multiple data modalities into a single feature vector that represents a patient. 131

Previous work has found significant cross-correlations between different data types (e.g. 132

gene expression, clinical, microRNA and image data) [23,35], and learning these 133

relations in an unsupervised fashion could significantly improve the prognosis prediction 134

process. Thus, we use a representation learning framework to guide our approach. 135

Although approaches such as split-brain autoencoders induce convergence between 136

different multimodal feature representations, they rely on reconstruction error, which 137

may not be a good choice for heterogeneous data sources. Instead, we rely on a method 138

inspired by Chopra et al., in which two different “views” of objects are passed through a 139

Siamese network to create feature representations [36]. For views from the same object, 140

the cosine similarity between these feature representations is maximized, whereas for 141

views from different objects, the cosine similarity is minimized. To ensure stability, a 142

margin-based, hinge-loss formulation is used, such that different-object feature 143

March 13, 2019 4/15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/577197doi: bioRxiv preprint 

http://cancergenome.nih.gov/
https://doi.org/10.1101/577197
http://creativecommons.org/licenses/by-nc-nd/4.0/


representations are only penalized if they fall within a margin M of the same-object 144

representations. This forces different views of a single patient’s information to have 145

similar feature vectors, while avoiding mode collapse where all features predict exactly 146

the same vector for all patients. 147

In this work, we use a similar formulation as [36], but with some modifications. 148

Because of the different data modalities, instead of using a Siamese network, we use one 149

deep neural network for each data type, with differing architectures described in Fig 2. 150

We define the feature space to have a length of 512. Since we have more than two 151

different modalities, we sum over the similarity loss for each pair of modalities that are 152

present. We can define the loss lsim(θ) as in the equations 1, 2 and 3. 153

simθ(x, y) =
∑

i,j∈modalities

ĥθ,i(xi) · ĥθ,j(yj)
|ĥθ,i(xi)||ĥθ,j(yj)|

(1)

Lθ(x, y) = max(0,M − simθ(x, y) + simθ(x, x)) (2)

lsim(θ) =
∑
x,y

Lθ(x, y) (3)

where xi is the data for modality i and ĥθ,i is the predictive model for modality i. 154

Note that the parameter M controls the ”tightness” of the clustering. If M is high, 155

feature vectors for a given patient are permitted to be relatively different, as long as 156

they stay similar to a certain extent. If M is low, feature vectors for a patient are forced 157

to be much closer together, which is usually more ideal, but can also cause mode 158

collapse. After parameter search, we settled on M = 0.1 as the default value because it 159

was the smallest value of M that didn’t cause mode collapse. This loss is computed 160

between every pair of patients in a batch. Thus, the unsupervised model must learn to 161

recognize important, patient-distinguishing patterns in genomic and image data. 162

Moreover, it must learn how patterns in one modality correspond to patterns in a 163

different modality, so it can generate similar encodings for both. As a result, this 164

method naturally generates compact patient representations that are resilient to missing 165

data. The entire process is summarized in Fig 2. 166

Fig 2. Structure of the unsupervised model: the similarity loss can be visualized
as ”pulling” representations of different modalities together. Each modality uses a
different network architecture. For the clinical data we use fully connected layers with
sigmoid activations, for the genomic data we use deep highway networks [37] and for the
WSI images we use the SqueezeNet architecture [38] (see main text for architecture
details). These architectures generate feature vectors that are then aggregated into a
single representation and used to predict overall survival.

Prognosis Prediction 167

In addition to learning strong feature representations, the model must also accurately 168

predict prognosis. Because this is a survival data problem, we aim to maximize the 169

concordance score or C-index. Previous research has defined the Cox loss function [39] 170

as the best way to maximize concordance differentiably. Thus, we add a final prediction 171

layer that maps the 512 feature vector to a survival prediction. We use the standard 172

formulation of Cox loss to train the model. Cox loss is defined as 173

March 13, 2019 5/15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/577197doi: bioRxiv preprint 

https://doi.org/10.1101/577197
http://creativecommons.org/licenses/by-nc-nd/4.0/


lcox(θ) := −
∑
i:Ei=1

ĥθ(xi)− log
∑

j:Tj>Ti

eĥθ(xj)

 (4)

where the values Ti, Ei and xi are, respectively, the survival time, the censorship 174

flag, and the data for each patient, and ĥθ represents the neural network model trained 175

to predict survival times. The loss is computed over all patients whose lack of survival 176

was observed. Combining with the unsupervised model, the overall loss becomes 177

l(θ) = lsim(θ) + lcox(θ) (5)

Model Architectures 178

We use a dedicated CNN architecture for each data type. For the clinical data, we use 179

fully-connected (FC) layers (Figure 2) with sigmoid activations and dropout as encoders. 180

For the gene and microRNA data, we use highway networks as the architecture [37]. 181

Because of the complexity and scale of WSI images, we use the CNN architecture to 182

encode the image data. These architectures are now described in more detail. 183

The genomic and microRNA patient data sources are represented by dense, large 184

one-dimensional vectors, and neural networks are not the traditional choice for such 185

problems, for example support vector machines or random forests are more commonly 186

used [40,41]. However, in order to differentiably optimize the similarity and Cox loss, 187

we must use CNNs to predict these features. Recent improvements to the state-of-art 188

have made deep learning approaches competitive with other approaches. Thus, we use 189

deep highway networks to train 10-layer deep feature predictors without compromising 190

gradient flow through a neural gating approach [37]. Highway networks use LSTM-style 191

sigmoidal gating to control gradient flow between deep layers, combating the problem of 192

”vanishing” and ”exploding” gradient in very deep feed forward neural networks (Figure 193

2). 194

In order to represent and encode WSIs, we need to develop machine learning 195

methods that can effectively ”summarize” WSIs. However, the high resolution of WSIs 196

makes learning from them in their entirety difficult. Thus, there must be an element of 197

stochastic sampling and filtering involved. In this work, we use a relatively simple 198

approach to sample ROIs. We arbitrarily sample 200 (224 by 224) pixel patches at the 199

highest resolution, then compute the ”color balance” of each patch; i.e how far the 200

average (R, G, B) color value deviates from the mean (R, G, B) value of the entire WSI 201

(using mean-squared error). Then, we select the top 20% of these 200 patches (or 40 202

patches) as ROIs; this ensures that ”non-representative” patches belonging to 203

white-space and over-staining is ignored. Then, we apply a standard SqueezeNet 204

model [38] on the 40 ROIs, with the last layer being replaced by the length-512 feature 205

encoding predictor. The architecture is detailed in Fig 3. This model is connected to 206

the broader network as shown in Fig 2, and is trained using the similarity and Cox loss 207

terms. Because the SqueezeNet model is designed to be computationally efficient, we 208

can train on a large percentage of the WSI patches without sacrificing performance. 209

Fig 3. The SqueezeNet Model Architecture. The SqueezeNet architecture
consists of a set of fire modules interspersed with maxpool layers. Each fire module
consists of a squeeze layer (with 1x1 convolution filters) and expand layer (with a mix of
1x1 and 3x3 convolution filters). Fire module architecture helps in reducing the
parameter space for faster training. We replaced the final softmax layer of the original
SqueezeNet model with 512-length feature encoding predictor.
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We tuned the hyperparameters of these model architectures on a validation set to 210

find the final model parameters (Figure 2, Figure 3). To evaluate the performance of 211

our model, we use the concordance score (C-index) on the test data set. 212

Multimodal Dropout 213

Dropout is a commonly used regularization technique in deep neural network 214

architectures in which some randomly selected neurons are dropped out during the 215

training, forcing other neurons to step in to make predictions for missing neurons. This 216

technique results in less overfitting and more generalization [42]. For multimodal 217

dropout, instead of dropping neurons, we drop entire feature vectors corresponding to 218

each modality, and scale up the weights of the other modalities correspondingly similar 219

to our previous work [23]. This is applied to each data sample during training with 220

probability p for each modality, to force the network to create representations that are 221

robust to missing data modalities. We experimented with a number of different values 222

for P before settling on 25% as optimal. 223

Visualization 224

T-SNE is a commonly used visualization technique that maps points in 225

high-dimensional vector spaces into lower-dimensions [43]. Unlike other dimensionality 226

reduction techniques like Principal Component Analysis (PCA), T-SNE produces more 227

visually interpretable results by converting vector similarities into joint probabilities, 228

generating visually distinct clusters that represent patterns in the data. Here, we use 229

T-SNE to cluster and show the relationships between our length-512 feature vectors 230

representing patients. Because T-SNE is computationally intensive, we first used PCA 231

to project these vectors into a 50-dimensional space, then apply T-SNE to map them 232

into 2D space. 233

Results and Discussion 234

Unsupervised Learning Representations 235

We first evaluated the unsupervised representation learning of our model architecture by 236

visualizing the encodings of the pancancer patient cohort (Figure 4). Clusters of 237

patients with similar feature representations tend to have the same traits (race, sex, and 238

cancer type), even though the model was not explicitly trained on these variables. The 239

CNN model thus learned, in an unsupervised fashion, that factors like sex, race, and 240

cancer type helped to identify and cluster patients across different modalities. These 241

results suggest that the unsupervised model can effectively summarize information from 242

multimodal data paving the way for accurate survival prediction. Perhaps even more 243

importantly, these unsupervised encodings could act as a pancancer ”patient profile”. 244

Fig 4. T-SNE-mapped representations of feature vectors T-SNE-mapped
representations of feature vectors for 500 patients within the testing set. The 512-length
feature vectors were compressed using PCA (50 features) and T-SNE into the 2D space.
These representations manage to capture relationships between patients; for example,
patients with the same sex were generally clustered together (left image), and to a lesser
extent, patients of the same race and same cancer type tended to be clustered as well
(center and right), even when those clinical features were not provided to the model.
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Evaluation of Multimodal Dropout 245

Next, we evaluated the use of the multimodal dropout when integrating multi-modal 246

clinical, gene expression, microRNA and WSIs across 20 cancer sites to predict the 247

survival of patients. This analysis showed that the validation C-index improves when 248

using multimodal dropout during training (Fig 5), indicating that randomly 249

dropping-out feature vectors during training improves the network’s ability to build 250

accurate representations from missing data. We train for 80 epochs, however the models 251

appear to converge after 40 epochs. 252

Fig 5. Evaluation of multimodal dropout: learning rate in terms of C-index of
the model on the validation data set for predicting prognosis across 20 cancer sites
combining multimodal data. The model converges after 40 epochs and shows that
multimodal dropout improves the validation performance.

Pancancer Prognosis Prediction 253

We then use our model on the test data set to predict prognosis for different cancer 254

types. The model integrating clinical, mRNA, microRNA and WSI achieves an overall 255

C-index of 0.78 on all cancers with multimodal dropout and an overall C-index of 0.75 256

without multimodal dropout (Table 2). For each single cancer site, multimodal dropout 257

improves the performance by 2.7%. Models trained with multimodal dropout show an 258

improvement (between 2-6% overall) compared to those without multimodal dropout 259

when the same modalities are used. Note that only for mRNA, multimodal dropout did 260

not improve the results. For the model that is trained with all modalities, many of the 261

cancer types (14 out of 20) have a higher C-index compared to the training without 262

multimodal dropout. Overall, prognosis prediction tended to be more accurate on 263

cancers with more samples, but the effect of pancancer features is visible. Cancers with 264

a low number of samples (e.g. KICH) still appear to have excellent predictive 265

performance (i.e. best model C-index of 0.945), suggesting that training in a pancancer 266

setting can improve the performance on underrepresented cancer sites. 267

Pancancer pretraining evaluation 268

Next, we tested if training on pancancer data actually improved the prediction of 269

survival across each cancer site. To test this, we compared the pancancer results with 270

models trained on each cancer site separately for the multimodal dropout model using 271

all data modalities (i.e. Clin + miRNA + mRNA + WSI), and compared the 272

performance for survival prediction using exactly the same test cases for each cancer 273

site. This showed that for all cancer sites pancancer training improves the results except 274

for KIRC, HNSC and LIHC where a drop of 2-8% was observed (Table 2, ”Single 275

Cancer” column). 276

Essential data modalities 277

Next, we investigated using different combinations of modalities together with clinical 278

data, to examine if the genomic and image modalities are crucial for prognosis 279

prediction. This shows that microRNA is the most predictive modality with a 280

pancancer C-index of 0.78 together with clinical data compared to the weakest modality, 281

mRNA with a C-index of 0.60” (Table 2). Next, when adding WSIs to the microRNA 282

model the C-index is also 0.78 for a pancancer evaluation but with large differences for 283

specific cancer sites (Table 2). In addition, the clinical-microRNA-WSI model is the 284
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best model for six cancer sites, including KIRP (C-index 0.86), OV (C-index 0.69) and 285

LUAD (C-index 0.77) suggesting that these three data modalities are sufficient and 286

necessary for these cancer sites prognosis determination. 287
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Table 2. Model performance using C-index on the 20 studied cancer types, using different combinations of data modalities. Cancer sites are
defined according to TCGA cancer codes. For each cancer the best result is bold faced. Delta refers to the relative performance of the multimodal
dropout model vs. baseline. Clin=clinical data, miRNA=microRNA expression data, mRNA=gene expression data, WSI=whole slide images.

Clin + miRNA + mRNA + WSI Clin + miRNA Clin + mRNA Clin + miRNA + mRNA Clin + miRNA + WSI

Cancer Site
Single
Cancer

Base-
line

Multi-
modal
dropout

Delta
Base-
line

Multi-
modal
dropout

Delta
Base-
line

Multi-
modal
dropout

Delta
Base-
line

Multi-
modal
dropout

Delta
Base-
line

Multi-
modal
dropout

Delta

BLCA 0.60 0.65 0.73 12.6% 0.66 0.69 4.4% 0.60 0.58 -4.4% 0.65 0.62 -5.1% 0.65 0.68 4.3%
BRCA 0.62 0.77 0.79 3.0% 0.80 0.80 -0.1% 0.57 0.56 -1.9% 0.73 0.73 0.3% 0.77 0.77 0.0%
CESC 0.52 0.73 0.76 4.6% 0.77 0.76 -1.2% 0.67 0.62 -6.9% 0.74 0.74 0.4% 0.78 0.76 -2.5%

COADREAD 0.58 0.72 0.74 3.8% 0.78 0.75 -4.8% 0.72 0.58 -20.0% 0.77 0.64 -16.9% 0.70 0.74 4.5%
HNSC 0.64 0.61 0.67 10.4% 0.64 0.64 0.7% 0.58 0.55 -5.4% 0.63 0.66 4.6% 0.61 0.65 6.6%
KICH 0.69 0.95 0.93 -2.0% 0.82 0.85 3.0% 0.80 0.84 5.5% 0.73 0.77 5.9% 0.81 0.88 9.7%
KIRC 0.78 0.73 0.73 -0.3% 0.70 0.72 3.1% 0.61 0.65 5.9% 0.65 0.66 2.7% 0.68 0.61 -11.1%
KIRP 0.51 0.84 0.79 -6.0% 0.76 0.79 4.1% 0.65 0.64 -1.0% 0.61 0.70 14.5% 0.79 0.86 9.2%
LAML 0.65 0.66 0.67 1.8% 0.69 0.79 14.9% 0.57 0.61 7.4% 0.66 0.57 -12.8% 0.61 0.59 -2.8%
LGG 0.73 0.83 0.85 3.4% 0.79 0.81 2.0% 0.63 0.67 6.3% 0.77 0.78 1.4% 0.76 0.82 8.2%
LIHC 0.78 0.72 0.77 7.6% 0.73 0.74 2.7% 0.64 0.69 7.7% 0.68 0.67 -1.8% 0.70 0.77 11.2%
LUAD 0.72 0.72 0.73 1.3% 0.72 0.72 -0.9% 0.63 0.58 -8.9% 0.73 0.69 -5.1% 0.69 0.77 10.5%
LUSC 0.63 0.67 0.66 -0.9% 0.72 0.67 -6.5% 0.50 0.51 2.1% 0.62 0.60 -2.9% 0.67 0.68 0.5%
OV 0.54 0.63 0.67 6.4% 0.65 0.63 -2.2% 0.47 0.52 11.5% 0.59 0.61 3.5% 0.62 0.69 10.4%

PAAD 0.57 0.71 0.74 3.5% 0.68 0.71 3.8% 0.57 0.61 7.6% 0.59 0.64 8.9% 0.69 0.69 0.3%
PRAD 0.76 0.77 0.81 0.0% 0.64 0.64 26.9% 0.60 0.58 -3.5% 0.59 0.78 32.8% 0.53 0.60 13.4%
SKCM 0.54 0.68 0.72 5.2% 0.68 0.68 -0.1% 0.56 0.55 -0.1% 0.58 0.72 24.3% 0.67 0.72 6.8%
STAD 0.60 0.76 0.78 2.6% 0.75 0.76 1.5% 0.63 0.54 -13.9% 0.80 0.69 -14.1% 0.72 0.74 2.6%
THCA 0.53 0.95 0.90 -4.8% 0.97 0.95 -2.6% 0.82 0.54 -34.2% 0.70 0.83 18.7% 0.93 0.94 1.4%
UCEC 0.67 0.85 0.85 0.6% 0.81 0.85 4.3% 0.63 0.63 0.0% 0.66 0.78 18.2% 0.77 0.80 3.0%
Average

Improvement
2.9% 1.5% -2.4% 5.5% 4.3%

Pancancer 0.64 0.75 0.78 4.5% 0.74 0.78 4.3% 0.60 0.60 -1.2% 0.75 0.78 3.6% 0.76 0.78 3.2%
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All previous work on prognosis prediction using genomic and WSI data has focused 288

on specific cancer types and data sets; thus it is difficult to exactly compare our method 289

to previous results. Christinat et al.. achieved the highest C-index (0.77) thus far, on 290

renal cancer data (TCGA-KIRC). As can be seen from the table, our method performed 291

slightly worse (0.740) on the same type of data. But, our method heavily outperforms 292

the only multimodality classifier (0.726 versus 0.691 C-index) on lung 293

adenocarcinoma [24]. In general there is no ”fair comparison” that can be made between 294

this method and the previous state-of-the-art, especially because most previous papers 295

discard patients with missing data modalities, but we train and predict with missing 296

data included. Our methods achieve comparable or better results from previous research 297

by resiliently handling incomplete data and predicting across 20 different cancer types. 298

Conclusion 299

In this paper, we demonstrate a multimodal approach for predicting prognosis using 300

clinical, genomic, and WSI data. First, we developed an unsupervised method to encode 301

multimodal patient data into a common feature representation that is independent of 302

data type or modality. We then illustrated that these unsupervised patient encodings 303

are highly predictive of a wide range of useful clinical features, and that patients with 304

similar characteristics tend to cluster together in ”representation-space”. These feature 305

representations act as an integrated multi-modal patient profile, enabling machine 306

learning models to compare and contrast patients in a systematic fashion. Thus, these 307

encodings could be vitally useful in a number of contexts, ranging from prognosis 308

prediction to treatment recommendation. 309

We then used these feature representations to predict prognosis. On 20 TCGA 310

cancer sites, our methods achieve the overall C-index of 0.784. Furthermore, even on 311

cancer types that have few samples (e.g. KICH), our prognostic prediction model is able 312

to estimate prognosis with relatively high accuracy, leveraging unsupervised features 313

and information from other cancer types to overcome data scarcity. 314

Our research distinguishes itself in a number of ways. It is the first attempt to build 315

a pancancer model of prognosis. Next, we show the use of multimodal data, novel 316

representation learning techniques, and methods such as multimodal dropout to create 317

models that can generalize well and predict also in the absence of one or more data 318

modalities. More specifically, while learning unsupervised relationships between clinical, 319

genomic and image data, our proposed CNN is forced to develop a unique, consistent 320

representation for each patient. Finally, we propose an efficient automated WSI analysis 321

by sampling 40 ROIs per patient representing on average 15% of the non-background 322

space on tissue slides. 323

Future Work 324

Although we have created an algorithm to select patches from WSI images, our results, 325

which showed only significant improvement for select cancer sites, indicates that our 326

method to select ROIs likely can be further improved. Refining the CNN architecture 327

used for encoding the biopsy slides is crucial to further improve the performance. 328

Future research, likely should focus on learning which image patches are important, 329

rather than randomly sampling patches. Furthermore, we can use more advanced, 330

deeper architectures and advanced data augmentation. Another intriguing possibility is 331

using transfer learning on models designed to detect low-level cellular activity like 332

mitoses [44]. Because of the well-established connection between mitotic proliferation 333

and cancer, this could help focus the CNN on important cellular features. Next, 334

integrating more diverse sources of data is another key goal. In this research, memory 335
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and computing constraints prevented us from exploring other data genomic modalities 336

in TCGA, such as DNA methylation [45,46] and DNA copy number data [47,48], all of 337

which have potentially untapped, prognostically-relevant information. 338
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