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2 

Abstract 22 

 23 

The population of the United States is shaped by centuries of migration, isolation, growth, and 24 

admixture between populations of global origins. Here, we assemble a comprehensive view of 25 

recent population history by studying the ancestry and population structure of over 32,000 26 

individuals in the US using genetic, ancestral birth origin, and geographic data. We identify 27 

migration routes and barriers that reflect historical demographic events. We also uncover the 28 

spatial patterns of relatedness in subpopulations through the combination of haplotype 29 

clustering, ancestral birth origin analysis, and local ancestry inference. These patterns include 30 

substantial structure and heterogeneity in Hispanics/Latinos, isolation-by-distance in African 31 

Americans, elevated levels of relatedness and homozygosity in Asian immigrants, and fine-32 

scale structure in European descents. Furthermore, quantification of familial birthplaces 33 

recapitulates historical immigration waves at high resolution. Taken together, our results provide 34 

detailed insights into the genetic structure and demographic history of the diverse US 35 

population. 36 

 37 

Significance Statement 38 

 39 

The population of the United States has globally diverse ancestors and a complex history. 40 

Despite previous studies of genetic diversity in the US, population history for many groups still 41 

remains ambiguous. Here, we study the DNA of over 32,000 US individuals who participated in 42 

the National Geographic Genographic Project. By combining analyses of migration, haplotype 43 

sharing, and ancestral birthplaces, we reconstruct demographic histories at fine-scale 44 

resolution. Among European Americans, Hispanics/Latinos, and African Americans, we 45 

disentangle patterns of immigration, within-country migration, and admixture. We also 46 

characterize the typically overlooked population history of Asian Americans. Overall, this study 47 

sheds light on the complex population histories detailed in the DNA of people living in the US. 48 

 49 

Keywords: population genetics, human history, human genomics, USA  50 
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Introduction 51 

 52 

The United States population is a diverse collection of global ancestries shaped by migration 53 

from distant continents and admixture of migrants and Native Americans. Throughout the past 54 

few centuries, continuous migration and gene flow have played major roles in shaping the 55 

diversity of the US. Mixing between groups that have historically been genetically and spatially 56 

distinct have resulted in individuals with complex ancestries while within-country migration have 57 

led to genetic differentiation.1–7 58 

 59 

Previous genetics studies of the US population have sought to disentangle the relationship 60 

between the genetic ancestry and population history of African Americans, European 61 

Americans, and Hispanics/Latinos. In African Americans, proportions of African, European, and 62 

Native American ancestry vary across the country and reflect migration routes, slavery, and 63 

patterns of segregation between states.2,3,8 European American ancestry is characterized by 64 

both mixing between different European populations as well as admixture with non-European 65 

population.6,9,10 Isolation and expansions in certain European population have also resulted in 66 

founder effects.11–13 The mixing of European settlers with Native Americans have contributed to 67 

large variations in the admixture proportions of different Hispanic/Latino populations.1,4,5 Among 68 

Hispanics/Latinos, Mexicans and Central Americans carry more Native American ancestry; 69 

Puerto Ricans and Dominicans have higher African ancestry; and Cubans have strong 70 

European ancestry.1,4 Although much effort has been made to understand the genetic diversity 71 

in the US, fine-scale patterns of demography, migration, isolation, and founder effects are still 72 

being uncovered with the growing scale of genetic data, particularly for Latin American and 73 

African descendants with complex admixture history.14,15 At the same time, there has been little 74 

research on the population structure of individuals with East Asian, South Asian, and Middle 75 

Eastern ancestry in the US. 76 

 77 

In addition to being of anthropological interest, understanding fine-scale human history and its 78 

role in shaping genetic variation is also important for interpreting the genetic basis of biomedical 79 

traits. Currently, these roles are best understood in European populations due to Eurocentric 80 

biases in studies.16,17 Consequently, translational interpretability gaps are evident in non-81 

European populations: more variants of unknown significance are identified via genetic testing;18 82 

polygenic risk scores for complex disease risks are much less accurate;17,19 and false positive 83 

genetic misdiagnoses are more common.20 Thus, studies of diverse, heterogeneous populations 84 
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offer substantial value to both our understanding of population history and biomedical 85 

outcomes.21 86 

 87 

In this study, we comprehensively explore the population structure and migration history of over 88 

32,000 genotyped individuals in the US who partook in the second phase of the National 89 

Geographic Genographic Project. The Genographic Project began in 2005 as a not-for-profit 90 

public participation research initiative to study human migration history, originally using Y 91 

chromosome and mitochondrial markers.22 More recently, it expanded to include autosomal 92 

variants.23 Here, we identify patterns of genetic ancestry and haplotype sharing among the 93 

project participants. We combine these patterns with ancestral birth origin records and 94 

geographic information to uncover recent demographic and migration trends. Taken together, 95 

we provide insights into the ancestral origins and complex population histories in the US.  96 

 97 

 98 

Results 99 

 100 

Genetic ancestry and diversity across the United States 101 

To assess proportions and diversity of continental ancestries among individuals in the 102 

Genographic Project, we merged genotype data with the 1000 Genomes Project data (Auton et 103 

al, 2015) as reference populations, and performed PCA and ADMIXTURE (at K = 2 through K = 104 

9) on the Genographic individuals.24,25 Since self-reported ethnicity does not necessarily reflect 105 

genetic ancestry, we sought to objectively assign continental-level ancestry to Genographic 106 

individuals. We first trained a Random Forest classification algorithm on the first 10 principal 107 

components (PCs) of the 1000 Genome Project individuals using super population 108 

classifications (EUR = European, AMR = Admixed American, AFR = African, EAS = East Asian, 109 

SAS = South Asian) as ancestry labels (Figure 1A-B; Figure S1). We then used this trained 110 

model to assigned continent-level ancestry to each individual in the Genographic cohort at 90% 111 

confidence (Table S1; Methods and Materials).  112 

 113 

Regional differences in genetic ancestry proportions correspond to historical demographic 114 

trends. We evaluated the admixture proportions of classified individuals across the four 115 

designated US Census regions: South, Northeast, Midwest, and West (Figure 1C; Figure S2). 116 

Individuals of European descent make up the majority (78.5%) of the Genographic cohort and 117 

are the most prevalent in the Midwest (82.8% of individuals in the Midwest; P<0.01, Fisher’s 118 
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exact test; Table S1). Individuals classified as having African ancestry are most common in the 119 

South (3.2%), followed by the Northeast (3.0%). individuals of Native American ancestry are 120 

most prominent in the West and South (9.7% and 7.8% of total individuals in the West and 121 

South, respectively; P<0.05, Fisher’s exact test). East Asians mostly reside in the West (2.1%), 122 

while South Asians are most abundant in the Northeast (1.0%). A total of 3,028 individuals 123 

(9.3% of total) did not meet the classification threshold, although many have ancestry patterns 124 

similar to other European individuals (Figure 1C; Table S1). The inability to classify these 125 

individuals may be due to the complex and variable admixture profiles of certain populations 126 

such as Hispanics/Latinos. 127 

 128 

To uncover population substructure, we performed dimensionality reduction with Uniform 129 

Manifold Approximation and Projection (UMAP) on the first 20 PCs of a combined Genographic 130 

and 1000 Genomes Project dataset.26,27 By leveraging multiple PCs at once, UMAP can 131 

disentangle subcontinental structure (Figure 1D-E; Figure S3-S4). Similar to previous 132 

analysis,27 populations in the 1000 Genomes Project form distinct clusters corresponding to 133 

ancestry and geography. The Genographic individuals project into several clusters, overlapping 134 

with the 1000 Genomes Project clusters (Figure 1D-E). Consistent with the PCA and 135 

ADMIXTURE analysis, the largest clusters correspond to European ancestry and cluster closely 136 

with the 1000 Genomes CEU and GBR populations (CEU=Utah Residents with Northern and 137 

Western European Ancestry, GBR=British in England and Scotland).  138 

 139 

While UMAP is a visualization tool with no direct interpretation on genetic distance, the 140 

continuum of points connecting UMAP clusters reflects the varying degrees of estimated 141 

admixture between different continental ancestries. In particular, the complex population 142 

structure of Hispanics/Latinos is shown by the points spanning between the clusters of 143 

European, Native American, and African ancestry. Coloring of these points based on ancestry 144 

proportions affirms the relationship between the degree of admixture and their relative position 145 

between reference clusters. Interestingly, African American individuals from both datasets form 146 

a single continuum from the European cluster to the Yoruba (YRI) and Esan (ESN) populations 147 

of Nigeria in the 1000 Genomes Project, indicative of the West African origins of most African 148 

Americans. This observation is consistent with and further expands the previous finding that the 149 

African tracts in the admixed 1000 Genomes populations of ACB and ASW were previously 150 

found to be similar to the Nigerian YRI and ESN populations.2,19 151 

 152 
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Population differentiation and migration rate inference across the United States 153 

To better understand the relationship between genetics and geography, we investigated 154 

migration rates for genetically inferred Europeans, African Americans, and Hispanic/Latinos 155 

across the United States. We excluded East Asians and South Asians due to small sample size 156 

and limited our analysis to the contiguous 48 states. We inferred effective migration rates with 157 

the estimating effective migration surfaces (EEMS) method,28 which statistically characterizes 158 

genetic differentiation via resistance distance across non-homogenous landscapes. By 159 

overlaying a dense regular grid of demes and measuring genetic dissimilarities between 160 

neighboring demes, EEMS quantifies and visualizes areas with high relative rates of effective 161 

migration (colored in blue) and areas with low relative rates of effective migration (also called 162 

migration barriers and colored in dark orange). 163 

  164 

The inferred migration rates for African Americans reveal genetic signatures of historical 165 

demographic events (Figure 2A; Figure S5). Along the Atlantic coast from the Florida 166 

Panhandle to southern Maine, we find high effective migration rates, indicating the constant 167 

migration and similar effective population sizes of African Americans in these states. However, 168 

we also observe a strong north-south barrier to migration starting along the Appalachian 169 

Mountain Range, continuing north up the Mississippi River, and extending west across the rest 170 

of the country. This migration barrier, along with the migration barrier spanning Texas and New 171 

Mexico, reveals a pattern of isolation-by-distance that is consistent with the Great Migration 172 

from from the 1910s to the 1960s in which an estimated 6 million African Americans migrated 173 

out of the South to cities across the Northeast, Midwest and West.8,29  174 

  175 

A highly complex pattern of migration exists amongst Hispanics/Latinos with varying migration 176 

rates across the country, capturing regional patterns of genetic similarity. Hispanics/Latinos in 177 

the southwestern states including two regions bordering Mexico—one in California and another 178 

extending from New Mexico to Texas—exhibit high effective migration rates and are separated 179 

by a migration barrier in Arizona (Figure 2B; Figure S5). These two distinct regions likely reflect 180 

known differences in northward migration from east versus west Mexico.9,30 Along the Atlantic 181 

coast from Florida to New York, effective migration has also been fluid. However, barriers to 182 

migration are observed west of the Atlantic coast to the Mississippi River, likely resulting from 183 

varying admixture proportions.  184 

 185 
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The pattern of migration for Europeans captures subcontinental structure. Elevated migration 186 

rates are observed across most of the country, except for many states in the Midwest and along 187 

the Atlantic coast. We find low effective migration rates surrounding Minnesota and North 188 

Dakota, potentially due to the genetic dissimilarity of Finnish and Scandinavian ancestry 189 

abundant in the region (Figure 2C; Figure S5).9 We also find reduced migration rates across 190 

Ohio, West Virginia, and Virginia, suggesting the existence of genetic differentiation along the 191 

Appalachian Mountains. Many of the major cities, such as Chicago, Philadelphia, and Miami, 192 

are also barriers to migration, perhaps due to higher admixture proportions within cities. The 193 

migration barrier encompassing metropolitan New York City may be explained in part by the 194 

presence of divergent European populations, such as Ashkenazi Jews (Figure 2C).  195 

 196 

Coupling fine-scale haplotype clusters and multigenerational birth records uncovers 197 

distinct subcontinental structure  198 

To disentangle more recent and subtle population structure, we performed identity-by-descent 199 

(IBD) clustering on the Genographic cohort and annotated clusters using multigenerational self-200 

reported birth origin data. We first built an IBD network from pairwise IBD sharing among 31,783 201 

unrelated individuals. In this network, vertices represent individuals and edges represent the 202 

cumulative IBD (in centimorgans, cM) between pairs of individuals. We employed the Louvain 203 

method, a greedy heuristic algorithm, to recursively partition vertices in the graph into clusters 204 

that maximize modularity at each level of hierarchy.9,31 The clusters of individuals resulting from 205 

each iteration can be interpreted as having greater amounts of cumulative IBD shared between 206 

individuals within the cluster than with individuals outside of the cluster. At the first level of 207 

hierarchy, the full IBD network separated into three clusters: non-European ancestry, Southern 208 

Europeans and Ashkenazi Jews, and the rest of the Europeans. Further partitioning, up to four 209 

levels of hierarchy, produced clusters with more subcontinental structure. 98% of the 3,028 210 

individuals that were not classified by our Random Forest model were assigned to a haplotype 211 

cluster, affirming the power of haplotype clustering for detecting fine-scale structure. No single 212 

cluster was overrepresented by unclassified individuals, as unclassified individuals comprised of 213 

8-11% of each cluster.  214 

 215 

To aid in the interpretation of the clusters, we merged clusters with low genetic differentiation 216 

(FST < 0.0001) at the lowest level of hierarchy, resulting in a final set of 25 clusters (Table 1). 217 

We annotated each cluster based on ancestral birth origin and ethnicity data and constructed a 218 

neighbor-joining tree based on the FST values (Figure 3). As expected, FST values are smallest 219 
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between European subpopulations (FST=0.0001-0.003) and greatest between clusters of 220 

different continental ancestries (FST=0.002-0.09). 221 

 222 

Genetic and geographic diversity is greatest amongst Hispanic/Latino haplotype clusters. We 223 

identified a total of five Hispanic-related clusters. The largest of these cluster (n=810) is strongly 224 

associated with south Florida (OR = 10.4; p = 2.5e-25; Figure 4, Table S4) but is also found in 225 

California, and Texas (OR ≥ 2; p < 0.05). No single ancestral birthplace characterizes this 226 

cluster, as the US, Mexico, and Cuba each make up more than 10% of the birth origin labels. 227 

Proportions of European ancestry tracts inferred with RFMix32 are higher in this cluster (mean = 228 

72.7%, sd=20.4%) than in the other Hispanic/Latino clusters (mean = 48.0% - 67.4%). Puerto 229 

Ricans characterize a substantial proportion of another Hispanic/Latino cluster associated with 230 

Florida (OR > 4), as well as New York City (OR > 5). Unlike the other Hispanic clusters, the 231 

Puerto Rican cluster shares the same branch on the FST tree as the African American clusters, 232 

likely due to high proportions of African ancestry (mean = 11.2%, sd = 9.0%) among Puerto 233 

Ricans. 234 

 235 

Three distinct clusters of Hispanics were found in the Southwest (Figure 4): one strongly 236 

associated with New Mexico (OR > 4; p < 0.05), another primarily in Texas (OR > 3; p < 0.05), 237 

and the third associated with Southern California (OR > 2; p < 0.05). Combined with the EEMS 238 

analysis, these clusters confirm our observation of parallel migration routes from east and west 239 

Mexico into Southwestern United States. While the genetic differentiation of these three clusters 240 

are subtle (FST=0.001-0.003), ancestral birth origin patterns and local ancestry proportions for 241 

these clusters reveal meaningful dissimilarities. Whereas the majority of Hispanics in New 242 

Mexico report US ancestral birth origins through grandparents, the recent ancestors of 243 

Hispanics in Texas are predominantly from Mexico. Nonetheless, these two clusters share 244 

similar local ancestry proportions with only slight genetic dissimilarity that result in a moderate 245 

decrease in migration rate (from darker blue to light blue in Figure 2B). The reduced migration 246 

rate along the Texas-Mexico border may be caused by more recent immigrants. Unlike the 247 

Hispanic clusters associated with New Mexico and Texas, the Hispanics in California cluster 248 

contain greater proportions of ancestors from Central and South American (e.g., Colombia and 249 

El Salvador). Proportions of Native American ancestry is also highest in this cluster (Figure 4). 250 

Taken together, these two differences further explain the presence of the migration barrier in 251 

Arizona between the Hispanics in the California and the Hispanics in New Mexico.  252 

 253 
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Historical immigration of Europeans into the US occurred in successive waves, with Northern 254 

and Western Europeans making up one wave from the 1840s to 1880s and another wave 255 

comprising of Southern and Eastern Europeans occurring from the 1880s to 1910s.33 Consistent 256 

with this immigration pattern, haplotype clusters with ancestries from Northwest and Central 257 

Europe have higher proportions of US ancestral birth origins than haplotype clusters from 258 

Southern and Eastern Europe, suggesting earlier immigration (Figure 5). The two clusters with 259 

the highest proportion (>75%) of US ancestral birth origin (“Northwest Europe 1” and “Northwest 260 

Europe 2”) have approximately 4.5% of UK ancestral origins. The Central European cluster and 261 

the Irish cluster both have approximately 66.1% to 68.5% of US grandparental origins, 262 

respectively. In contrast, the US makes up only 62.2% and 34.5% of grandparental birth origin 263 

for the clusters of Southern Europeans and Eastern Europeans, respectively.  264 

 265 

Unlike the larger European clusters, the smaller European clusters reflect the structure of more 266 

recent immigrants and genetically isolated populations. The geographic distribution of these 267 

subpopulations are more concentrated, and their ancestral birth origin proportions are 268 

overrepresented by specific countries and ethnicities (Figure 6). For example, Finns and 269 

Scandinavians are abundant in the Upper Midwest and Washington; French Canadians are 270 

found in the Northeast; Acadians are present in the Northeast and Louisiana; and Italians, 271 

Greeks, Ashkenazi Jews, and Admixed Jews are mostly located in the metropolitan area of New 272 

York City. Of the European clusters, median cumulative IBD sharing and cROH lengths are 273 

highest amongst Ashkenazi Jews (31.8cM and 11.3 Mb, respectively; Table 1). The two Jewish-274 

related clusters were identified using self-reported ancestral ethnicity data rather than birth 275 

origin data, since Jewish ancestry is not specific to any single location. Jewish ancestry, 276 

particularly Ashkenazi Jewish ancestry, was more consistently reported on both sides of the 277 

family in the larger Jewish cluster (“Ashkenazi Jewish”), suggesting that individuals are more 278 

admixed in the smaller cluster (“Admixed Jewish”).  279 

 280 

We inferred two haplotype clusters of African Americans separated along a north-south cline, 281 

recapitulating the EEMS migration barrier inference. One cluster is primarily distributed amongst 282 

the northern and western states (“African Americans North”) while the other is distributed 283 

amongst the states southeast of the Appalachian Mountains (“African Americans South”) 284 

(Figure S7). The proportion of US birth origin is higher in the northern cluster than the southern 285 

cluster, further evidence of isolation by distance amongst African Americans in the north.8 These 286 

two clusters share similar cROH lengths but differ in admixture proportions and median IBD 287 
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sharing, pointing to a cluster with consistent African American ancestors and a cluster with more 288 

admixed ancestors. Median IBD sharing is higher amongst African Americans in the south 289 

(median IBD = 19.6 cM, median cROH = 3.3 Mb) than in the north (median = 15.9 cM, Table 2) 290 

while the average proportion of African ancestry is higher in the northern cluster than the 291 

southern cluster.  292 

 293 

Smaller haplotype clusters in the Genographic cohort reflect more recent immigration of South, 294 

Southeast, and East Asian individuals to the US, which grew rapidly in the mid-20th Century 295 

after the passage of laws eliminating national origin quotas.34 We identified four clusters with 296 

birth origins enriched from Asia (Figure S8). The recency of immigration among these clusters 297 

is indicated by the less than 30% of ancestral birth origins coming from the US. Geographically, 298 

individuals in these clusters primarily reside in major cities. East Asians predominantly inhabit 299 

the metropolitan areas of coastal states in the West and Northeast (OR > 2), while South Asians 300 

are strongly associated with the Northeast (OR > 2.5). Southeast Asians (OR > 2.5) are 301 

enriched in the west but are also associated with the Carolinas and Ohio. Despite its small size, 302 

the cluster of Middle Eastern individuals reflects many of the known demographic patterns of 303 

Arab Americans, as individuals in this cluster are primarily of Lebanese origin and are 304 

distributed in the Northeast as well as metropolitan Detroit. cROH lengths are particularly long 305 

for South Asians (median cROH = 10.3 cM), Southeast Asians (median cROH = 7.8 cM), and 306 

Middle Easterners (median cROH = 8.2 cM), potentially reflecting inbreeding patterns found in 307 

their ancestral regions.35 308 

 309 

 310 

Discussion 311 

 312 

As the US population is becoming increasingly diverse, genomic studies are simultaneously 313 

growing in scale and relevance; to increase scientific and ethical parity, these studies must 314 

therefore move beyond the current practice of evaluating genetically homogenous groups in 315 

isolation.17 Here, we provide an integrative framework for analyzing population structure in 316 

ancestrally heterogeneous individuals. Using data from the National Geographic Genographic 317 

Project, we untangled the recent demographic histories of European, African American, 318 

Hispanic/Latino, and Asian populations in the US by evaluating their admixture proportions, 319 

migration rates, haplotype sharing, and ancestral birth origins.  320 

 321 
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Our comprehensive approach has allowed us to capture spatial patterns of gene flow within and 322 

between subpopulations that are difficult to infer from a single method alone. For example, 323 

EEMS is limited in identifying unique subpopulations, while haplotype clustering cannot assign 324 

admixed individuals partial membership to multiple clusters. An integrative approach can thus 325 

enable greater insights into populations with complex histories, such as recently admixed US 326 

Hispanics/Latinos.  327 

 328 

Consistent with prior studies,4,10 the recent demographic history of Hispanic/Latino populations 329 

is complex. Large variations in admixture proportions within and between subpopulations are 330 

reflected by US Census Data and can likely be explained by numerous inferred migration 331 

barriers. For example, regional differences in the Southwest are highlighted by an inferred 332 

migration barrier in Arizona and distinct haplotype clusters surrounding this region. These 333 

differences are likely due to higher proportions of Native American ancestry as well as more 334 

Central and South American origins in the California Hispanic cluster compared to other 335 

southwestern Hispanic/Latinos. Interestingly, although the New Mexico Hispanic/Latino cluster 336 

is distinct from the Texan cluster, high levels of gene flow are inferred from southern New 337 

Mexico to central Texas, suggesting that certain individuals in these two clusters are genetically 338 

similar and may share an ancestral origin (i.e. Mexico). In contrast, those in northern New 339 

Mexico are more genetically differentiated, as indicated by a migration barrier, but share the 340 

same cluster; these are likely Nuevomexicanos, descendants of Spanish colonial settlers. 341 

 342 

The fine-scale population structure of African Americans also reflects known historical events 343 

following the transatlantic slave trade, during which millions of West Africans were forcibly 344 

moved to the Americas. Subsequently, the movement of African Americans during the Great 345 

Migration has been shown to correlate with current patterns of relatedness across US census 346 

regions.8 Our results show barriers to migration and gene flow at fine-scale, particularly along 347 

the Appalachian Mountains. A north-south migration barrier is also present west of the 348 

Mississippi River, and is further supported by the north-south locations of two African American 349 

clusters that emphasize this divide. The southern African American cluster contains more recent 350 

ancestors outside the US, particularly of Caribbean origin, than the northern African American 351 

cluster. These genetic signatures illustrate the impact of recent migration patterns on modern 352 

population structure. 353 

 354 
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Our ability to identify population structure for certain ancestries is subject to participation among 355 

individuals from those groups. In particular, individuals with Asian ancestries account for over 356 

5% of US population, but they are underrepresented in US population genetics studies, 357 

hindering the investigation of their ancestry in prior studies.9 Our analyses of East Asian, 358 

Southeast Asian, South Asian, and Middle Eastern populations therefore provide initial insights 359 

into their genetic structure. The ancestral origins and geographic distributions of these clusters 360 

are consistent with US Census reports. Since these populations descend from more recent 361 

immigrants, the observed patterns of homozygosity within several of these clusters likely reflect 362 

consanguinity patterns in some of their ancestral regions. Specifically, the long cROH in South 363 

Asians may reflect endogamy for example related to the caste system in India, while similar 364 

patterns among the Middle Eastern and Southeast Asian clusters may be capturing 365 

consanguineous marriage practices in those regions.36–38 Given the small size of these clusters, 366 

however, further studies with larger data are needed.   367 

 368 

Population history in the US is best characterized among the most populous European descent 369 

individuals. Genetic diversity tends to be highest in more densely populated regions, likely due 370 

to the presence of multiple subpopulations in the same place. Many of the European 371 

subpopulations we identified are similar to those previously found—e.g., French Canadians, 372 

Acadians, Scandinavians, Jews (Supplementary Discussion).9 The geographic distribution of 373 

these subpopulations, particularly those that are more genetically diverged, overlap in the 374 

metropolitan areas in the Northeast, Midwest, and California.  375 

 376 

The emergence of biobank-scale genomic data is enabling more complete pedigrees,39 greater 377 

discoveries of fine-scale population structure, and more precise insights into health-related 378 

associations. An estimated 26 million people have taken a direct-to-consumer ancestry test,40 379 

indicating widespread interest in ancestry and heritable factors. As participation in genetic 380 

studies increase, especially in the US with the All of Us Research Program, so does the need 381 

for inferring increasingly granular demographic history in study cohorts. Understanding such 382 

genetic structure is important to account for stratification, prevent the overgeneralization of 383 

results, and avoid exacerbating existing biases.16,17 This study demonstrates the potential of 384 

coupling genetic data with geographic and birth origin data to reconstruct such demographic 385 

histories, particularly in a large and heterogeneous population.   386 
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Materials and Methods 387 

 388 

Human Subjects 389 

The Genographic Project and Geno 2.0 Project received full approval from the Social and 390 

Behavioral Sciences Institutional Review Board (IRB) at the University of Pennsylvania Office of 391 

Regulatory Affairs on April 12, 2005. The IRB operates in compliance with applicable laws, 392 

regulations, and ethical standards necessary for research involving human participants. All data 393 

in this study came from participants that consented to have their results be used in scientific 394 

research. All data was deidentified. 395 

 396 

In addition to genotype data, participants also provided information on geographic location, 397 

ancestral birth origin, and self-declared ethnicity. Geographic location was collected in the form 398 

of postal code. We limited our analysis to include only individuals who provided valid geographic 399 

location. Both ancestral birth origin data and self-declared ethnicity data were collected up to the 400 

grandparents of the participants. Approximately 60% of individuals provided complete 401 

pedigrees.  402 

 403 

Genotyping and Quality Control 404 

Participants of the Genographic project were sequenced with the GenoChip array,23 a Illumina 405 

iSelect HD custom genotyping bead array with approximately 150,000 Ancestry Informative 406 

Markers from autosomal DNA, Y chromosome DNA, and mitochondrial DNA. 407 

 408 

Raw genotype data was quality controlled (QC) using PLINK v1.90b3.39.41 We filtered for 409 

samples with ≤ 0.1 missingness, sites with = 0.0 missingness, and MAF ≥ 0.05. After QC, 410 

32,589 individuals and 108,003 sites remained. 411 

  412 

Principal Component Analysis 413 

We performed principal component analysis on the quality-controlled samples using FlashPCA 414 

version 2.0.25 We included the genotypes of all 2,504 individuals from the 1000 Genomes 415 

Project as reference samples. We first found the subset of SNPs (108,003) that were shared 416 

between the Genographic samples and the 1000 Genomes Project samples. We next computed 417 

PCs across all 108,003 sites for all 1000 Genome Project individuals. Using the resulting PCs, 418 

we then projected the Genographic individuals on the same principal component space. 419 

  420 
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Continental Ancestry Assignment 421 

We assigned continental ancestry to each individual in the Genographic dataset by leveraging 422 

the PCs and known super population assignment (AFR=African, EUR=European, EAS=East 423 

Asian, AMR=American, and SAS=South Asian) of each individual in the 1000 Genome Project. 424 

We trained a random forest classifier on the first 10 PCs of the 1000 Genome Project samples 425 

and assigned ancestry to all of the Genographic samples at 90% probability based on the 426 

model. All unassigned ancestries were considered “other” (OTH). 427 

  428 

Genetic Ancestry Proportion Estimation 429 

We estimated admixture proportions using ADMIXTURE.24 Similar to the PCA analysis, we 430 

included the genotypes of all individuals from the 1000 Genomes Project and used the subset of 431 

SNPs shared between the Genographic and 1000 Genomes Project datasets. We ran 432 

ADMIXTURE for k=3-10 by first analyzing the 1000 Genomes Project in unsupervised mode to 433 

learn allele frequencies and obtain ancestry proportions. Then, we projected the Genographic 434 

samples onto the learned allele frequencies of the 1000 Genome Project samples to obtain the 435 

learned clusters and ancestry proportions. We chose k = 5 as the most stable and best 436 

representation of ancestry. 437 

 438 

UMAP 439 

We applied the Uniform Manifold Approximation and Projection (UMAP) method to visualize 440 

subcontinental structure.26,27 We first combined the PCs for the Genographic samples and the 441 

1000 Genome Project samples, from the PCA analysis above, into one dataset. We then used 442 

the UMAP implementation in Python to dimensionally reduce the first 20 PCs from the joint 443 

dataset into a two-dimensional plot. We tested various parameter choices for UMAP and found 444 

that the default nearest neighbor value of 15 and the minimum distance values of 0.5 delivered 445 

the clearest result.  446 

 447 

To help with interpretability, we colored the 1000 Genome Project samples in the UMAP 448 

projection based on their country level assignments (Figure 1C left). We also visualized the 449 

Genographic samples in the UMAP projection by coloring each sample based on their ancestry 450 

proportions from ADMIXTURE (Figure 1C right). Specifically, the color (RGB value) of each 451 

sample is a linear combination of the sample’s ancestry proportions and the RGB values of 452 

each ancestry’s color (EUR = red, AFR = yellow, NAM = green, EAS = blue, SAS = purple).  453 

                                                     454 
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Genetic Relatedness 455 

We used KING v2.0 to identify the set of unrelated individuals within the Genographic dataset 456 

separated by at least two degrees of relatedness.42 In total, 806 individuals had kinship 457 

coefficients greater than 0.0884 and were removed for downstream EEMS analysis and 458 

haplotype construction and clustering. 459 

 460 

Estimating Effective Migration Surfaces 461 

We estimated migration and diversity relative to geographic distance using the estimating 462 

effective migration surfaces (EEMS) method.28 We applied EEMS to Genographic individuals 463 

that were classified under African, European, and Native American ancestries. We excluded 464 

East Asian and South Asian ancestries due to low sample size and population density. We first 465 

computed pairwise genetic dissimilarities for all unrelated individuals with available postal code 466 

data in each of the three ancestries using the bed2diffs tool provided with EEMS. We then ran 467 

the EEMS algorithm with the runeems_snps tool and set the number of demes to 500. Per the 468 

recommendation in the manual, we adjusted the variance for all proposed distributions of 469 

diversity, migration, and degree-of-freedom parameters such that all were accepted 10%-40% 470 

of the time. We increased the number of Markov chain Monte Carlo (MCMC) iterations until the 471 

MCMC converged. 472 

  473 

Haplotype Calling and Network Construction  474 

We used IBDSeq version r1206 to generate shared identity-by-descent (IBD) segments from 475 

genotype data for all unrelated individuals.43 Unlike other algorithms for IBD detection, IBDseq 476 

does not reply on phased genotype data and therefore is less susceptible to switch errors in 477 

phasing that can cause erroneous haplotype breaks. We filter individual IBD segments by 478 

length, excluding those shorter than 3cM. We also removed IBD segments that overlapped 479 

partially or fully with long regions (1 Mb) of the chromosome that exhibited no SNPs across all 480 

unrelated individuals in the Genographic dataset. These sites can result in false positives IBD 481 

sharing and likely correspond to centromeres and telomeres.  482 

 483 

We calculate the cumulative IBD sharing between individuals by summing the length of all 484 

shared IBD segments. We limit our analysis to pairs of individuals in which cumulative IBD 485 

sharing is ≥12 cM and ≤72 cM, as previously described.9 We then constructed a haplotype 486 

network of unrelated individuals by defining each node as an individual and the edge connecting 487 

two vertices as the cumulative IBD sharing between two individuals, as a proportion of total 488 
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possible IBD sharing. For comparison, we also constructed an network without filtering for 489 

minimum or maximum IBD sharing. 490 

 491 

Detection of IBD Clusters 492 

To identify clusters of related individuals in the haplotype network described above, we used the 493 

Louvain Method for community detection implemented in the igraph package for R. Briefly, the 494 

Louvain Method is a greedy iterative algorithm that assigns vertices of a graph into clusters to 495 

optimize modularity (a measure of the density of edges within a community to edges between 496 

communities). The Louvain Method begins by first assigning each node as its own community 497 

and then adds node i to a neighbor community j. It then calculate the change in modularity and 498 

places i in the community with that maximizes modularity. The algorithm terminates when no 499 

vertices can be reassigned.  500 

 501 

We partitioned the haplotype network into clusters by recursively applying the Louvain Method 502 

within subcommunities. At the highest level, we take the full, unpartitioned haplotype graph and 503 

identify a set of subcommunities. We isolate the vertices within each subcommunity, keeping 504 

only the edges between those vertices to create separate new networks. We then apply the 505 

Louvain Method to the new subgraphs. We repeat this process up to four levels. We combined 506 

subcommunities with low genetic divergence based on FST values of < 0.0001 (see Genetic 507 

Divergence) and arrive at a total of 25 clusters for the filtered network (≥12 cM and ≤72 cM). For 508 

the unfiltered network, we arrived at 32 clusters, 4 of which contained less than 10 individuals 509 

and were removed from subsequent analyses. 510 

 511 

Annotation of IBD Clusters 512 

We used a combination of ancestral birth origins and self-reported ethnicities to discern 513 

demographic characteristics of each cluster. For each cluster, we quantified the proportion of 514 

each birth origin (i.e. country of origin) amongst all four grandparents, treating each 515 

grandparent’s origin equality. We use these proportions to inform population labels. Clusters in 516 

which a single non-US birth origin was in high proportions was labeled with that country. In 517 

cases where multiple non-US birth locations exists in approximately equally high proportions, 518 

we assigned a label representing the broader region (e.g. Eastern Europeans for Poland, 519 

Lithuania, Ukraine, and Slovakia; East Asia for Japan, China). For certain clusters, annotations 520 

could not be easily discerned by birth origin data. In these cases, we relied on self-reported 521 

ethnicities to label the clusters as these populations were found to be less associated with a 522 
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non-US country (e.g. Ashkenazi Jews) or the population has resided in the US for generations 523 

(African Americans, Acadians).  524 

 525 

Annotations for the 25 clusters from the filtered network were found to be more interpretable 526 

than annotations for the 28 clusters from the unfiltered networks. Specifically, many of the 527 

clusters from the unfiltered networks exhibited similar proportions of ancestral origins or 528 

ethnicities and were difficult to differentiate (Table S2 and S3). Certain populations (e.g. Finns, 529 

Middle Easterners) found from the filtered network were also not identified from the unfiltered 530 

network. We therefore used the 25 clusters from the filtered network in downstream analyses. 531 

 532 

Mapping IBD Clusters 533 

We mapped individuals using their present-day geographic location. We aggregated individuals 534 

from the same county using the postal code to county FIPS code mapping provided by the US 535 

Census, and we identified the longitude and latitude points of each county using the same data 536 

from the US Census. We then counted the number of individuals at each coordinate for each 537 

ancestry.  538 

 539 

To identify locations where a cluster is enriched, we performed a Fisher's exact test for each 540 

location and ancestry to obtain an odds ratio and significance value. For each cluster, we 541 

mapped only counties with statistically significant (p<0.05) enrichment and an odds ratio (OR) of 542 

greater than 1. The size of the circles is scaled to the number of individuals in each location. 543 

 544 

Runs of Homozygosity 545 

We used PLINK v1.90b3.39 to infer runs of homozygosity with a window of 25 SNPs.41 We 546 

calculated the cumulative runs of homozygosity (cROH) size by summing the lengths of 547 

homozygous segments. 548 

 549 

Haplotype Estimation 550 

Genographic genotypes were phased with the Sanger Imputation Service using EAGLE2 and 551 

the Haplotype Reference Consortium reference panel.44 No genotype imputation was 552 

performed. 553 

 554 

Local Ancestry Inference 555 
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We inferred local ancestry with RFMix v1.5.4 for Genographic samples in haplotype clusters 556 

that were annotated as Hispanics/Latinos and African Americans.32 We used samples of African 557 

(AFR; N = 661), European (EUR; N = 503), and Native American (AMR; N = 347) ancestry from 558 

the 1000 Genomes Project as the reference population. Specifically, we used LWK, MSL, GWD, 559 

YRI, ESN, ACB, and ASW as reference African populations; CEU, GBR, FIN, IBS, and TSI as 560 

reference European populations; and MXL, PUR, CLM, and PEL as reference Native American 561 

populations. 562 

 563 

RFMix was run using the default minimum window size of 0.2 cM and a node size of 5 to reduce 564 

bias in the random forest model as a result of an unbalanced reference panel. We specifically 565 

ran RFMix with the following flag: -w 0.2, -n 5. Global ancestry proportions were derived by 566 

quantifying the proportions of total local ancestry tracts for each ancestry.  567 

 568 

Genetic Divergence 569 

We computed weighted Weir-Cockerham FST estimates for each pair of haplotype clusters using 570 

PLINK v1.90b3.39.41 Using the distance matrix of FST values between clusters, we constructed 571 

an unrooted phylogenetic tree using the neighbor joining method implemented in scikit-bio.45 We 572 

visualized the tree using Interactive Tree Of Life.46 573 

 574 

 575 

  576 
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Data and Code Availability 577 

Genotype data and associated metadata are available to researchers through an application 578 

process and data usage agreement. We encourage qualified researchers to email the 579 

Genographic team at National Geographic Society (genographic@ngs.org) for information on 580 

and access to the Genographic database. 581 

 582 

Custom scripts generated to analyze the data in this paper are available through GitHub 583 

(https://github.com/chengdai/genographic_ancestry). 584 
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 712 

Figure 1. Genetic Diversity of the US Population 713 

(A) Principal Components Analysis (PCA) of individuals in the United States and in the 1000 714 

Genome Project. Each individual is represented by a single dot. Individuals in this study are 715 

colored in grey while 1000 Genome Population individuals are colored by super population 716 

(EUR = European, AFR = African, AMR = Admixed American, EAS = East Asian, SAS = South 717 

Asian). Principal components (PC) 1 and PC2 are shown. 718 

(B) Similar to (A), with PC3 and PC4 shown. 719 

(C) ADMIXTURE analysis at K=5 of individuals in this study. Each individual was assigned a 720 

continent-level ancestry label using a Random Forest model trained on the super population 721 

labels and the first 10 PCs of the 1000 Genome Project dataset. OTH = individuals who did not 722 

meet the 90% confidence threshold for classification. 723 

(D) UMAP projection of the first 20 PCs. Each dot represents one individual. In (D), individuals 724 

in the 1000 Genomes Project are colored by population, while Genographic Project individuals 725 

from this study are in grey. In (E), 1000 Genome Project individuals are colored in grey while 726 

Genographic Project individuals are colored based on their admixture proportions from 727 

ADMIXTURE. The color for each dot was calculated as a linear combination of each individual’s 728 

admixture proportion and the RGB values for the colors assigned to each continental ancestry 729 

(EUR = red, AFR = yellow, NAT or Native American = green, EAS = blue, SAS = purple). 730 

Distances in UMAP do not directly correspond to genetic distance. See Materials and Methods 731 

for specific population labels. 732 
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Figure 2. Migration Rates of African Americans, Hispanics/Latinos, and Europeans within 735 

the United States. 736 

(A) - (C) Migration rates inferred with EEMS for African Americans (A), Hispanics/Latinos (B), 737 

and Europeans (C). Colors and values correspond to inferred rates, m, relative to the overall 738 

migration rate across the country. Shades of blue indicate logarithmically higher migration (i.e. 739 

log(m) = 1 represents effective migration that is ten-fold faster than the average) while shades 740 

of orange indicate migration barriers. 741 
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 743 
 744 

Figure 3. Genetic differentiation of haplotype clusters 745 

Unrooted phylogenetic tree of haplotype clusters was constructed using the neighbor joining 746 

method with FST as genetic distance. Negative branch lengths were converted to zero. 747 
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 749 
 750 

Figure 4. Distribution of Hispanic/Latino Haplotype Clusters 751 

(A) Map of counties in which Hispanic/Latino haplotype clusters are enriched. Each dot 752 

corresponds to a county, and the size of the dot signifies the number of samples of the 753 

particular cluster in that county. Only the Hispanic/Latino cluster with the highest odds ratio is 754 

shown for each county, and only the top ten locations with the highest odds ratios are shown for 755 

each cluster. Maps showing the full distribution for each haplotype cluster can be found in the 756 

supplement (Figure S6). 757 

(B) Ancestral birth origin proportions of each cluster for individuals with complete pedigree 758 

annotations, up to grandparent level. Proportions were calculated from aggregating the birth 759 

locations of all grandparents corresponding to members of each haplotype cluster. For each 760 

chart, only the top five birth origins are shown as individual slices; the remaining birth origins are 761 

aggregated into one slice (lightest color).  762 
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(C) Ternary plots of ancestry proportions based on local ancestry inference for each haplotype 763 

cluster. Each dot represents one individual. 764 

 765 

 766 

 767 
 768 

Figure 5. Distribution of European American Haplotype Clusters 769 

(A) Geographic distributions of haplotype clusters corresponding to regional European 770 

ancestries. Each county containing present-day individuals is represented by a dot. The top 20 771 

locations with the highest odds ratio are shown for each cluster. Maps showing the full 772 

distribution for each cluster can be found in the supplement (Figure S6). 773 

(B) Ancestral birth origin proportions for each cluster in (A). Only individuals with complete 774 

pedigree annotations, up to grandparent level, are included. For each chart, only the top five 775 

birth origins are visualized as individual slices; the remaining birth origins are aggregated into 776 

one slice (lightest color).  777 
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 779 
 780 

Figure 6. Distribution of European American Haplotype Clusters 781 

(A) Present-day location of individuals in clusters of more genetically isolated European 782 

populations, similar to Figure 5A. For clarity, the top ten locations with the highest odds ratio are 783 

shown for each cluster. 784 

(B) Ancestral birth origin proportions for each cluster in (A). Only individuals with complete 785 

pedigree annotations, up to grandparent level, are shown. For each chart, only the top five birth 786 

origins are shown as individual slices; the remaining birth origins are aggregated into one slice 787 

(lightest color).  788 
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Cluster Samples 
Median 

Cumulative ROH 
Median 

Cumulative IBD 
Northwest Europe 1 11,725 2.88 15.23 
Northwest Europe 2 1,571 2.80 15.15 
Ireland 2,137 2.85 15.42 
Central Europe 3,116 2.83 15.06 
Eastern Europe 2,471 3.16 15.37 
Southern Europe 1,626 2.73 14.98 
Italy 697 6.91 14.64 
Greece-Italy 238 7.28 15.02 
Scandinavia 717 3.02 15.54 
Finland 314 3.67 17.50 
Acadia 249 3.89 19.48 
French Canadian 314 2.89 16.60 
Ashkenazi Jewish 1,475 11.26 31.75 
Admixed Jewish 445 2.75 15.50 
Hispanics/Latinos 810 3.53 16.38 
Hispanics/Latinos in California 573 4.10 17.11 
Hispanics/Latinos in New Mexico 163 5.52 21.92 
Hispanics/Latinos in Texas 177 6.27 23.65 
Puerto Rico 350 8.01 26.23 
African Americans South 761 3.34 19.56 
African Americans North 420 2.94 15.90 
East Asia 561 3.65 19.63 
Southeast Asia 325 8.44 17.90 
South Asia 389 10.42 14.82 
Greater Middle East 93 9.01 17.16 
 790 

Table 1. Summary of Haplotype Clusters 791 

Cumulative runs of homozygosity (cROH) was calculated by summing the regions of continuous 792 

homozygous segments. Cumulative IBD was determined by summing IBD segments of ≥ 3 cM 793 

and filtering for only pairs ≥ 12cM and ≤ 72 cM. Statistics were determined within haplotype 794 

clusters, rather than across the ancestrally heterogeneous and imbalanced full network. 795 
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