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Abstract

The precise modeling of molecular interactions remains an important goal among molecular model-
ing techniques. Some of the challenges in the field include the precise definition of a Hamiltonian for
biomolecular systems, together with precise parameters derived from Molecular Mechanics Force Fields,
for example. The problem is even more challenging when interaction energies from different species
are computed, such as the interaction energy involving a ligand and a protein, given that small dif-
ferences have to be computed from large energies. Here we evaluated the effects of the electrostatic
model for ligand binding energy evaluation in the context of ligand docking. For this purpose, a classical
Coulomb potential with distance-dependent dielectrics was compared with a Poisson-Boltzmann (PB)
model for electrostatic potential computation, based on DelPhi calculations. We found that, although
the electrostatic energies were highly correlated for the Coulomb and PB models, the ligand pose and the
enrichment of actual ligands against decoy compounds, were significantly improved when binding energies
were computed using PB as compared to the Coulomb model. We observed that the electrostatic energies
computed with the Coulomb model were, on average, ten times larger than the energies computed with
the PB model, suggesting a strong overestimation of the polar interactions in the Coulomb model. We
also found that a slightly smoothed Lennard-Jones potential combined with the PB model resulted in a
good compromise between ligand sampling and energetic scoring.

1 Introduction

The quantitative description of molecular interac-
tions, at an atomic level, remains an important chal-
lenge even in current days of Petascale computing.
Some of the difficulties found in this field include:
(i) the energetic description of biomolecular systems;
(ii) the fact that binding energies are small differ-
ences taken from large energies, resulting in large un-
certainties; and (iii) the limited sampling for some
calculations. Taken together, these obstacles are ex-
actly the challenge of scoring solutions in the docking
problem [1].

The second problem, due to the small differences
taken from bigger numbers, can be alleviated with
accurate calculations and appropriate sampling. In
the context of single point calculations, such as in
ligand docking, this challenge remains as an impor-
tant issue and is handled in some applications with a
posterior analysis of ligand candidates using molecu-
lar dynamics (MD) or Monte Carlo (MC) simulations
to generate an ensemble of thermally accessible con-
figurations of the system and binding energy calcula-
tions. In this context, the MM-GBSA or MM-PBSA
approaches became very popular [2, 3, 4].

The energetic description of a biomolecular sys-
tem is tackled in many docking approaches using
molecular mechanics force fields [5, 6, 7], where the
intermolecular interaction energies are typically com-
puted as a sum of polar interactions, modeled as a

Coulomb potential, and van der Waals interactions,
modeled through a Lennard-Jones potential [8]. Ad-
ditional terms can be added to model the influence
of the solvent, for example [9].

Modeling polar interactions using a Coulomb po-
tential introduces some potentially important issues.
First, polarization is not considered. Although this
effect might be important, a quantum description of
the system would be required for appropriate treat-
ment of the dynamics in the electron density within
the active site, increasing the computational costs
of the calculation. Second, the dielectric medium of
a protein might not be exactly a constant medium,
since the protein surface faces the solvent while its
core might be closer to a highly hydrophobic medium.
So, a representation of the electrostatic potential (and
energies) as a function of a varying continuum di-
electrics might be necessary, such as the treatment
given by the Poisson-Boltzmann (PB) equation [10].

Interestingly, Luty and coworkers observed that,
for 20 poses of benzamidine within 8 Å of trypsin
binding site, the electrostatic interaction energy com-
puted with PB and using a simple Coulomb model as-
suming ε = r, i.e., the dielectric constant ε equals to
the interatomic distance r, showed a high correlation
(r2 = 0.96) [5]. In contrary, Gilson and Honig ob-
served that this simple distance-dependent dielectric
model overestimates electrostatic interactions (also
observed by Luty and coworkers) and concluded that
this model does not seem to be a realistic way of
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treating polar interactions in biomolecular systems
[11].

In late ’80s Honig and coworkers developed the
DelPhi program [12], that numerically solves the PB
equation for macromolecular structures, of any shape,
given atomic coordinates, van atomic van der Waals
parameters, and atomic charges. The calculation of
electrostatic potentials within the current versions of
Delphi [13] is fast, taking a few seconds in typical
workstation computers for a small size protein. Al-
though it might not be fast enough to be used in
MD simulations, it is very competitive for docking
studies, where the receptor is kept as rigid, in many
strategies, and the interaction potentials can be pre-
computed in grids and stored for the actual docking
calculations [14, 5].

Here, we compared the results of docking enrich-
ments and pose reproduction within the same al-
gorithm when using Coulomb electrostatics with a
distance-dependent dielectric model (i.e., ε = r) and
using a PB electrostatic potential precomputed using
DelPhi [13]. Concurrently, we evaluated the influ-
ence of Lennard-Jones soft-core potential on dock-
ing efficacy with both PB and Coulomb models. We
found that the PB electrostatic model resulted in
modest improvement in pose reproduction and en-
richment. However, when this model was combined
with a smoothed van der Waals potential, an im-
portant improvement of pose reproduction and en-
richment was observed, suggesting that fine-tuning
of these terms is necessary.

2 Methods

2.1 Docking Calculations

For all docking calculations reported in this work,
the software LiBELa [9] was used. LiBELa (Ligand
Binding Energy Landscape) used a combination of
ligand- and receptor-based strategies. For this pur-
pose, the algorithm requires a reference ligand, that
indicates the initial binding mode. The docking pro-
cedure starts with a superposition of the search ligand
onto the reference ligand by using a purely ligand-
based approach, as previously described [15]. After-
ward, this initial binding mode is re-optimized to find
a minimum in the binding energy using a global op-
timization algorithm. In this step, a typical force
field-based definition of binding energy is used as the
objective function:

Ebind =
rec∑
i

rec∑
j

qiqj
εrij

+
Aij

r12ij
− Bij

r6ij
, (1)

where q is atomic charge, rij is the interatomic dis-
tance between atoms i and j and Aij and Bij are
the Lennard-Jones parameters for the the atom pair
ij, computed by the geometric mean approximation.
Here, Ai = δi(2r0)12 and Bi = 2δi(2r0)6, where r0 is
the atomic radius and δ is the well depth parameter.
Both parameters are taken from AMBER FF14SB
force field [16].

To speed up the calculations, the receptor inter-
action potential is precomputed and stored in grids.
In this point, LiBELa can compute a typical Coulomb
electrostatic potential:

φr =
∑
i

qi
εri

, (2)

where the dielectric constant can be set as 1.0,
4.0 or to the interatomic distance r [5]. Alterna-
tively, LiBELa can parse a DelPhi electrostatic map
with the electrostatic potential φDelPhi instead and
compute binding energies using this stronger electro-
static model. For the calculations shown in this work,
DelPhi 6.2 was used [17, 13, 18]. Typically, a compu-
tation box of 30 x 30 x 30Å with a spacing of 0.4Å
(gsize 75 and scale 2.5 Å), with interior dielectrics
of 2.06 and exterior dielectrics of 78.5, and salt con-
centration set to 145 mM. The same grid spacing was
used in calculation employing the Coulomb model.

We also tested the effect of a smoothed Lennard-
Jones potential by applying the same strategy as sug-
gested by Verkhivker and coworkers [19]. Here, the
binding energy is evaluated as [9]:

Ebind =

lig∑
j

qjφ(r) +

rec∑
i

lig∑
j

Aij

(r6ij + δ6V DW )2

− Bij

r6ij + δ6V DW

(3)

The smoothing term δV DW was systematically
varied in the interval 0.5 to 2.5 Å with a step of
0.5 Å to evaluate the effect of the Lennard-Joned
soft-core potential in pose reproduction and enrich-
ment when combined with a Coulomb electrostatic
potential (φCoulomb) or a PB electrostatic potential
(φDelPhi).

2.2 Docking Pose Reproduction

2.2.1 Self-docking test

For docking pose reproduction, we used three data
sets. The dataset SB2012 [20] includes 1,043 crystal
structures of protein-ligand complexes, distributed
as SYBYL MOL2 files. In this files, the atomic
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charges are already defined using AMBER forcefield
for receptor and AM1-BCC [21, 22] for ligands. The
dataset files were used as provided, with no further
optimizations or modifications of atomic coordinates.
Here, a docking calculation was set using each ligand-
receptor pair, using the own ligand as the reference
ligand in LiBELa.

2.2.2 Cross-docking test

For a cross-docking experiment, the Astex dataset
was used [23]. In this dataset, 58 structures with
analogous complexes are provided. From this dataset,
54 targets were used together with 860 ligands in
total. The targets (receptors) were prepared using
DockPrep tool as available in UCSF Chimera [24] us-
ing AMBER FF14SB atomic charges. For the lig-
ands, AM1-BCC atomic charges were attributed us-
ing ANTECHAMBER [25] and SYBYL atom types
were assigned using the same tool. In this exper-
iment, each ligand was docked on different (non-
native) crystal structures of its own target. After-
ward, the root mean square deviation (RMSD) was
computed using the native ligand structure as a ref-
erence.

2.3 Enrichment Tests

In order to evaluate the ability to enrich actual lig-
ands against decoys, i.e., compounds with similar
physicochemical properties but not expected to bind
to a given target, the DUD38 subset of DUD-E
database, which contains 38 targets from the orig-
inal DUD dataset [26], but rebuild with the same
protocol as used in DUD-Enhanced (DUD-E) [27].
This subset includes the PDB files for the receptors
and over 630,000 compounds, among binders and de-
coys, with an average decoy-to-ligand ratio of 33.
The compounds were used as provided (as SYBYL
MOL2 files) with atomic charges defined following
the default ZINC protocol [28, 29]. The receptor
files were prepared using the DockPrep tool available
in UCSF Chimera [24]. In this tool, atomic charges
are attributed to receptor atoms following AMBER
FF14SB parameters. Finally, the prepared receptor
is saved as a SYBYL MOL2 file type.

The target-specific ligands and decoys were
docked to each target using LiBELa default param-
eters and using either a Coulomb electrostatic model
or a pre-computed Delphi electrostatic potential. The
Delphi calculations were carried out in two steps. In
the first step, a calculation is set where the protein
represents 60% of the calculation box. In a second
step, a focused calculation was carried out using a

grid of 0.4 Å for a 30 x 30 x 30 Å calculation box
centered in the center of mass of the reference lig-
and. The energies computed after docking calcula-
tions were used to rank the docked molecules and
ROC curves were computed with locally developed
python scripts. The enrichment was quantified us-
ing the Adjusted LogAUC metric [30]. This metric is
similar to the well known AUC but is computed for
a semi-logarithmic plot of the ROC curve spanning
three decades in the horizontal axis. The computed
area is then corrected to remove the area expected
for a random enrichment (14.5%).

3 Results and Discussion

The calculations of the electrostatic potentials with
DelPhi are very fast, typically taking less than five
seconds in an Intel Xeon E5645 (2.40GHz) proces-
sor running in a single thread. This is much faster
than the calculation of the interaction potential grids
in LiBELa, which took about 5.4 minutes averaging
over the 38 targets of the DUD38 dataset. The com-
putational efficiency of the electrostatic calculations
with DelPhi makes it tempting to use this more ro-
bust model in docking calculations. However, what is
the actual role of PB-based calculation on polar inter-
actions in the context of ligand docking? In order to
address this question, we set up a comparative anal-
ysis of ligand binding poses and ligand enrichments
using the Coulomb electrostatic model or PB as the
electrostatic model to assess the effect of the model
in sampling and enrichment, respectively.

3.1 Effect on Sampling

The simpler experiment one can think of to evalu-
ate the sampling effect on ligand docking is to assess
the ability of a model to reproduce ligand poses from
crystal structures. In this context, we compared the
root mean square deviations observed for LiBELa us-
ing either Coulomb or PB as the electrostatic model.

After the redocking of 1,029 ligands on their re-
spective receptors, the RMSD for all atoms, includ-
ing hydrogen atoms, was computed in comparison
with the original (experimental) structures. Aver-
aging over the entire dataset an RMSD of 1.13 Å
was observed for the Coulomb model, while for the
PB model an average RMSD of 1.06 Å was achieved.
The median RMSD for these models were 0.50 and
0.55 Å with a standard deviation slightly increased
for Coulomb as compared to PB (1.72, compared to
1.47 Å). For both models the fraction of targets with
RMSD values found below the typical cutoff value of
3.0 Å was over 90%, as indicated in Table 1.
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Electrostatic Model Coulomb PB

Smoothing Parameter δV DW = 0.0 Å

Average (Å) 1.13 1.06
Median (Å) 0.50 0.55
Standard Deviation (Å) 1.72 1.47
< 2.5 Å 91% 91%
< 3.0 Å 92% 93%

Smoothing Parameter δV DW = 0.5 Å

Average (Å) 1.15 1.20
Median (Å) 0.51 0.57
Standard Deviation (Å) 1.75 1.65
< 2.5 Å 90% 89%
< 3.0 Å 91% 91%

Smoothing Parameter δV DW = 2.0 Å

Average (Å) 7.75 1.52
Median (Å) 7.74 0.65
Standard Deviation (Å) 1.98 1.95
< 2.5 Å 0.4% 82%
< 3.0 Å 1% 85%

Table 1: Summary of the self-docking experiment. using
the SB2012 dataset. N=1,029.

When a smoothed Lennard-Jones potential was
combined with the electrostatic models under evalu-
ation in this work, we found very interesting differ-
ences. For a small smoothing parameter δ = 0.5 Å,
the differences between the electrostatic models are
small, similarly to what is observed in the AMBER
Lennard-Jones model. However, as δ becomes larger,
the differences between the Coulomb model and the
PB model become more significant. When δ is set
to 2.0 Å, the average RMSD found for the Coulomb
model was 7.75 Å (median 7.74 Å), while the average
RMSD for the PB model was 1.52 Å, with median in
0.65 Å. So, it appears that the combination of the PB
model with a soft-core VDW potential still leads to
good results in pose reproduction while the Coulomb
model rapidly seems to dominate the binding energy
resulting in meaningless ligand poses.

Another interesting observation comes from the
comparison between the polar term in the interac-
tion energies. An analysis for 987 protein-ligand
complexes reveals a good correlation between the
electrostatic interaction energies computed using a
Coulomb model with distance-dependent dielectrics,
i.e., ε = rij , and electrostatic interaction energies
computed using the Poisson-Boltzmann model. As
shown in Figure 1, there is a good correlation between
the computed energy terms (r = 0.7 for N = 987),
as also observed previously by Luty and coworkers
[5]. Additionally, one can observe that the electro-
static interaction energies computed by the Coulomb
model are about 10 times more favorable, on average

than those computed using the PB model, indicating
a typical overestimation of the interaction energies
in this model. In the context of ligand docking, this
overestimation may result in binding modes that are
biased towards a few polar contacts that are too fa-
vorable as compared to the overall fitting of the ligand
and receptor binding pockets.

Figure 1: Correlation of the electrostatic interaction en-
ergies computed with Coulomb model (horizontal axis)
and PB (vertical axis). The line shows a linear regres-
sion of the obtained data (N = 987) and the regression
coefficients are shown in the figure.

In conclusion, the data obtained for this dataset
showed equally good pose generation for the tested
electrostatic models. The average RMSD values also
reveal that the difference between the obtained val-
ues may be significant, especially in the context of
the soft docking, revealing a slightly, though signifi-
cant, improvement in the pose generation by the PB
model as compared to a pure Coulomb model with a
distance-dependent dielectric constant.

A more stringent test is to assess the ability of
the model to reproduce experimentally determined
poses in a cross-docking experiment, i.e., in a recep-
tor structure different from the one used in the ac-
tual docking calculation. In brief, it involves docking
ligand LA in receptor structure RB and comparing
the docking pose to the pose observed when LA was
crystallized bound to receptor RA. For this task, the
Astex non-diverse dataset was used.

The employed dataset includes 603 diverse (non-
native) complexes. The results obtained are summa-
rized in Table 2. Again, when the typical AMBER
Lennard-Jones potential is used, a slight improve-
ment in the binding poses is observed, with average
RMSD going from 3.96 Å, for the Coulomb model, to
3.82 Å in the PB model (median values of 2.72 and
2.66 Å, respectively). When a smoothed Lennard-
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Jones potential is used, on the other hand, the dif-
ferences between both electrostatic models increases.
For a smoothing parameter δ set to 0.5 Å, the average
RMSD decreases from 4.02 in the Coulomb model to
3.75 in the PB model (median values 2.73 and 2.63
Å). And when δ is set to 2.0 Å, the average RMSD
decreases from 8.19 Å to 3.81 Å (Table 2).

Electrostatic Model Coulomb PB

Smoothing Parameter δV DW = 0.0 Å

Average (Å) 3.96 3.82
Median (Å) 2.72 2.66
Standard Deviation (Å) 4.23 4.14

Smoothing Parameter δV DW = 0.5 Å

Average (Å) 4.02 3.75
Median (Å) 2.73 2.63
Standard Deviation (Å) 4.22 3.96

Smoothing Parameter δV DW = 2.0 Å

Average (Å) 8.19 3.81
Median (Å) 7.89 2.63
Standard Deviation (Å) 3.34 4.07

Table 2: Summary of the cross-docking experiment us-
ing the Astex dataset. N=603.

Taken together, the results shown here indicate
that the PB model for electrostatic computation re-
sult in better pose reproduction in the scenario of a
typical AMBER FF binding energy calculation and,
more significantly, in the scenario of a soft docking,
i.e., when the Lennard-Jones potential is smoothed.
Given the results obtained, we moved for the eval-
uation of the changes in the enrichment of actual
binders against decoy compounds.

3.2 Ligand Enrichment

In order to assess the ability of the electrostatic
models to recover actual ligands against decoy com-
pounds, we choose the DUD38 dataset. In this
dataset, 38 targets are given with a set of binder
compounds and a set of decoy compounds. In this
context, a decoy is defined as a compound that has
similar physicochemical properties to the binders but
is not expected to bind to the receptor. After docking
all the binders and decoys, the compounds are ranked
by their binding energy and a receiver-operating char-
acteristic (ROC) curve is plotted. Finally, the enrich-
ment is computed using Adjusted LogAUC metric, as
previously proposed [30].

The results obtained are summarized in Table
3 and shown in the complete version in Figure 2.

From the data shown here, we note that, for the
usual Lennard-Jones model used in AMBER force
field, i.e., δV DW = 0.0, the electrostatic models per-
formed similarly in terms of enrichment, with an av-
erage enrichment of 3.3 or 3.5 for Coulomb or PB,
respectively. Using the smoothed VDW potential
with δV DW = 0.5 Å, some slight improvement in
the median enrichment is observed for both electro-
static models, with the PB model experiencing a bet-
ter improvement. Here, the median enrichment in-
creases from 2.7 to 3.4 for the PB model, while the
Coulomb model median enrichment increases from
2.2 to 2.6. Finally increasing the smoothing constant
to δV DW = 2.0 Å, a maximum in the average/median
logAUC is observed for the PB model (4.4 and 4.8 for
average and median, respectively), while a marked
decrease in the enrichment for the Coulomb model is
observed.

For the sake of comparison, the same docking cal-
culations using the DUD38 were set up using the Grid
Score model of DOCK 6.7 [31]. The average and me-
dian logAUC observed for this model was 1.3 and
-1.2, respectively (Table 3). Since logAUC corrects
for the expected random enrichment, this metric can
achieve negative results if results are worse than ran-
dom. It is important to add that the Grid Score here
used a 6-12 Lennard-Jones potential with a Coulomb
electrostatic model that uses a distance-depend di-
electric function (ε = rij), similar to the model used
in LiBELa.

Electrostatic Model Coulomb PB

Smoothing Parameter δV DW = 0.0 Å
Average 3.3 (53.1%) 3.5 (53.8%)
Median 2.2 (52.2) 2.7 (52.9%)
Standard Deviation 5.2 (8.9%) 5.0 (8.7%)

Smoothing Parameter δV DW = 0.5 Å
Average 3.9 (54.3%) 3.6 (54.1%)
Median 2.6 (53.5%) 3.4 (52.4%)
Standard Deviation 5.7 (8.9%) 4.9 (8.6%)

Smoothing Parameter δV DW = 2.0 Å
Average 1.0 (51.6%) 4.4 (57.7%)
Median 0.6 (50.8%) 4.8 (58.1%)
Standard Deviation 5.5 (9.8%) 3.9 (7.4%)

DOCK 6.7 Grid Score
Average 1.3 (42.5%)
Median -1.2 (43.3%)
Standard Deviation 9.7 (17.4%)

Table 3: Summary of the enrichment experiment using
the DUD38 dataset. The values are reported as Adjusted
LogAUC and also as AUC, in the parenthesis.
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Figure 2: Enrichment plot, adjusted logAUC (area under the curve) of known ligands against decoys for the 38
targets of DUDE38 database and for different docking condition.
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The enrichment data shown in Table 3 for the
DUD38 dataset strongly suggests that the continuum
electrostatic model can lead to significant improve-
ments in the ability to recover actual binders and
separate them from decoy compounds. On the other
hand, as we already noted from the data shown in
Figure 1, the Coulomb interaction electrostatic en-
ergies are, on average, 10 times more favorable than
interaction electrostatic energies computed with PB.
Then, it makes sense that the balance between the
electrostatic and van der Waals terms should be also
fine-tuned. We assessed this balance by introducing
a smoothed Lennard-Jones term to model the van
der Waals interactions. A good balance seems to be
achieved when the smoothing constant δV DW was set
to 2.0 Å. With this calculation setup, a maximum
in the enrichment is observed, without compromis-
ing the docking poses, according to the results of lig-
and enrichment with DUD38, self-docking with the
SB2012 dataset (Table 1) and cross-docking with the
Astex dataset (Table 2). A complete comparison of
the effect of the smoothing parameter δV DW is shown
in Table 4, where the ligand pose and ligand enrich-
ment can be compared as a function of the smoothing
parameter.

δV DW Model Self Cross Enrichment
RMSD (Å) logAUC

0.5Å PB 1.20Å 3.74Å 3.67 (3.43)
2.0Å PB 1.52Å 3.80Å 4.39 (4.78)
0.0Å PB 1.06Å 3.82Å 3.61 (2.82)
0.0Å Coulomb 1.13Å 3.95Å 3.30 (2.24)
0.5Å Coulomb 1.15Å 4.01Å 1.32 (1.45)
2.0Å Coulomb 7.75Å 8.18Å 1.05 (0.63)

Table 4: Summary of the docking pose experiments and
ligand enrichment experiment using both electrostatic
models with varying smoothing parameters δV DW . Here,
Self and Cross indicate the self-docking and cross-docking
experiments, respectively, using SB2012 and Astex non-
native datasets. Enrichment indicates the ligand enrich-
ment test with DUD38 dataset. The average RMSDs are
shown for the self- and cross-docking experiments, while
the ligand enrichment is shown using the LogAUC metric.

A second effect of the electrostatic treatment
given to the docking calculations can be observed in
the distribution of the net charges of the top-scored
molecules in docking calculations. The analysis of the
charge distribution for the target ace, shown as an ex-
ample in Figure 3, reveals that among the top-scored
molecules when the Coulomb model was used, almost
half of them have net charges -2 or -3 e, indicating
a favoring of the non-specific electrostatic interac-
tions to the total docking score. On the other hand,

the PB model favors neutral molecules or molecules
with net charge -1 e (Figure 3). No molecule with
net charge -2 or -3 is observed among the top-scored
molecules, suggesting a much more specific scoring
of the biomolecular interactions. As a piece of evi-
dence of the correctness of the PB model, an inspec-
tion of the distribution of net charges among the ac-
tual binders in the DUD dataset for this target shows
that 66% of the binders have net charge 0, 30% have
charge -1 and 4% have charge -2, indicating that the
PB model more closely reflects the molecular inter-
actions observed in experimental conditions.

Figure 3: Distribution of the net charge for the 100 top-
scored molecules in docking calculations of the DUD38
target ace. The calculations were done without soft-core
potential, i.e., with smoothing parameter δV DW set to 0
Å.

In conclusion, here we evaluated the effect of scor-
ing docking calculations with a Coulomb model or
with a Poisson-Boltzmann model for electrostatic en-
ergies. We found that equally good docking poses
are observed in self-docking calculations. However,
the more stringent test of cross-docking calculations
indicated an improvement of the docking pose when
the PB model was used as compared to the Coulomb
model. Finally, the enrichment of actual binders as
compared to decoy compounds was significantly im-
proved when the PB model was used and balanced
with smoothed van der Waals interactions. Together
the results shown here suggest that better models
are computationally viable, in terms of time and ef-
ficiency, and the effects of the improvements in the
model can dramatically affect the outcome of docking
calculations, with great potential for the screening of
drug candidates.
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