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ABSTRACT Imputation is one of the key steps in the preprocessing and quality control protocol of any genetic
study. Most imputation algorithms were originally developed for the use in human genetics and thus are
optimized for a high level of genetic diversity. As the software BEAGLE offers the user considerable flexibility
to tune the algorithm to the specific genetic structure of the respective dataset. Different versions of BEAGLE
were evaluated on genetic datasets of doubled haploids of two European landraces in maize, a commercial
breeding line and a diversity panel in chicken, respectively, with different levels of genetic diversity and structure.
BEAGLE 5.0 showed the best performance and was less dependent on adapted parameter settings than the
earlier versions. For all versions, the parameter of the effective population size had a major effects on the error
rate for imputation of ungenotyped markers, reducing error rates by up to 98.5%. For BEAGLE 4.0 and 4.1
imputation accuracies were further improved by tuning parameters like modelscale, buildwindow and nsamples.
The number of markers with extremely high error rates for the maize datasets were more than halved by the
usage of a flint reference genome (F7, PE0075 etc.) instead of the commonly used B73. On average, error
rates for imputation of ungenotyped markers were reduced by 8.5% by excluding genetically distant individuals
from the reference panel. Strategies to find a balance between representing as much of the genetic diversity
as possible while avoiding the introduction of noise by including genetically distant individuals are discussed.
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1

INTRODUCTION2

Imputation is one of the key steps in preprocessing genetic data3

generated by SNP-chips or DNA sequencing, as later applications4

like genomic prediction (Meuwissen et al. 2001) often do not allow5

for missing values. In some applications the usage of a higher6

marker density can lead to better results even though individuals7

were not genotyped for most markers (e.g. in genome-wide asso-8

ciation studies previously not identified regions can be detected9

(Yan et al. 2017)). Over the years a wide variety of methods and10

corresponding programs like BEAGLE (Browning et al. 2018), Min-11

iMac (Das et al. 2016) and Impute (Howie et al. 2009) have been12
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developed and improved to account for the increasing number13

of individuals and marker densities in genetic studies. All these14

methods are based on Hidden Markov Models (HMM) (Baum15

and Petrie 1966; Rabiner 1989) which were introduced to genetic16

imputation by Li and Stephens (2003). To account for the specific17

structure of livestock and crop datasets, special tools for both cases18

have been developed. As fully homozygous lines are especially19

relevant present in crops, the software TASSEL (Bradbury et al.20

2007) was constructed to work well on this data structure (Swarts21

et al. 2014). An example from livestock is FImpute (Sargolzaei et al.22

2014), that focuses on using pedigree information in the imputing23

process and is able to process a high number of individuals, as24

present in modern cattle breeding programs, with linear increase25

in computation time. In the imputation process all those meth-26

ods use the fact that physically close markers are likely inherited27

together, resulting in non-random associations of alleles. These28

methods thereby rely on the knowledge of position or at least29
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the physical order of markers for modeling linkage and thus the30

resulting linkage disequilibrium (LD). In contrast, the software31

LinkImpute (Money et al. 2015) accounts for LD between pairs of32

markers and not their physical positions. This can be especially33

relevant for species in which no reference sequence is available or34

whose genomes are known for a high amount of translocations35

and inversions (e.g. maize).36

In contrast to other methods using a HMM, the markov chain in37

BEAGLE is not initialized by the genotypes or haplotypes them-38

selves, but instead the genetic dataset is used to initialize a haplo-39

type cluster (Browning and Browning 2007), which subsequently40

initializes the HMM. Imputation is then performed by basically41

identifying the most likely path through the haplotype cluster42

based on the non-missing genotypes.43

As BEAGLE is originally developed for application in human ge-44

netics, default settings are chosen to work well for imputation in45

outbred human populations. Nevertheless the user still has con-46

siderable flexibility to tune the algorithm to the specific genetic47

structure of the respective dataset. As imputation oftentimes is48

just one step in the preprocessing and quality control protocol,49

authors tend to use the default settings of a recent version of some50

imputation software.51

To increase the operational marker density via imputation an addi-52

tional dataset (reference panel) genotyped under a higher density53

can be used. With increasing computational power and more effi-54

cient methods available the common advice here is to use as many55

individuals as possible to get a good representation of the popula-56

tion (Zhang et al. 2013; Browning et al. 2018).57

In this paper, we compare different BEAGLE versions and analyze58

the influence of different parameter settings in BEAGLE on im-59

putation quality for a variety of livestock and crop datasets. We60

further evaluate which individuals to include in a reference panel61

when aiming at increasing the marker density of a dataset.62

Since imputation algorithms like BEAGLE rely on the assumed63

physical order of markers, the used reference genome influences64

the imputation quality. Recently, a variety of new reference65

genomes have been made public (Unterseer et al. 2017). We here66

compare the imputation performance of the commonly used B73v467

(Schnable et al. 2009; Jiao et al. 2017) and new reference genomes68

from flint lines in maize that should be genetically closer to our69

used material. All reference genomes derived in chicken were gen-70

erated based on an inbreed Red Jungle Fowl (Gallus gallus gallus)71

that was used in all tests (International Chicken Genome Sequenc-72

ing Consortium 2004; Bellott et al. 2010).73

For all tests we considered BEAGLE 4.0, 4.1, and 5.0 (Browning74

et al. 2018).75

MATERIALS AND METHODS76

Genotype data used77

In the following, we will consider genotypic data of 910 doubled78

haploid (DH) lines of two European maize (Zea mays) landraces79

(n = 501 Kemater Landmais Gelb (KE) and n = 409 Petkuser80

Ferdinand Rot (PE)) genotyped using the 600k Affymetrix® Ax-81

iom® Maize Array (Unterseer et al. 2014). Markers were filtered for82

being assigned to the highest quality class (Poly High Resolution83

(Pirani et al. 2013)), having a callrate >90%, and for having <5%84

heterozygous calls, as no heterozygous calls are expected for DH85

lines. The remaining heterozygous calls were set to NA and subse-86

quently imputed using BEAGLE 4.0 with nsamples=50, resulting87

in a dataset of 501’124 markers with known haplotype phases.88

We further considered two chicken (Gallus gallus) datasets geno-89

typed with the 580k SNP Affymetrix® Axiom® Genome-Wide90

Chicken Genotyping Array (Kranis et al. 2013). Firstly, a chicken di-91

versity panel containing 1’810 chicken of 82 breeds including Asian,92

European and wild types, but also commercial broilers and layers93

(Weigend et al. 2014). Secondly, a dataset containing 888 chicken of94

a commercial breeding program from Lohmann Tierzucht GmbH.95

For quality control SNPs/animals with less than 99%/95% callrate96

were removed. We will here focus on chromosome 1, 7 and 20 with97

56’773/65’177, 12’585/13’533 and 5’539/5’940 SNPs representing98

cases for large, medium and small size chromosomes in the di-99

versity/breeding panel. Both chicken panels were imputed using100

BEAGLE 4.1 default.101

For tests regarding imputation of ungenotyped markers in maize102

we used the overlapping markers (45’655 SNPs) of the Illumina®103

MaizeSNP50 BeadChip chip (Ganal et al. 2011) as a smaller SNP104

array. As there is no similar smaller array with a majority of105

overlapping markers for the chicken panels, we simply used a106

subset of every tenth marker. All tests regarding imputation qual-107

ity were performed on imputed datasets. This should favor the108

respective method used for the imputation. As the missingness in109

the maize data (1.20%), diversity panel (0.27%) and commercial110

chicken breeding line (0.32%) were low in the raw data, this effect111

should only be minor and is neglected here.112

To assess the genetic diversity of the three datasets, we derived the113

LD decay (Figure 1) resulting in the highest rates of association114

for the European maize landraces, followed by the commercial115

chicken dataset and the chicken diversity panel. All used datasets116

show far smaller effective population sizes than an outbred hu-117

man population. It should be noted that this comparison does not118

account for possible differences in ascertainment bias (Albrechtsen119

et al. 2010) between the arrays or genetic diversity of species and120

their genomes. Since BEAGLE (and other HMM based imputation121

methods) are relying on local associations between markers this122

should still be a good indication for potential imputation perfor-123

mance.124

Evaluation Pipeline125

The imputation process itself can be split up into three internally126

linked steps which can be of different importance based on the127

data at hand and, in the following, will be analyzed separately:128

1. Inference: All partly or fully missing individual genotypes in129

the actual dataset are completed, but no additional markers130

are added.131

2. Imputation of ungenotyped markers (UM imputation): Addi-132

tional markers are added to the genetic data based on infor-133

mation provided by a second dataset (reference panel) with134

higher marker density.135

3. Phasing: The two haplotypes of diploid individuals, i.e. their136

gametic phases, are estimated from genotype data.137

To assess the quality of inference and UM imputation we used the138

following testing pipeline and repeated the procedure 50 times139

for each test. We start from a completed dataset in which missing140

genotypes have been imputed, and consider this as the "true"141

genotype dataset:142

1. Randomly generate missing values (NAs) in the "true" geno-143

type dataset.144

• In case of inference set randomly chosen alleles of all145

genotypes to NA (in our case: 1% of all alleles with no146

partly missing genotypes).147
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Figure 1 LD decay based on physical length (A) and marker distance (B) for chromosome 1 for all considered datasets. Outliers in (A)
are corrected for by using a Nadaraya-Watson-estimator (Nadaraya 1964), using a Gaussian kernel and a bandwidth of 50 kb. (B) is
using average values for each SNP distance.

• In case of UM imputation additionally set all entries in148

a particular marker to NA (maize: according to existing149

low density array (Ganal et al. 2011); chicken: 90% of all150

markers).151

2. Perform the imputation procedure under a chosen parameter152

setting, software and potential use of a reference panel.153

3. Evaluation of performance by comparison to the "true" dataset154

(for more on this we refer to the following subsections).155

Evaluation of imputation quality156

To evaluate the quality of inference and UM imputation we count157

the total number of entries in the genotype matrix different to the158

"true" dataset. In this procedure, markers with a low minor allele159

frequency have a lower influence on the overall quality than in160

the commonly used practice of calculating the correlation between161

imputed and "true" dataset. To account for this, we will provide162

error rates depending on the allele frequency as well. A disad-163

vantage of using a correlation is that it does not account for fixed164

markers (correlation not defined) and those markers thus have to165

be excluded from the analysis. As rare variants tend to be more166

difficult to impute and those variants tend to be fixed at a higher167

rate, this leads to lower average correlations for methods imputing168

a rare allele. For a fair comparison only those markers that are not169

fixed over all settings/software should be used. Especially for the170

imputation of ungenotyped markers this would lead to a much171

smaller set of markers to be considered for a fair comparison.172

To evaluate phasing quality we use the switch error rate as de-173

fined in (Lin et al. 2002), which evaluates the number of switches174

between neighboring heterozygous sites to recover the true haplo-175

type phase compared to the total number of heterozygous markers176

and thereby chances for switch errors to occur.177

Evaluation of phasing quality178

The evaluation of phasing quality is more complex since the true179

haplotype phase is usually not known and there is a potential bias180

towards the method that was used to derive the haplotype phase.181

Since we are working with doubled haploid lines in the maize182

dataset, the true gametic phase is known and a "true" dataset for183

testing was generated by randomly combining two doubled hap-184

loid lines to a Pseudo S0. The rest of the pipeline can be performed185

in the same way as the inference testing. Additionally, we consid-186

ered datasets with no missing genotypes to remove any possible187

noise caused by inference errors.188

Choice of reference panel in UM imputation189

A common first question in generating genetic data is how many190

individuals need to be genotyped with high density to obtain suf-191

ficient imputation quality for individuals genotyped with lower192

marker density. To evaluate this, we performed imputation on193

datasets containing 50 individuals as the "true" dataset in our194

pipeline and generated reference panels containing 25, 50, 100, 150,195

200, 250, 300, or 350 individuals, respectively.196

In a second step, we ask the question which individuals to include197

in a reference panel. This is especially relevant if possible can-198

didates for the reference panel vary in their relationship to the199

dataset. For this, we split the chicken diversity panel into 10 sub-200

populations by iteratively minimizing the total sum of squared201

genetic distances between breeds within the subpopulations. Dis-202

tances between the breeds were calculated as Nei standard genetic203

distances (Nei 1972). In a first step, the custom made algorithm204

randomly assigned the breeds to 10 equal sized subpopulations.205

The contribution of each breed to the sum of squared distances206

was calculated and the algorithm started iteratively exchanging207

the most noisy breeds to other subpopulations. If there was a208

reduction of the total sum of squared distances within the subpop-209

ulations, the exchange was accepted and the contributions were210

calculated again. The process was repeated until no exchange211

could improve the fit. To overcome results depending on specific212

starting positions, the process was repeated for 60 random start-213

ing points. Nei standard genetic distances for evaluation of UM214

imputation quality of BEAGLE were calculated based on the sub-215

population assignment of individuals and UM imputation was216
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performed using the following reference panels:217

(A) All other individuals of the same subpopulation218

(B) All individuals of one other subpopulation219

(C) All individuals of all other subpopulations220

(D) All individuals of subpopulations with less than average Nei221

standard genetic distance to the dataset222

(E) All individuals of those subpopulations with reduced error223

rates when testing A + B compared to A as the reference panel224

Additionally combinations of panels A + B, A + C, A + D and A +225

E were tested. Tests were repeated 20 times for each subpopulation226

with datasets containing 50 randomly sampled individuals. For227

each dataset, all different reference panels were tested.228

Data Availability229

Genetic data for chromosome 1 for all three panels used are avail-230

able at https://github.com/tpook92/HaploBlocker. Supplemental files231

are available at FigShare.232

RESULTS AND DISCUSSION233

In the following, we will use BEAGLE 4.1 on default settings as234

the standard and compare all results to it. We will here focus235

on showing the obtained error rates under each parameter set-236

ting and not extensively discuss their influence on the imputation237

algorithm itself. For details on that we refer to the BEAGLE pub-238

lications (Browning 2006; Browning and Browning 2007, 2013a,b,239

2016; Browning et al. 2018).240

Unless otherwise mentioned, we will report the error rates in the241

landrace KE averaged over all chromosomes as the maize data.242

Results for PE were similar with on average slightly increased error243

rates. For details on that we refer to Supplementary Figures S3, S4,244

S5, S6 and Table S1.245

Inference quality246

When comparing error rates for inference under multiple settings247

in BEAGLE, one can observe major differences. On default settings248

in BEAGLE 4.1, we obtained an average error rate of 0.255% for the249

maize data. Error rates are significantly higher for alleles with low250

frequency (Figure 2). In regard to the location of inference errors251

one can observe a high volatility with a tendency to have massively252

increased error rates in telomeric regions (Figure 3). Additionally253

error rates in regions of high LD tend to be lower (Supplementary254

Figure S8).255

BEAGLE 4.0 leads to similar error rates (0.201%) whereas BEA-256

GLE 5.0 clearly outperforms previous versions (0.014%) on default257

settings. By tuning parameter settings, especially results in older258

version can be improved, leading to error rates of 0.031% in BEA-259

GLE 4.0 (buildwindow = 25 & nsamples = 25 & burnin-its) and260

0.043% in BEAGLE 4.1 (modelscale = 1.5), whereas no significant261

improvements can be made in BEAGLE 5.0. Improvements in262

overall inference quality can be observed for all allele frequency263

classes and regions in the genome (Figures 2 & 3). When using264

slightly lower values for buildwindow (e.g. 10) in BEAGLE 4.0,265

one can observe a further reduction of the average error rate, but266

also a massive increase of the error rate in some single markers267

(Supplementary Figure S1).268

Especially the parameters buildwindow (default: 1’200) and mod-269

elscale (default: 0.8) have a major impact on the inference quality270

(Figure 4) as both parameters implicitly control how different hap-271

lotypes in the haplotype cluster can be while still being considered272

jointly. Both a lower value for buildwindow and a higher value273

of modelscale will lead to less similar haplotypes to be clustered274

jointly. The parameter singlescale in BEAGLE 4.0 has the same275

effect on the haplotype cluster as modelscale in BEAGLE 4.1 but276

performed slightly worse in terms of inference quality than build-277

window. Tuning of both parameters jointly did not further improve278

performance.279

When working with Pseudo S0 instead of DH-lines, an ad-280

ditional source of noise is introduced as haplotype phase is not281

known. Nevertheless error rates are decreasing on default settings282

for both BEAGLE 4.0 (0.125%) and BEAGLE 4.1 (0.040%) compared283

to inference for DH-lines. This is consistent with what is reported284

in (Swarts et al. 2014). A possible explanation for this is that in285

contrast to a DH dataset, imputation of the value 1 instead of only286

0 and 2 is possible in case the algorithm is indifferent as to which287

allele to impute. BEAGLE 5.0 (0.0168%) seems to fix those issues288

and inference quality is on a similar level for DH-lines and S0.289

The distribution of errors and the ideal parametrization stays simi-290

lar (buildwindow slightly higher, modelscale slightly lower) with291

the exception of an added benefit of increasing the number of it-292

erations used to generate the haplotype cluster. As the algorithm293

starts with randomly phased genotypes and improves the phase294

in each iteration, this should not be surprising. Overall error rates295

on tuned parameter settings are 0.026% for BEAGLE 4.0 (using296

buildwindow = 50 & nsamples = 25 & phase-its = 25 & burnin-its297

= 25), 0.018% in BEAGLE 4.1 (using modelscale = 1.0 & niterations298

= 25) and 0.0166% in BEAGLE 5.0 (using iterations = 25). For a299

detailed comparison and the share of improvement each parameter300

contributes we refer to Figure 5.301

The error rates for the considered chicken diversity panel are302

higher (1.13%) than for the maize data using BEAGLE 4.1 default303

and possible improvements in all three considered versions are304

relatively small (BEAGLE 4.0 - 1.01% using buildwindow = 25,305

nsamples = 25, burnin-its = 25; BEAGLE 4.1 - 0.80% using mod-306

elscale = 1.25, niterations = 25; BEAGLE 5.0 - 0.82% default & 0.81%307

using burnin = 25). Overall improvements are obtained by chang-308

ing parameters in the same direction as in the maize dataset but309

effects are much smaller. As the chicken diversity panel contains310

much more variation and is structurally more similar to outbred311

human data than the European landraces in maize, this should312

not be that surprising. The dataset from the commercial chicken313

breeding program showed error rates between 0.200% and 0.230%314

for basically all tested settings, leading us to conclude that infer-315

ence on this dataset there is not much potential to decrease error316

rates. A potential reason for this is that other error source like SNP317

calling errors may already be higher than error rates on default.318

UM Imputation quality319

When performing UM imputation, error rates were much higher320

than in the inference case. Overall error rates decreased with the321

size of the reference panel (Figure 6). Especially for high error322

rates the relative gain of a larger reference panel in BEAGLE 5 is323

higher than in BEAGLE 4.1. When using 350 DH-lines of KE as324

a reference panel we obtained an average error rate of 6.59% on325

default settings and 3.09% in BEAGLE 5. In all our testing the326

parameter effective population size ne with default 1’000’000 was327

found to have a major impact on the UM imputation error rates328

(Figure 7). Tuning the effective population size leads to error rates329

of 0.096% in BEAGLE 4.1 (ne = 300) and 0.088% in BEAGLE 5.0330

(ne = 1’000). In BEAGLE 4.0, there is no parameter to control the331
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Figure 2 Error rate depending on the allele frequency under different BEAGLE settings for the maize data. Y-axis is log-scaled.

effective population size but default settings work slightly better332

(5.15%) than in BEAGLE 4.1. The effect of other parameters is333

rather small and relative differences of tuning can only be observed334

after adaptation of ne. Error rates were minimized for BEAGLE335

4.0 (0.80%) by using buildwindow = 100 & nsamples = 25. Since336

there are less informative markers in a window of 100 SNPs than337

in the case of inference, an increase of buildwindow also makes338

sense from a modeling perspective. For BEAGLE 4.1 we used339

modelscale = 1.5 & ne = 300 leading to an error rate of 0.088%. In340

BEAGLE 5.0, there was only a minor improvement (0.087%) by341

use of imp-states = 500 & ne = 1’000. Overall the relative effect of342

the size of the reference panel became stronger after tuning the343

parameter settings (Figure 6).344

Similarly, error rates for the diversity chicken panel (BEAGLE345

4.1: 3.69% / BEAGLE 5.0: 3.31%) and the commercial breeding346

line (0.95%/0.77%) on default are higher than inference error rates.347

Error rates for the diversity panel were reduced to 2.73%/2.48%348

by using ne = 3’000. For the breeding line ne = 1’000 worked best,349

leading to error rates of 0.28%/0.28%. Overall error rates of UM350

imputation for BEAGLE 4.1 were reduced by 98.5% in the maize351

landrace, 70.5% for the commercial chicken line and 26.0% for352

the chicken diversity panel. With this, the bigger gains by tuning353

the effective population size nicely support our expectation of the354

effective population sizes of the underlying populations. Addi-355

tionally, BEAGLE 5.0 was more robust to changes in the effective356

population size than BEAGLE 4.1 (Figure 7) and overall error rates357

differ only by 0.013% for an effective population size between ne =358

1 and ne = 10’000 for the maize dataset, indicating that the usage359

of any reasonable value should work here in a robust way. As360

the default of 1’000’000 is not realistic for most livestock and crop361

datasets, adaptation is necessary and critical when performing UM362

imputation.363

Phasing quality364

When using a dataset with no missing values, we observed a switch365

error rate of 0.0170% for the maize data using default settings in366

BEAGLE 4.1. This is equivalent to one switch error per 5’876367

heterozygous markers. Error rates for BEAGLE 5.0 are similar368

(0.0163%), while BEAGLE 4.0 is clearly outperformed (0.0405%).369

By tuning parameter settings this can even be improved to an error370

rate of 0.0136% by usage of burnin = 2 & phase-segments = 10371

& phase-states = 500 & iterations = 40 in BEAGLE 5 with phase-372

segments having the biggest impact. Overall, the relative effect373

is small and these differences should not have a major impact for374

most applications that require genotype phase. When working375

with datasets containing 1% missing values, error rates overall are376

similar.377

Comparison of reference genomes378

The most commonly used reference genome in maize genetics is379

the dent line B73 (Schnable et al. 2009; Jiao et al. 2017). The used380

European landraces are considered as flint germplasm with pos-381

sible major differences in the physical map (Unterseer et al. 2016).382

After reducing error rates of inference by choosing appropriate383

parameter settings (here: BEAGLE 4.0 with buildwindow = 50),384

markers with high error rates tend to be clustered (Figure 8). Mark-385

ers and regions with high inference error rate can be considered as386

candidates for misalignment in the genetic map. To compare our387

results obtained with B73v4 (Jiao et al. 2017), we additionally used388

reference genomes of the flint lines F7, EP1, DK105 and PE0075389

(Unterseer et al. 2017).390

Since the array itself was constructed using B73 as a reference391

(Unterseer et al. 2014) more markers can be mapped to the B73392

reference than to the other reference genomes. For those markers393

mapped to both B73 and one of the flint reference genomes aver-394

age error rates for inference are reduced by 3-5% (Table 1). The395

main factor for this is a significantly lower number of markers396

with extremely high error rates. The overall number of markers397

with error rates above 10% (here referred to as: "critical" markers)398

on average is reduced by 57%. For a detailed list of the "critical"399

markers for all reference genomes mapped on the 600k array (Un-400

terseer et al. 2014), we refer to Supplementary Table S2 & S3. We401

found no notable difference between the inference quality for PE402

when using PE0075 as the reference genome compared to other403
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Figure 3 Inference error rate based on the location of the genome. Outliers are corrected for by using a Nadaraya-Watson-estimator
(Nadaraya 1964), using a Gaussian kernel and a bandwidth of 3’000 markers for the maize data.

flint references (Supplementary Table S1).404

Size of the reference panel405

For all tests in this subsection, we used BEAGLE 5.0 with an ef-406

fective population size of ne = 10’000. As already shown before,407

the error rate of UM imputation is decreasing when increasing the408

number of individuals in the reference panel (Figure 6). The rela-409

tive effect of this improvement is highest when using appropriate410

parameter settings, whereas there is only a minor change in UM411

imputation quality with default settings. It should be noted that412

the minimum size of the reference to get adequate results is highly413

dependent on the dataset. As a rule of thumb, one can say that414

datasets containing more diversity in general need more individu-415

als in the reference panel for similar UM imputation quality.416

Choice of the reference panel417

In case the reference population has a lot of stratification, the de-418

sign of a good reference population becomes more difficult as419

genetically distant individuals may introduce more noise than420

relevant information. When comparing results for all considered421

reference datasets for UM imputation of a single subpopulation422

it becomes apparent that UM imputation without other individ-423

uals from the same subpopulation leads to extremely high error424

rates (>15%) and thus should in practice only be performed with425

extreme caution. In terms of including other subpopulations in426

the reference panel, the answer becomes less clear. When includ-427

ing single other subpopulations in the reference panel we observe428

significant effects on the overall error rate of UM imputation. Abso-429

lute differences of UM imputation error rates are between -0.307%430

and +0.604% with overall error rates between 1% and 4%. For a431

detailed list containing all changes in error rates when including432

a single other subpopulation in the reference panel, we refer to433

Supplementary Table S1. It should be noted that subpopulations434

with lower genetic distance to the dataset tend to reduce the error435

rate and less related subpopulations lead to increased error rates436

(Figure 9).437

For all ten subpopulations the slope of the error rate in regard to438

distance to the subgroup is statistically significantly positive with439

the main difference between the subpopulations being the inter-440

cept. The most extreme case for this is subpopulation 6 (turquoise441

4 in Figure 9; including wild types). For this group the inclusion442

of any other subpopulation in the reference panel decreases the443

imputation quality and is ignored for all averages and statistics444

in this subsection. Even though SNP based genetic distance to445

other subgroups is relatively low, one can assume a long time since446

the last common ancestor to any other subpopulation and thus a447

lack of conserved haplotypes. Overall imputation quality when448

using a reference panel containing all subpopulations is worse449

than using a reference panel with only those subpopulation with450

below average genetic distance (Nei 1972) to the dataset (2.25% vs.451

2.18% - Figure 10). Even though results are statistically significant452

(two-sample t-test: p-value: 0.0117), differences are minor and453

probably of limited practial relevance for most applications. In our454

analysis a reference panel containing only the individuals of the455

same subpopulation on average lead to an UM imputation error456

of 2.26% with no statistically significant difference to reference457

6 | Pook et al.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 16, 2019. ; https://doi.org/10.1101/577338doi: bioRxiv preprint 

https://doi.org/10.1101/577338


Figure 4 A: Error rate depending on the parameter buildwindow in BEAGLE 4.0 in the maize data. B: Error rate depending on the
parameter modelscale in BEAGLE 4.1. Error rates are given for all ten chromosomes separately.

n Table 1 Inference error rates using different reference genomes compared to B73 for KE DH-lines. Only markers mapped on both the flint
reference genome & B73v4 (Jiao et al. 2017) are considered for "critical" markers (error rate > 10%).

Reference genome F7 EP1 DK105 PE0075

Overlapping markers to
B73v4

352’326 342’037 338’882 338’244

"Critical" markers when
using this map

109 113 115 114

"Critical" markers when
using B73v4

271 264 262 262

Relative change in error
rate

- 5.11% -3.87% -4.68% -3.32%

panels containing all subpopulations. When performing in-depth458

analysis for which regions of the dataset UM imputation quality459

is improved, we observed that especially those individuals with460

rare variants and overall higher error rates benefited from includ-461

ing more samples in the reference. On the other hand, already462

well imputed individuals usually had similar or slightly increased463

error rates. When using a reference panel containing all those sub-464

populations that individually lead to reduced error rates, average465

error rates are reduced to 2.06%. It should be noted that, in prac-466

tice, a selection based on error rates in UM imputation is usually467

not possible. Nevertheless the result demonstrates that there is468

some potential in using more sophisticated approaches than just469

selecting all subpopulation with below average Nei distance (Nei470

1972) as the reference panel. For a detailed list containing error471

rate for all 4 different structures of reference panels, we refer to472

Supplementary Table S2.473

To optimize UM imputation quality, one has to find a balance be-474

tween representing as much of the genetic diversity of the dataset475

as possible while avoiding the introduction of noise by including476

genetically too distant individuals in the panel. Overall, the po-477

tential improvement of excluding distantly related individuals is478

relatively small compared to effects on the error rate when exclud-479

ing highly related individuals. Especially when computational480

time is an issue or there is a subset of individuals in the reference481

panel that is close to a full representation of the genetic diversity482

of the dataset, it is still possible to improve UM imputation quality483

and computational feasibility by excluding less related individuals.484

Computation time485

Computation time in BEAGLE scales linear in the number of mark-486

ers and slightly less than quadratic in the number of haplotypes487

in the sample Browning et al. (2018). In each iteration of the al-488

gorithm a similar computation time is needed, leading to a linear489

increase in the number of iterations for each sub-step. BEAGLE490

5.0 needs far less computation time than all previous versions491

(Figure 11). E.g. running time for inference of chromosome 1 con-492

taining 501 DH-lines with 64’080 biallelic markers using 4 cores493

(Intel E5-2670 v2 2.5 GHz) needed 63 minutes on BEAGLE 4.1494
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Figure 5 Error rates under different parameter settings and ver-
sions for Pseudo S0 based on the maize data.

default whereas BEAGLE 4.0/5.0 only needed 13.9/4.6 minutes495

respectively. Older versions of BEAGLE run slightly faster when re-496

ducing buildwindow (BEAGLE 4.0: 11.5 minutes) and modelscale497

(BEAGLE 4.1: 35.8 minutes) but still do not compare favorably to498

BEAGLE 5.0. Depending on the imputation problem, one should499

consider modifying the number of iterations used in the algorithm.500

Especially when computation time is not an issue, we recommend501

increasing the number of iterations (BEAGLE 4.0: burnin-its, phase-502

its, impute-its; BEAGLE 4.1: niterations; BEAGLE 5.0: iterations,503

burnin) since basically all iterations just use the previous step as a504

starting value and try to improve that solution without much of a505

downside in our tests. As the main benefit of additional iterations506

is a more accurate phase, the number of iterations can be reduced507

when working with DH-lines.508

When performing UM imputation on the maize dataset with a509

study sample of 50 and a reference panel of 350 computation times510

in BEAGLE 5.0 (24 seconds) were significantly lower than BEAGLE511

4.1 (43 seconds) and BEAGLE 4.0 (108.6 seconds). When increasing512

the size of the reference panel the gains are even higher. For the513

chicken diversity panel with a study panel of 100 and reference514

panel of 1’710 BEAGLE 5 (1.45 minutes) was over ten times faster515

than the respective default settings of BEAGLE 4.1 (21 minutes)516

or BEAGLE 4.0 (64 minutes) for chromosome 1. The gains in com-517

putation time should only be increasing when further increasing518

the size of the reference panel (Browning et al. 2018). Additionally,519

the needed memory in BEAGLE 5.0 is massively reduced, espe-520

cially when using binary reference (bref) format (Browning and521

Browning 2016), and thus enabling the use of BEAGLE for routine522

application in large size cattle breeding programs.523

Significance of improvement524

When comparing error rates under different settings one has to525

keep in mind the relevance of that optimization. A difference in526

error rates of 1% in a dataset containing 1% missing genotypes will527

only result in an improved overall data quality of 0.01% and thus528

might be negligible compared to other error sources like calling529

errors (Unterseer et al. 2014). If those improvements would mainly530

occur in the markers of interest (e.g. markers with low minor allele531

frequency) or the overall share of missing positions is high (as in532

UM imputation), this improvement could still be significant for533

later steps of the analysis.534

It should be noted that positions set to NA in this study are chosen535

at random whereas in a real dataset there might be causal reasons536

like deletions, leading to some markers with much higher miss-537

ing rates. When performing imputation on the actual NAs, we538

observed a higher variance in the imputed allele under different539

random seeds. As all considered methods always input one of the540

two allelic variants, this is ignored here but it should be noted that541

actual error rates are probably a bit higher than reported in this542

study.543

Conclusion544

Overall we can conclude that the quality for inference, UM impu-545

tation and phasing in BEAGLE 5.0 was usually at least as good546

has previous versions and less tuning of parameters is necessary547

to obtain good performance for livestock and crop datasets. Even548

in BEAGLE 5.0 an adaptation of parameters is especially neces-549

sary for the effective population size (ne) when performing UM550

imputation and working with genetic dataset with less diversity551

than a human outbred population. Especially when no param-552

eter tuning in BEAGLE 4.0/4.1 was done, one should consider553

re-running previous preprocessing and quality control protocols.554
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Figure 6 Error rates for UM imputation depending on the size of the reference panel in the maize data. Y-axis is log-scaled.

When considering increasing the marker density for later analysis555

like a genome-wide association study, one has to weight the poten-556

tial gain of information of a larger marker panel against potential557

false positive results caused by imputation errors.558

Improvements for inference and phasing quality are relatively559

small, when comparing BEAGLE 5.0 to previous versions with560

tuned parameter settings. In case default setting in BEAGLE561

4.0/4.1 were used, error rates can differ quite substantially. When562

working with inbreds (like DH-lines) or default parameter settings563

imputation quality in older versions was significantly worse in all564

tests. Additional benefits of the use of BEAGLE 5.0 are massively565

reduced computation times and memory requirements. This is566

especially true for UM imputation when processing large reference567

panels and can enable the usage of BEAGLE 5.0 for datasets with568

a high number individuals even though increase in computation569

time is still close to quadratic in the number of individuals in570

the study sample. In case computation time is of no concern we571

additionally recommend an increase of the number of iterations572

(BEAGLE 5: burnin & iterations).573

The used reference genome only mildly affected overall error rates574

in maize. Main benefit of the usage of the genetically more related575

flint reference genomes was a lower number of markers with ex-576

tremely high error rates, whereas overall error rates were similar.577

With an increasing number of new reference genomes we recom-578

mend the use of a reference genome of similar genetic origin.579

In terms of the design of an ideal reference panel we conclude580

that UM imputation without any individuals from similar genetic581

origin (in our case the same subpopulation) will lead to extremely582

high error rates and should only be done with caution. The needed583

size of the reference panel is highly dependent on the genetic diver-584

sity of the dataset. Without further information on genetic origin585

and sufficient computational power, we recommend to use a large586

reference panel since error rates are usually only mildly increasing,587

indicating that the algorithm underlying BEAGLE is quite good588

at filtering out irrelevant information. In case most of the genetic589

diversity of the study sample can be represented in a subset of the590

individuals in reference panel (e.g. a reference panel containing591

all founder individuals), significant improvements to UM impu-592

tation performance can be made by excluding genetically distant593

individuals.594
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Figure 9 Effect of the inclusion of a single subpopulation in the reference panel based on their genetic distance to the dataset for the
chicken diversity panel. Colors according to the subpopulation used as the real dataset in Supplementary Figure S7. Subpopulation 6
(including wild types - turquoise4) is ignored in the regression.
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Figure 10 Comparison of error rates of UM imputation for dif-
ferent reference panels for the different subpopulations in the
chicken diversity panel. Y-axis is log-scaled.

Figure 11 Computation time needed for performing inference
(A) and UM imputation (B) for 64’080 biallelic markers in the
maize data. For inference 501 DH-lines were used as the study
sample. For UM imputation 50/350 DH-lines were used for
study/reference sample.
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